
ECIS 2002 • June 6–8, Gdańsk, Poland — First — Previous — Next — Last — Contents —

351

COORDINATING COMPONENTS IN THE MULTIMEDIA

SYSTEM SERVICES ARCHITECTURE

Theophilos A. Limniotes, George A. Papadopoulos
†

Department of Computer Science

University of Cyprus

75 Kallipoleos St, Nicosia, POB 20537, CY-1678, CYPRUS

Tel: +357-2-892242, Fax: +357-2-339062

{theo,george}@cs.ucy.ac.cy

ABSTRACT

The purpose of this work is to examine and exploit the potential of the coordination paradigm to act as

the main communication and synchronization mechanism between components forming a distributed

multimedia environment and exhibiting real-time properties. Towards this purpose, we have

developed a mechanism for coordinating the distributed execution of components, as these are defined

by the Multimedia System Services Architecture (MSSA). Our coordination environment uses the

control-driven approach to coordination, namely the model IWIM and the associated language

Manifold. In the process we show how Manifold can be used to realize object communication and

synchronization of MSSA components and we present a methodology of combining a software

architecture such as MSSA with a coordination language such as Manifold. We illustrate our

approach by means of a suitable example.

Keywords: Coordination Paradigm; Distributed Multimedia Systems; Component-Based Systems;

Real-Time Systems.

1. INTRODUCTION

One of the most important developments in contemporary Software Engineering for Distributed

Systems is that of component-based systems. Towards that end, we have seen a proliferation of

models supporting the development of component-based software, such as middleware platforms,

software architectures, coordination models and languages, etc.

The purpose of this work is to explore and exploit the potential of the coordination paradigm to act as

the communication and synchronization mechanism between components forming a distributed

multimedia environment and exhibiting real-time properties. We are particularly interested in two

specific environments: the Multimedia System Services Architecture (Hewlett Packard, 1994), a

software architecture framework for Distributed Multimedia environments proposed by some major

companies in the field; and the coordination language Manifold (Arbab, 1996; Arbab et al., 1998)

which belongs to the control- or event-driven category of coordination models and associated

languages (Papadopoulos and Arbab, 1998).

† Please refer to this author for all correspondence regarding this paper.

ECIS 2002 • June 6–8, Gdańsk, Poland — First — Previous — Next — Last — Contents —

Theophilos A. Limniotes, George A. Papadopoulos

352

More to the point, we have developed a framework for executing components developed using the

MSSA paradigm where object communication and synchronization is realized by means of a

coordination infrastructure. The advantages of this approach is that we can develop reusable

coordination patterns for distributed multimedia applications (Blair and Stefani, 1998), but also we

make easier the distributed execution of components developed in the MSSA framework.

Furthermore, and in a more general setting, we illustrate how software architectures (at the modeling

level) can be combined with coordination languages (at the implementation level) to form a coherent

methodology for developing component-based systems.

The rest of the paper is organized as follows. The next two sections provide a brief introduction to

MSSA and Manifold. The next section presents the general philosophy of combining the software

architecture MSSA with the coordination language Manifold. An example illustrating the relevant

ideas is presented in the following section. The paper ends with some conclusions and reference to

future work.

2. THE MULTIMEDIA SYSTEM SERVICES ARCHITECTURE

The primary goal of Multimedia System Services Architecture (Hewlett Packard, 1994), developed by

the combined efforts of HP, IBM and SunSoft, is to provide an infrastructure for building interactive

multimedia applications, dealing with synchronized and time-based media, and consisting of

components running in heterogeneous distributed environments. In that respect, MSSA is a software

architecture that specifies a methodology for building distributed multimedia frameworks. In

particular, MSSA addresses issues such as the provision of abstract interfaces for media objects,

grouping of objects into single composite ones, separation of media format abstractions from dataflow

ones, etc. However, the actual communication and synchronization between MSSA media objects is a

responsibility left to other formalisms that can be used in conjunction with the MSSA, typically a

middleware platform for registering objects and providing inter-object communication mechanisms.

Stream Format

Port
Virtual

Device

StreamFormat

Port
Virtual

Device
Media

Stream

Protocol

Fig. 1. Basic Component Functionality in MSSA

Figure 1 above shows a simplified illustration of MSSA, featuring two of its three main entities,

namely virtual devices and virtual connections (the third, groups, is not relevant to the contents of this

paper and is omitted for reasons of brevity). A virtual device is an abstraction over a physical device

(e.g., CD player, microphone, etc.). Virtual devices offer a stream interface for communication with

the environment. They also feature format interfaces providing an abstract representation of the details

of media formatting. Finally, virtual devices feature one or more ports as input or output mechanisms.

MSSA adheres to an object-oriented approach. Thus, there exists an MSSObject class that produces

a VirtualResource, Format or Stream. A client in order to access an MSSObject has to

declare and initialise the MSSA client-side library. Then it requests a reference to a factory that would

be able to satisfy a constraint list, from the Registration and Retrieval Service (RR). The reply is used

ECIS 2002 • June 6–8, Gdańsk, Poland — First — Previous — Next — Last — Contents —

Coordinating Components in the Multimedia System Services Architecture

353

with a constraint list to request an object from the factory. The factory instantiates the object and

returns a reference of the newly created object. Objects can register with the factory their interest to be

informed of any evolution in the system’s architecture, such as failing of streams, non-adherence to

QoS requirements, etc.; this is achieved by means of registering to and monitoring of events.

MSSA objects are associated with characteristics which define their behaviour and are specified by

capabilities, which are key/value pairs. Furthermore, constraints are used to select objects that satisfy

certain characteristics with a key/value/operator triple. These can be used in searching, creating and

setting the requirements of an object. The state of an object reflects the constraints enforced on its

capabilities. An event is a message between objects defined (as a key/value pair) by the sender, while

the receivers must register for it. An event handler generates, registers, and processes the events.

Exceptions are generated by an object or the distributed object infrastructure in case of encountering

errors. There exists also a narrowing function that returns a pointer to the class of an object reference.

Finally, an object can determine its class inheritance with a class relationship function.

Although a number of other formalisms have appeared lately addressing issues related to developing

distributed multimedia information systems, MSSA remains one of the few which is both platform and

language independent. Note however that MSSA does not concern itself with providing a

methodology for coordinating the concurrent and distributed activities of media objects, nor the

establishment of reusable collaboration patterns between such components (Blair and Stefani, 1998). It

also relies on the underlying infrastructure for the enforcement of any real-time constraints and the

satisfaction of any Quality-of-Service requirements. It is in these areas that we propose to use the

coordination paradigm for.

3. THE COORDINATION LANGUAGE MANIFOLD

Manifold (Arbab, 1996; Arbab et al., 1998) is a control-driven coordination language which is a

realisation of the so-called Ideal Worker Ideal Manager (IWIM) coordination model (Arbab, 1996). In

Manifold there exist two different types of processes: managers (or coordinators) and workers. A

manager is responsible for setting up and taking care of the communication needs of the worker

processes it controls. A worker is completely unaware of who (if anyone) needs the results it computes

or from where it itself receives the data to process. Manifold possesses the following characteristics:

Processes. A process is a black box with well defined ports of connection through which it

exchanges units of information with the rest of the world. A process can be either a manager

(coordinator) process or a worker. A manager process is responsible for setting up and managing

the computation performed by a group of workers. Note that worker processes can themselves be

managers of subgroups of other processes. The bottom line in this hierarchy is atomic processes

which may in fact be written in any programming language.

Ports. These are named openings in the boundary walls of a process through which units of

information are exchanged using standard I/O type primitives analogous to read and write. Without

loss of generality, we assume that each port is used for the exchange of information in only one

direction: either into (input port) or out of (output port) a process. We use the notation p.i to refer

to the port i of a process instance p.

Streams. These are the means by which interconnections between the ports of processes are

realized. A stream connects a (port of a) producer (process) to a (port of a) consumer (process). We

write p.o -> q.i to denote a stream connecting the port o of a producer process p to the port i
of a consumer process q.

Events. Independent of streams, there is also an event mechanism for information exchange. Events

are broadcast by their sources in the environment, yielding event occurrences. In principle, any

process in the environment can pick up a broadcast event; in practice, only a subset of the potential

receivers is interested in an event occurrence. We say that these processes are tuned in to the

sources of the events they receive. We write e.p to refer to the event e raised by a source p.

ECIS 2002 • June 6–8, Gdańsk, Poland — First — Previous — Next — Last — Contents —

Theophilos A. Limniotes, George A. Papadopoulos

354

Activity in a Manifold configuration is event driven. A coordinator process waits to observe an

occurrence of some specific event (usually raised by a worker process it coordinates), which triggers it

to enter a certain state and perform some actions. These actions typically consist of setting up or

breaking off connections of ports and streams. It then remains in that state until it observes the

occurrence of some other event, which causes the preemption of the current state in favour of a new

one corresponding to that event. Once an event has been raised, its source generally continues with its

activities, while the event occurrence propagates through the environment independently and is

observed (if at all) by the other processes according to each observer’s own sense of priorities.

p
in1

in2

out

s1

s2

s3

s4

s5

e1 e2

e3 e4

out

Fig. 2. An Illustration of Manifold’s Coordination Structures

Figure 2 above shows diagrammatically the infrastructure of a Manifold process. The process p has

two input ports (in1, in2) and an output one (out). Two input streams (s1, s2) are connected to

in1 and another one (s3) to in2 delivering input data to p. Furthermore, p itself produces data,

which via the out port are replicated to all outgoing streams (s4, s5). Finally, p observes the

occurrence of the events e1 and e2 while it can itself raise the events e3 and e4. Note that p need not

know anything else about the environment within which it functions (i.e. who is sending it data, to

whom it itself sends data, etc.).

The following is a Manifold program computing the Fibonacci series.

manifold PrintUnits() import.
manifold variable(port in) import.
manifold sum(event)
 port in x.
 port in y.
 import.
event overflow.

auto process v0 is variable(0).
auto process v1 is variable(1).
auto process print is PrintUnits.
auto process sigma is sum(overflow).

manifold Main()
{
 begin:(v0->sigma.x, v1->sigma.y,v1->v0, sigma->v1,sigma->print).
 overflow.sigma:halt.
}

ECIS 2002 • June 6–8, Gdańsk, Poland — First — Previous — Next — Last — Contents —

Coordinating Components in the Multimedia System Services Architecture

355

The above code defines sigma as an instance of some predefined process sum with two input ports

(x,y) and a default output one. The main part of the program sets up the network where the initial

values (0,1) are fed into the network by means of two “variables” (v0,v1). The continuous generation

of the series is realised by feeding the output of sigma back to itself via v0 and v1. Note that in

Manifold there are no variables (or constants for that matter) as such. A Manifold variable is a rather

simple process that forwards whatever input it receives via its input port to all streams connected to its

output port. A variable “assignment” is realised by feeding the contents of an output port into its input.

Note also that computation will end when the event overflow is raised by sigma. Main will then

get preempted from its begin state and make a transition to the overflow state and subsequently

terminate by executing halt. Preemption of Main from its begin state causes the breaking of the

stream connections; the processes involved in the network will then detect the breaking of their

incoming streams and will also terminate.

More information on Manifold can be found in Arbab (1996), Arbab et al (1998), Papadopoulos

(1998); the language has been implemented on top of PVM and has been successfully ported to a

number of platforms including Sun, Silicon Graphics, Linux, and IBM AIX, SP1 and SP2.

A natural way to enhance the model with real-time capabilities is by extending its event manager.

More to the point, we have enhanced the event manager with the ability to express real-time

constraints associated with the raising of events but also reacting in bound time to observing them.

With events that can be raised and detected respecting timing constraints, we essentially have a real-

time coordination framework, since we can now guarantee that changes in the configuration of some

system’s infrastructure will be done in bounded time. A number of predicates that we have introduced

in Manifold are useful in coordinating the raising of events when real-time constraints must be

observed. Such predicates are AP_Cause which causes the raising of an event based on the time point

of another event and AP_Defer which restricts the raising of an event based on the period of the time

points of other two events. The use of these new primitives in coordinating real-time applications and

safeguarding QoS constraints is discussed in Limniotes and Papadopoulos (2000).

Unlike the MSSA, which supports rather simple stream-based inter-object interactions, Manifold can

handle stream and multi-stream connections of arbitrary complexity. Moreover streams in Manifold

are just as good, for the transfer of discrete or continuous data for QoS agreement between objects or

invocation and termination of operations. Explicit binding, which is a must in multimedia support in

order to achieve QoS management, can be created between operational, stream and signal interfaces,

for negotiation and agreement. However the stream bindings can only be passive with respect to

initiating interactions. Note that the QoS provided by an object still depends on the QoS of the objects

from which it inherits. The Manifold platform finally, has the additional advantage of the event

management, which acts as an immediate reactive system, and provides the means to build a real-time

response system.

4. USING MANIFOLD TO COORDINATE MSSA OBJECTS

In this section we discuss the general principles and philosophy in using the coordination paradigm, as

this is expressed in the language Manifold, to synchronize the distributed execution of MSSA

components. In the Manifold world we have two types of processes: coordinator programs written in

Manifold itself and atomic processes performing computational work. The latter are viewed by the

system as black boxes, communicating with their environment by means of well-defined interfaces,

whose internals are completely hidden and play no role in the apparatus. Furthermore, some of the

properties of this coordination model, such as ports, streams and events, are directly related to similar

features of the MSSA paradigm.

Thus, we are going to view the MSSA objects as Manifold atomic processes, whose internal structure

(as dictated by the MSS software architecture) is immaterial to our coordination framework. In

particular, we are going to use the interface inheritance proposed by MSSA with the Manifold

ECIS 2002 • June 6–8, Gdańsk, Poland — First — Previous — Next — Last — Contents —

Theophilos A. Limniotes, George A. Papadopoulos

356

platform. For every type of an instance in the Manifold code, there should be a Manifold to activate

and run it (something which makes the Factory Services of MSSA redundant). In the implementation

every VirtualDevice type should correspond to every PhysicalDevice registered in the

network and should be instantiated in the Manifold code. Each type may have different security,

bandwidth, delay bound, resolution, transport mechanism and location.

The overall MSSA structure is not abandoned but some elements are replaced by corresponding

elements in the Manifold model. In particular, the event, port and stream management of MSSA can

be directly mapped to the event, port and stream management of Manifold. These mappings are done

at the coordination level. The rest of the mapping is done at a lower level. In particular, the following

MSSObject characteristics have the associated corresponding attributes in a Manifold atomic

process: Capabilities associate machine and encoding, constraints associate location and machine.

Also, exceptions are still generated by the object. The narrowing function remains intact into a

RegistrationRetrieval Manifold atomic and so does the class relationship function.

For example, if we are going to have a particular VirtualDevice class (inherited from a

VirtualResource) registered in the system, it should contain all the port management and event

management functions that a Manifold atomic process should have. If that VirtualDevice is a

MicrophoneDevice this should have its own in/out ports and events (such as one which is

triggered if the signals sent per second exceed a certain maximum) defined in its C++ (say) code. The

format of transferring the data is arranged from MIDI to tuples. The opposite transformation is done

with the object that manages the speaker. QoS factors like timeliness could be important for allocating

the process to a task that runs on a particular machine. Similarly the throughput of data required

(sound signals per second) could weight (through event voting) to the decision for the specific

MicrophoneDevice class that will run on a specific site. Reliability of the interactions is

considered as secured throughout the system. Moreover, negotiations for QoS management can easily

be carried out on the Manifold platform, with the coordination control transfer to a preliminary state

where discrete information can be exchanged between two objects before being transferred to a final

interaction state. The stream connection management relieves the MSSA from the need of a

VirtualConnection class, although stream positions cannot be determined as with the MSSA.

The Registration and Retrieval Service which allows clients to locate and retrieve a service can be

preserved as is with the MSSA structure that keeps a name-to-object binding list which is then

associated to a key list. These methods can be called by a RegistrationRetrieval atomic

process in Manifold and every chosen device can invoke its own events that would cause its activation.

The methods for selecting the proper type by an RR Service of a virtual device are:

ConstraintList(constraints) which defines a constraint builder and adds a constraint list

for the type of object that is going to be selected.

DeviceType=VirtualDeviceNarrow() which defines an object reference and gets the

constraint list in order to narrow to the proper DeviceType. Note that it merely provides the type

of an instance and not the instance itself.

VirtualDeviceRaise() which raises an event for a particular DeviceType. This will cause

preemption to a state (of a manifold) that contains the activation of a DeviceCoordinator()
which contains the execution of this DeviceType.

All of the above classes in their implementation can either behave as atomic processes or be called by

the RegistrationRetrieval atomic process.

5. A SIMPLE EXAMPLE

This paradigm deals with a remote audio and video capture with synchronized local play as might be

used for half of a LAN based video conferencing system. The weaving is done at the remote machine

by a process that sends its information at an unweaving device to the local machine which in turn

supplies the proper outputs to a monitor and a speaker. For an overall view see figure 3.

ECIS 2002 • June 6–8, Gdańsk, Poland — First — Previous — Next — Last — Contents —

Coordinating Components in the Multimedia System Services Architecture

357

5.1. The Manifold Atomic Processes

The atomic processes correspond to the DeviceTypes of our model. The implementation of the

paradigm requires two device atomics for capturing the video and sound information, namely

CameraDevice and MicrophoneDevice respectively, two atomics for weaving and unweaving

this information, namely WeaverDevice and UnweaverDevice, and two atomic devices for

producing this information at the output devices namely XwindowDevice and SpeakerDevice.

Fig 3. Audio/Video Remote Capture Example

5.2. The Manifold Coordinator Processes

These play the role of the DeviceCoordinator in the MMSA prototype, i.e. they activate the

device drivers and set up the pattern of the pipelines for the transition of data from source to sink. So

the atomics above are coordinated by the following processes:

Weaver() which takes care of processing in parallel the outputs from CameraDevice and

MicrophoneDevice instances to the WeaverDevice instance. Simultaneously it passes the

woven information to the output of the WeaverDevice output which in turn supplies the

Weaver’s output. This coordination is processed in the start_weaver state invoked by the

cause1 instance. This is an instance of AP_Cause that raises the start_weaver event 5

seconds after the start of the application. The weaving is ceased with a preemption to the

finish_weaver state, invoked by the cause2 instance. This raises the finish_weaver
event 30 (say) seconds after the eventStart of the application.

manifold Weaver()
{
begin:(activate(cause1,cause2,camera,microphone,weaver),

cause1,WAIT).
start_weaver:(cause2,camera->weaver.x,

microphone->weaver.y,weaver->output,WAIT).
finish_weaver:("weaver done"->stdout,WAIT).
}

In the code above camera is the instance of CameraDevice, microphone is the instance of

MicrophoneDevice, and weaver the instance for WeaverDevice. x and y are the receiving

ports for weaver.

Camera

Microphone

Weaver Unweaver

Window

Speaker

MACHINE A MACHINE B

ECIS 2002 • June 6–8, Gdańsk, Poland — First — Previous — Next — Last — Contents —

Theophilos A. Limniotes, George A. Papadopoulos

358

Unweaver() processes the woven information from Weaver() to the UnweaverDevice
which simultaneously produces the unwoven results from the previous input, and passes them to

instances of XwindowDevice and SpeakerDevice.

5.3. The Main Coordinator

The instances of coordinators Weaver and Unweaver are activated and run in the core state of the

Main procedure. In this pipeline Weaver is the producer and Unweaver the consumer. These two

are said to be the building blocks of the higher coordination level.

manifold Main()
{
 process w is Weaver.
 process u is Unweaver.
 begin: AP_PutEventTimeAssociation_W(eventStart);

 AP_PutEventTimeAssociation(start_weaver);
 AP_PutEventTimeAssociation(finish_weaver);
 AP_PutEventTimeAssociation(start_unweaver);
 AP_PutEventTimeAssociation(finish_unweaver);
 (post(core),WAIT).

 core: activate(w,u);
 (w->u->stdout).

}

In the code above the two coordinators instances w and u form a pipeline. The

AP_PutEventTimeAssociation_W(eventStart) function creates and initialises a record

for the starting event of the paradigm. The rest of AP_PutEventTimeAssociation simply

create empty records for the rest of the events.

5.4. Distribution of Tasks

The computation manifolds (atomics) that are to be run as separate tasks (usually on separate

machines) have to be declared as elsewhere in the main object file.

manifold CameraDevice elsewhere.
manifold MicrophoneDevice elsewhere.
manifold XwindowDevice elsewhere.
manifold SpeakerDevice elsewhere.

So the two source devices are exported from the source Manifold file source.m:

// pragma include "tm.ato.h"
export manifold CameraDevice() atomic {internal.}.
export manifold MicrophoneDevice() atomic {internal.}.

Likewise, the two sink devices are exported from the sink Manifold file sink.m.

The rest of the computation manifolds can be chosen to run on the local host by declaring them as

internal:

manifold AP_PutEventTimeAssociation(event) atomic {internal.}.
manifold AP_PutEventTimeAssociation_W(event)

atomic {internal.}.
manifold AP_Cause(event,event,port in,port in)

atomic {internal.}.
manifold AP_CTime() atomic {internal.}.
manifold WeaverDevice()
 port in x.
 port in y.
 atomic {internal.}.
manifold UnweaverDevice()

ECIS 2002 • June 6–8, Gdańsk, Poland — First — Previous — Next — Last — Contents —

Coordinating Components in the Multimedia System Services Architecture

359

 port out x.
 port out y.
 atomic {internal.}.

The next step in task allocation is to include each generated object file to a task, in a task mapfile. This

will help produce the link information for the tasks accordingly. The merits of running tasks in a

heterogeneous environment are that: (i) some of the tasks may include atomics written in different

languages for different hardware/software architectures; (ii) some given tasks may have different

versions, each suitable for a different hardware/software architecture.

The program mlink that composes the various tasks in a Manifold application, produces nothing but

text files, suitable for all heterogeneous environments. These can be used to link their corresponding

versions of the tasks in the Manifold application. The restriction with mlink is that there should be

one compilation on an appointed host, which will then hold the same version of Manifold object files

and Manifold application libraries. These will provide the required link information to mlink in

order to make up the application tasks. Regarding the library and executables, it follows that these do

not have to be recompiled on the remote hosts on which they are intended to run, as mlink requires

only the native binary format. In case that the appointed hosts cannot make available a meaningful to

mlink binary version, the decoy utility decompiles to a C source that provides the required link

information, and then recompiles to create a perceivable object file. So, it is important to take into

consideration the following conditions: (i) If the executable code for the new instance is not contained

in an existing task instance; (ii) If the number of instances exceed a maximum weightload for an

existing task instance. If the answer is no to either of the above conditions, a new task instance has to

be created in order to house the new process instance at the designated site.

6. CONCLUSIONS AND FURTHER WORK

In this paper we have addressed a rather general issue, namely the use of a coordination paradigm as

the gluing mechanism and communication medium for the synchronized execution of distributed

components, as the latter are defined by a software architecture framework. We have done the above

by concentrating on the specific case of distributed multimedia components, as these are defined by

the MSSA software architecture (Hewlett Packard, 1994), and we have developed for them an

execution framework based on a real-time extension of the coordination model IWIM and its

associated language Manifold.

The IWIM model enforces isolation of computational aspects from the matters of connectionism,

coordination and reusability (after recompilation) while our Manifold real-time primitives were able to

improve further the real-time behaviour of the system. Thus, the same coordination code can be

applicable to any other similar behavioural pattern of media modules. With respect to the continuous

data transfer issue, Manifold’s streams guarantee, by virtue of the model, a flow without loss, error or

duplication, and with causal order preserved. Moreover the stream and event services of Manifold

offer the means to manage discrete message passing and state invocation for QoS support with

minimum programming effort (Blair and Stefani, 1998).

So far we have built language constructs to define temporal interdependencies in a multimedia

presentation. The next step is to synchronise distributed multimedia systems with blocking times for

every task (Mourlas, 1999). More to the point, every multimedia task should have a determined

execution time which is made up of the time that a task requires to retrieve information from certain

resources plus the computation period for processing. To this, a blocking time must be added for the

possible lower priority tasks that are already using the same resources, and all the higher priority

resources that are waiting to use these resources (Halbwachs, 1993).

An important factor in the above scheme is the determination of priority for each task. The calculation

of the blocking time depends on the priority of the task. In Manifold priorities can be allocated to

ECIS 2002 • June 6–8, Gdańsk, Poland — First — Previous — Next — Last — Contents —

Theophilos A. Limniotes, George A. Papadopoulos

360

states that can contain many tasks in a pipeline. So it is only possible to give priority to a set of tasks

that are included in the same pipeline.

ACKNOWLEDGMENTS

This work has been partially supported by the INCO-DC KIT (Keep-in-Touch) program 962144

“Developing Software Engineering Environments for Distributed Information Systems” financed by

the Commission of the European Union.

REFERENCES

F. ARBAB (1996), “The IWIM Model for Coordination of Concurrent Activities”, 1st International Conference
on Coordination Models, Languages and Applications (Coordination’96), Cesena, Italy, 15-17 April, 1996,

LNCS 1061, Springer Verlag, pp. 34-56.

F. ARBAB, C. L. BLOM, F. J. BURGER and C. T. H. EVERAARS (1998), “Reusable Coordinator Modules for

Massively Concurrent Applications”, Software: Practice and Experience, Vol. 28 (7), 1998, pp. 703-735.

G. BLAIR and J-B. STEFANI (1998), Open Distributed Processing and Multimedia, Addison-Wesley, 1998.

N. HALBWACHS (1993), Synchronous Programming of Reactive Systems, Kluwer Academic Publishers, 1993.

HEWLETT PACKARD Company (1994), International Business Machines Corporation, SunSoft, Inc.,

Multimedia System Services Version 1.0, 1994.

T. A. LEMNIOTES and G. A. PAPADOPOULOS (2000), “Real-Time Coordination in Distributed Multimedia

Systems”, 14th International Parallel and Distributed Processing Symposium (IPDPS 2000), 8th International

Workshop on Parallel and Distributed Real-Time Systems (WPDRTS 2000), Cancun, Mexico, 1-2 May, 2000,

LNCS 1800, Springer Verlag, pp. 685-691.

C. MOURLAS (1999), “Multiprocessor Scheduling of Real-Time Tasks with Resource Requirements”, 5th

International Euro-Par Conference (Euro-Par’99), Toulouse, France, 31 Aug. – 3 Sept., 1999, LNCS 1685,

Springer Verlag, pp. 497-504.

G. A. PAPADOPOULOS (1998), “Distributed and Parallel Systems Engineering in Manifold”, Parallel

Computing, Elsevier Science, special issue on Coordination, 1998, Vol. 24 (7), pp. 1107-1135.

G. A. PAPADOPOULOS and F. ARBAB (1998), “Coordination Models and Languages”, Advances in

Computers, Marvin V. Zelkowitz (ed.), Academic Press, Vol. 46, August, 1998, 329-400.

