
A Comprehensive Context Modeling Framework

for Pervasive Computing Systems

Roland Reichle1, Michael Wagner1, Mohammad Ullah Khan1,
Kurt Geihs1, Jorge Lorenzo2, Massimo Valla3, Cristina Fra3,

Nearchos Paspallis4, and George A. Papadopoulos4

1 University of Kassel, Distributed Systems Group
{wagner,reichle,khan,geihs}@vs.uni-kassel.de

2 Telefónica Investigación y Desarrollo
jorgelg@tid.es

3 Telecom Italia Lab
{massimo.valla,christina.fra}@telecomitalia.it

4 Department of Computer Science, University of Cyprus
{nearchos,george}@cs.ucy.ac.cy

Abstract. Context management in pervasive computing environments
must reflect the specific characteristics of these environments, e.g. distri-
bution, mobility, resource-constrained devices, or heterogeneity of con-
text sources. Although a number of context models have been presented
in the literature, none of them supports all of these requirements to a
sufficient extent at the same time. In this paper, we present a compre-
hensive and integrated approach for context modeling in pervasive com-
puting environments. It combines the advantages of existing approaches
and addresses the need for supporting effective software development.
The proposed context model follows an ontology-based approach and
has three layers of abstraction, i.e. conceptual layer, exchange layer, and
functional layer. This layered approach facilitates a model-driven devel-
opment of context-aware applications. Throughout the paper we compare
our solution with the related work in order to clearly demonstrate why
we needed to develop a new context management framework and where
we have adopted existing ideas.

Keywords: Context Awareness, Context Modeling, Ontology, Model-
Driven Development, Pervasive Computing.

1 Introduction

In recent years, context awareness has attracted a lot of attention, especially
in the realms of mobile and pervasive computing. Context-aware applications
are capable of monitoring and exploiting information about external operating
conditions. Typically, such systems are also self-adaptive, in the sense that they
can dynamically adapt as a response to changes in the execution context. Au-
tomating the development of such systems is an important challenge.

R. Meier and S. Terzis (Eds.): DAIS 2008, LNCS 5053, pp. 281–295, 2008.
c© IFIP International Federation for Information Processing 2008

282 R. Reichle et al.

A context model provides an unambiguous definition of the context artifacts,
their representations, semantics and usage. It takes into account the general
characteristics of context information, such as its temporal nature, ambiguity,
impreciseness, incompleteness and privacy. Furthermore, a context model must
also address special requirements of pervasive computing environments like dis-
tribution, mobility, heterogeneity of context sources and resource-constrained de-
vices. Often, pervasive applications require high-level context information that is
derived from low-level context values. Therefore, support for automatic context
reasoning has to be provided as well.

As it will be shown throughout this paper, existing context modeling ap-
proaches address a sub-set of these challenges only, or cover some of them only
to a limited extent. Moreover, most of them view context modeling either from
a pure conceptual or a pure functional perspective. However, when engineering
context-aware systems, a software developer needs to deal with many aspects at
the same time, e.g. define the semantics and relations between context elements
at a conceptual view, realize the information exchange between heterogeneous
nodes, and provide the concrete implementation of the context management
functionality at a specific node.

The main contribution of this paper is a new comprehensive and integrated
context modeling approach that is based on a new context ontology and three
layers of abstraction: conceptual, exchange and functional. These three layers
cover the identified requirements of context management in pervasive computing
environments and, at the same time, facilitate the analysis and design of context-
aware applications as part of a comprehensive, model-driven software engineering
process. The presented context model is a result of a research EC IST project
called Self-Adapting Applications for Mobile Users in Ubiquitous Computing En-
vironments (MUSIC) [3]. The goal of MUSIC is to develop a comprehensive
open-source computing infrastructure and an associated software development
methodology that facilitate the development of self-adapting, context-aware ap-
plications in ubiquitous and pervasive computing environments.

The rest of this paper is organized as follows: Section 2 studies requirements
for context modeling in pervasive computing environments, while Section 3 dis-
cusses existing approaches. The MUSIC context model is described in Section 4,
and discussed in Section 5. Finally, Section 6 presents our conclusions and points
to future work.

2 Requirements

This section identifies requirements for a context model that aims to ease the
development of context-aware applications in mobile and pervasive computing
environments. A comprehensive list of requirements has been derived through
a process where a set of case studies featuring both real (commercial) and fic-
tional scenarios were studied and evaluated in the scope of mobile and pervasive
computing [3]. The requirements identified from the case studies are:

A Comprehensive Context Modeling Framework 283

– Ease of development: While at a conceptual level modeling the semantics
and the relations between context information is very important, the run-
time representation of the context data must aim for efficiency. Appropriate
development support must be provided to the software developers to ease
their tasks considering the whole development process and incorporating all
views and aspects. In this respect, Model-Driven Development (MDD) is
favored.

– Considering the characteristics of mobile and pervasive computing environ-
ments: Mobile and pervasive computing environments imply further complex-
ity as they are characterized by distribution, heterogeneity, unpredictability,
unreliable communication links, etc. Furthermore, the limited capabilities of
mobile devices, e.g. in respect to processing power, memory and energy con-
sumption, have to be taken into account.

– Need for machine-interpretable representation of context information: A typ-
ical approach to tackle heterogeneity and to provide a machine-interpretable
representation of context information is the use of semantic annotations.
They are attached to the actual context data to enable automatic exploita-
tion and transformation of information in distributed context sharing scenar-
ios. Furthermore, they can be utilized to enable automatic context reasoning.

– Dealing with special context properties: Unlike data in conventional database
systems, context data is characterized by properties such as incompleteness,
ambiguity, uncertainty, and temporal nature.

– Dealing with context information partitioning: In adaptive systems, sharing
of context information is a natural requirement. However, because of the na-
ture of mobile and ubiquitous computing, it is possible that the nodes carry-
ing the context information are partitioned. The context models should cope
with such circumstances and enable the merging of the data when needed.

– Evolution and extensibility: Context models should not be monolithic, but
rather be flexible and extensible. New applications and possibly new context
nodes shall be allowed to enter the system. As the applications and their
context needs evolve, so should the context model.

This list describes the requirements that originate from our chosen scenarios. As
they are not intended to focus on a small number of rather specific applications,
but more on pervasive applications in general, they are naturally quite high-level.
Although we believe that the list is rather comprehensive for pervasive applica-
tions, we do not claim completeness. Other applications may have different or
additional requirements. In addition, more general requirements apply to con-
text modeling, just like they apply to software systems in general. These include
platform independence, privacy and security issues, support for automatic test
execution, logging, simulated operation and visualization of the system state.

3 Discussion of Existing Context Models

In search for an existing context model that would satisfy all of the above re-
quirements, we carefully examined the related work in this research field. Our

284 R. Reichle et al.

investigations revealed that research in the area of context modeling is well
established and many ideas have been developed for addressing the above re-
quirements individually.

3.1 Existing Approaches on Context Modeling

In order to provide application dependent context information through a con-
text framework, a uniform way of representing and sharing context is required.
Strang and Linnhoff-Popien [16] evaluate the most relevant context approaches
based on the data structures used for representing and exchanging context infor-
mation: key-value pair, markup scheme, graphical, object oriented, logic based
and ontology based models. According to their evaluation, the most promising
assets for context modeling for ubiquitous computing environments are found
in ontology based models. In these models, the semantic context information
is represented using one of the ontology markup languages, for example OWL
(Web Ontology Language) [10]. We share their opinion and consider ontologies
as an appropriate way to deal with the heterogeneity implied by ubiquitous
computing environments. An ontology defines a common vocabulary to share
context information among devices, services and users. This makes it possible to
reason about various context types, thanks to machine-interpretable definitions
on basic concepts in the domain and relations among them.

There are several projects that also apply ontologies as a central concept for
modeling context information. For instance, Chen et al. [1] defined a context
ontology based on OWL to support ubiquitous agents in their Context Broker
Architecture (CoBrA). Their approach targets home area intelligent environ-
ments and applies sensor information detection and context awareness as a way
of dealing with users’ activities, intentions and movements between different
home areas.

Ranganathan et al. [13] developed a middleware for context awareness and
semantic interoperability in which they represented the context ontology in
DAML+OIL [8]. One of the main shortcomings of this approach is that it does
not deal with the specialized context characteristics, such as incompleteness, and
that its extensibility is limited.

Context-Driven Adaptation of Mobile Services (CoDAMoS) [12] defines a
generic ontology to model context in Ambient Intelligence infrastructures that
suits very well the requirements of mobile computing. This ontology is based on
four general entities. (1) The user is the central entity, including the user’s pro-
file, preferences, mood and current activity. The rest of the entities should adapt
to the user, not vice versa. (2) The environment in which the user interacts,
including information such as temperature and lighting. (3) The platform that
describes the hardware and software of a device, including device resources such
as memory and bandwidth. (4) The service that provides specific functionality
to the user.

The Service-Oriented Context-Aware Middleware (SOCAM) [4] [17], is an
architecture for building context-aware services based on a two-level context
model. This middleware acquires context information from different sources and

A Comprehensive Context Modeling Framework 285

interprets it. The context ontology is divided into a two-level hierarchy, dis-
tinguishing between common and specific context information. The upper level
describes global concepts of the ontology and captures general knowledge about
location, type of entity, person or activity. On the other hand, the lower level
is divided into several pervasive computing sub-domains, each one of which de-
fines specific details and properties for each scenario. Depending on the situation
and the available devices, an appropriate sub-domain is selected from the lower
level. When environment changes are detected, the lower level ontology can be
dynamically plugged into and unplugged from the upper ontology, thus dynam-
ically changing this association. This mechanism appears to be very reasonable
also with respect to resource limited devices. An ontology resulting from the
extension of the top-level ontology with a domain-specific ontology can be kept
quite small in comparison with a single huge ontology capturing all potentially
involved concepts.

Strang et al. [15] describe a context modeling approach using ontologies as a
formal foundation. They introduce their Aspect-Scale-Context (ASC) model and
show how it is related to other models. A Context Ontology Language (CoOL)
is derived from the model, which is used to enable context-awareness and con-
textual interoperability during service discovery and execution in a distributed
architecture. One highlight of the ASC model is that it explicitly addresses
heterogeneity with regard to different representations (called scales) of context
information.

Apart from the ontology-based approaches, there are several other projects
on context modeling that fulfill several of the requirements that were stated in
the previous section. One example is CML from Henricksen and Indulska [6]
[7]. They also incorporate ontologies to address particular aspects like privacy.
The formal foundation of their context modeling approach is an enhancement
of the ORM language. With the situation abstraction they provide elaborate
support for reasoning on context information. Their context model can also deal
with special characteristics of context information, such as temporal nature,
incompleteness, ambiguity, etc. Additionally, the context modeling approach is
complemented by a model-driven development approach (which provides an API
for the application developer) and a methodology for the development of context-
aware application [7]. In this approach, context information is addressed from
three levels, i.e. conceptual, management and implementation level.

The Comprehensive Structured Context Profiles (CSCP) [5] was developed
based on RDF to represent context by means of session profiles. However, this
approach does not deal with all our required context characteristics, like the
temporal nature of context.

In [11], Hoenle et al. highlight the benefits of integrating meta-data into the
context model. They argue, that meta-data facilitate important aspects like the
assessment of the quality of context information, sensor fusion and data cleansing
and provide more flexibility when dealing with context information. In their
approach meta-data are associated to context information at object level as well
as at attribute level.

286 R. Reichle et al.

3.2 Why Another Context Model?

If we look at our requirements and at the approaches described above, the first
impression is that it should not be a difficult task to find an existing context
model that is suitable for our purposes. However, none of the examined ap-
proaches supports all of our requirements to a sufficient extent. Ease of develop-
ment using MDA, as one of our key requirements, is only addressed sufficiently
by Henricksen and Indulska, but their model is not based on ontologies as the pri-
mary modeling concept. Similar to many related works, we consider the concepts
of ontologies necessary to establish a common vocabulary in a heterogeneous per-
vasive computing environment. Such an environment also implies heterogeneous
representations of context information. This is also not explicitly addressed by
CML but by the ASC model from Strang et al. However, their approach does
not provide such an elaborate development support based on MDA as the CML
project.

As we could not find an approach, that fulfilled all of our requirements, our
next step was to figure out, if one approach can easily be extended to cover all
the aspects. Having in mind that CML already utilizes ontologies for issues like
privacy we investigated the feasibility of incorporating ontologies as primary
modeling concept in CML. But we quickly came to the conclusion, that this
would require too much effort, as it would mean to completely replace the ORM
and its extensions or to establish a mapping from an ontology based approach to
the ORM. Furthermore, even if we had established such a mapping, the problem
of heterogeneous representations would still remain unsolved.

The idea to complement the ASC model with MDD support appeared to be
quite promising, in particular when considering, that CoOl was also designed to
facilitate the mapping to other context models. Problems with the ASC model
were found in small details. In our view context information should character-
ize an entity of the world (e.g. laptop, device, user, etc) with a certain type or
scope of information (e. g. location, current situation, battery status, etc) in
a certain representation (e.g. GPS coordinates in the case of location). In our
terminology a context scope is a kind of context information type. Therefore,
the three concepts entity, type and representation should be clearly separated.
In the ASC model, the type of information (called aspect) is only referred in-
directly through the scales, which correspond to a certain representation in our
terminology. We faced problems with this indirection when building taxonomies
of context information types and corresponding taxonomies of representations.
Clearly separated concepts not only facilitate building taxonomies, they also ease
the automatic model-based generation of context interpreters that are responsi-
ble for one context information type and can deal with several representations.

Based on this analysis, we saw the need to design a new context modeling
approach that utilizes the advantages and most promising features of the existing
works in order to develop a comprehensive integrated approach. As can also be
seen from the considerations above, combining the different concepts is not at
all a trivial task.

A Comprehensive Context Modeling Framework 287

4 The MUSIC Context Model

This section describes the context model of the MUSIC project. In the first
subsection we describe the general structure of the new context model. Then
we introduce the different layers and show in the last subsection how to use our
approach in the Model Driven Development.

4.1 Three Layers of Abstraction

We identify three basic layers of abstraction that correspond to the three main
phases of context management: the conceptual layer, the exchange layer and the
functional layer. The conceptual layer aims to be leveraged by the developers and
to be exploited in the model-driven development approach. This layer enables
the definition of context artifacts such as elements, scopes, entities and represen-
tations based on standard specification languages like UML and OWL [10]. The
exchange layer aims to be utilized for interoperability between devices. At this
layer, the context information can be expressed in any adequate representation,
such as XML, JSON (JavaScript Object Notation) [9] or simply CSV (Comma
Separated Values). Finally, the functional layer refers to the actual implemen-
tation of the context model representation and the internal mechanisms used
in the different nodes. This model can be object-based, but it does not neces-
sarily need to be interoperable as it is platform-specific and as different devices
might use different implementations of it, using for example Java and .NET. The
main objective of this layer is efficiency, both in terms of processing speed and
resource consumption. This paper focuses on the conceptual and the exchange
layers of the proposed hierarchy. Figure 1 illustrates how these concepts fit into
these three layers.

Fig. 1. The three layers of the MUSIC context model

288 R. Reichle et al.

For our context model, we decided to incorporate the concept of ontologies
in the conceptual layer of the context model for several reasons. (1) Ontologies
facilitate the establishment of a common understanding of the semantics of con-
text elements and their associated metadata and therefore boost interoperability.
(2) Similar to the ASC model proposed by Strang et al. [15], ontologies can also
be used to define the internal structure of context data, thus allowing several
representations, their interpretation and automatic conversions between them.
(3) By incorporating ontologies, it is possible to model a wide range of relation-
ships between context elements, which is essential for a flexible context reasoning
approach. Also, a context meta-model is defined to facilitate automatic trans-
formation between the different layers of the context modeling approach and to
define basic guidelines for modeling the ontology.

The ontology is described in OWL and the context meta-model is specified in
UML. Together they form the conceptual layer of the MUSIC context modeling
approach. The context meta-model defines the general structure of context in-
formation and shows how concepts and/or individuals/entities specified in the
ontology are referenced. In turn, as the context meta-model defines a general rep-
resentation of context information it can also be considered as a kind of schema
for defining the concrete representations of context elements in the ontology.

At the exchange layer, an instance of the conceptual model is represented in
XML (or alternatively in JSON or CSV). The representation in XML is quite
straightforward, as it is the common way to represent individuals of the ontology
(which can be seen as context information).

The functional layer also defines a set of data structures for storing the context
information. As the internal structure of context elements is specified in the on-
tology, it is possible to automatically generate the corresponding data structures
for specific platforms along with appropriate serialization and de-serialization
methods. Thus, the data structures can easily be filled with the information rep-
resented at the exchange layer without much overhead spent for interpretation.
It is also worth noting here, that the information concerning the ontology is only
transferred once or on demand. All these features take into account the quite
limited resources of mobile devices in pervasive computing environments.

4.2 The Conceptual Layer of the MUSIC Context Model

As depicted in Figure 1 the MUSIC context model is composed of an ontology
and a metamodel at the conceptual layer, which is described in the following.

The MUSIC Context Meta-Model. Figure 2 illustrates the proposed Con-
text Meta-model. Context information is abstracted by context elements which
provide information about context entities and context scopes and that can be
composed of other context elements and can contain a number of context values.
For example, a context element’s network connections in a device’s context can
contain the elements Wi-Fi and Bluetooth, and both elements can have the val-
ues Cost and Bandwidth. Context elements are associated to context scopes that
group context values belonging to the same context domain. For example, the

A Comprehensive Context Modeling Framework 289

scope Position groups context values like: Longitude, Latitude and Accuracy.
The context entities refer to concrete entities in the world, for example User,
Device, etc.

Fig. 2. The MUSIC Context Meta-Model

Metadata can be associated with context elements and context values. Here we
distinguish between predefined (or suggested) metadata and user-specific meta-
data. The proposed model includes the predefined metadata: name, entity, scope,
representation, source and sourceType. The name serves as an identifier. Scope,
entity and representation refer to the MUSIC context ontology; scope refers to
the semantic concept that groups context values belonging to the same context
domain and characterizes the context information, e.g. deviceStatus ; entity refers
to the concrete individual to which the context information is associated, e.g.
“My Windows XP Laptop”. The representation refers to the internal represen-
tation of the context information which is also specified in the ontology. With
these types of metadata, it is specified that a context element characterizes the
semantic concept scope for the individual entity and its internal structure cor-
responds to representation. The source is a unique identifier of the component
that provides the context information (e.g. a context sensor or reasoner). For
context values the suggested types of meta-data are name, scope and represen-
tation that have the same meaning as the corresponding metadata types of the
context element. In addition, it is allowed to associate user-specific metadata to
context elements and context values. In a way, these metadata can be seen as ad-
ditional context values and they are also represented in the same way. However,
in contrast to context values, metadata can be associated to context elements
and context values. Each context element, context value and metadata has a
representation. According to aspects in the ASC model described in Strang et
al. [15], each representation (in the ASC model called aspect) aggregates one
or more dimensions (scales in ASC). Each dimension corresponds to a certain
context element, context value or metadata element. A dimension itself has a
representation, which again can consist of several dimensions. With these con-
cepts, the internal structure of the context information is defined through the
context element.

290 R. Reichle et al.

The MUSIC Context Ontology. This section introduces the MUSIC context
ontology through an example. This example does not claim completeness but
rather aims at showing the general modeling concepts and illustrating how the
conceptual layer, which contains the context meta-model, is complemented by an
ontology. In order to provide an extensible ontology that is well-structured and
easy to understand, we introduce a two-level hierarchy for the ontology, similar
to SOCAM. Here, we introduce the structure of the top-level ontology.

The context meta-model refers to the ontology with regard to three aspects:
the context scope that is characterized by the context element, the type of the
particular individual/entity of the characterized scope and the representation
of the context information. These different aspects have to be covered while
modeling the ontology.

Figure 3 presents the classes corresponding to the semantic concepts we would
like to characterize through context information/context elements in our context
management system. This figure only includes a small number of classes, such
as for example the concept DateTime which is a subclass of BasicConcepts. As
depicted in the figure, the most important relation is that each Concept has
a Representation. The class Concept is not only used to classify EntityTypes,
ContextScopes and BasicConcepts. Additionally, some further relations between
these classes and its subclasses can be defined (e.g. isLocatedIn). These relations
can be used for ontology reasoning.

As a second part of the ontology, the representations for the concepts must
also be specified. As depicted in Figure 3 a concept can have one ore more
representations. By allowing representing certain context information in several
ways, we do not only face the challenge of heterogeneous context sensors for a
certain semantic concept, but we also ease the merging of ontologies, at least
to a certain extent. If an ontology matches a second one with regards to the
classes for the concepts and their relation, and only differ in the representation
of context information, the second ontology can be integrated in the first one in
a straight forward manner.

Fig. 3. The main structure of the MUSIC Context Ontology

A Comprehensive Context Modeling Framework 291

As we envisage explicit support for heterogeneous representations of context
scopes, we also allow the definition of Inter-Representation-Operations (IRO)
as in the ASC model [15]. This concept is a further step in supporting context
providers and consumers in a heterogeneous environment. It allows to ask for
context data by a context consumer by describing a certain scope, characterizing
a certain entity of this concept and having a certain representation. If this does
not match the representation provided by the context sensor, an appropriate one
can be computed with the corresponding IRO.

4.3 Model-Driven Development

As already discussed in the previous section, we do not want to provide only a
new context model, but rather an integrated approach for context modeling, rea-
soning and querying together with support for application development. Thus,
we use our context model also as a key ingredient in the model-driven application
development. In general, context-aware software is developed using traditional
programming methods and models, and the use of context information is im-
plemented directly into the source code. Even if the logic used to access and
process context information and to react to context changes is isolated within
special components, the applications are still difficult to maintain, as source code
must be modified to support additional classes of behavior and context. To fa-
cilitate the application development process, we use the context ontology also
at design-time to support the MDD of context-aware applications. The MDD
methodology exploits mainly the conceptual layer, where the context artifacts
(elements, sensors, etc) are defined based on standard specification languages,
like UML and OWL. From the high-level specifications provided at this layer,
appropriate data representations and data structures for the other layers can
be automatically generated. It is even possible to automatically provide serial-
ization and de-serialization methods to be leveraged at the exchange layer and
to incorporate IROs for converting between different representations. Addition-
ally, we provide a software development methodology for adaptive context-aware
applications in ubiquitous computing environments. Further information about
this methodology can be found in [3]. As depicted in the example in Figure 3, the
representation of a concept embodies also the main structure of the context infor-
mation. This structure can be used to automatically generate the corresponding
data-structure. For data1 in the example in Figure 3, the data-structure in Java
would be generated as following:

Class DateTimeRep1 implements Serializable{
private int day = null;
private string month = null;
private int year = null;

... }
Date1 = new DateTimeRep1(27, "September", 2007);

Furthermore, both the constructors and the getter/setter methods can be auto-
matically generated.

292 R. Reichle et al.

DateTimeRep1(){...}
...
DateTimeRep(int d, String m, int y){

this.day = d;
this.month = m;
this.year = y;}

As aforementioned we use the concept of IRO to transfer context information
from one representation to another (in our example from DateTimeRep1 to
DateTimeRep2). The skeletons of the IROs can also be generated automatically:

static DateTimeRep1 IRO_DTRep2_To_DTp1(DateTimeRep2 date2){
DateTimeRep1 date1 = new DateTomeRep1();
//TODO for Developer: Fill out the missing calculations and
check the variables defined and assigned above
return date1;}

Additionally, it is even possible to automatically provide serialization and de-
serialization methods to be leveraged at the exchange layer. This means that we
can automatically generate the necessary methods to send or receive the data via
the exchange layer in the different formats (i.e. XML). Here we use also the IRO.
A context sensor which provides the context information in a certain represen-
tation, uses its serialization method to submit this data via the exchange layer.
Then the context consumer uses the de-serialization method to insert this data
into his data structure. In this method, we check if the information corresponds
to the requested representation, if not then automatically a corresponding IRO
is called. Here we have to highlight, that the application developer does not need
to worry about this process of serialization/de-serialization and conversion. The
application developer just uses the generated getter-/setter-methods to access
to data in the data structure. As part of our comprehensive approach for con-
text modeling, reasoning and querying, we provide also an appropriate Context
Query Language (CQL), which is described in Reichle et al. [14] in more details.
This CQL will also be used for the MDD as we can automatically generate the
code corresponding to a static query.

5 Discussion

In this paper, apart from other important requirements we emphasize the need
of using ontologies to establish a common vocabulary of concepts and to explic-
itly address heterogeneous representations of context information in pervasive
computing environments. At the same time, we highlight the need for software
development support that allows developers to easily construct context-aware
and self-adaptive systems. A representative set of related context modeling ap-
proaches is described in Section 3. We have argued that none of these approaches
fulfills all of our requirements to a sufficient extent at the same time. Therefore,
our proposal extends the state of the art, by combining the most promising
features of existing approaches to a context model that is comprehensive and

A Comprehensive Context Modeling Framework 293

fulfills important requirements arising in pervasive computing environments. As
it is already shown in Section 3, the task of integrating the different ideas was
challenging, as some problems were obvious, while others were visible only when
focusing on specific details.

We have introduced a two-level hierarchy for the ontology. Similar to SO-
CAM, we distinguish between a top-level ontology capturing global knowledge
and general concepts, and the domain-specific extensions. By allowing to inte-
grate domain- or application-specific extensions our context modeling approach
is not monolithic but evolvable for new applications entering the system. In or-
der to cope with heterogeneous representations we define the internal structure
of context information along with Inter-Representation-Operations in the on-
tology, similar to the ASC model [15]. In addition to establishing a common
vocabulary for context information through an ontology, the concept of Inter-
Representation-Operations further boosts interoperability. Therefore, our ap-
proach explicitly addresses the requirements arising from a heterogeneous com-
puting environment. Metadata can be associated to context elements and also
to context values similar to what is proposed by Hoenle et al. [11], which comes
as an appropriate mean to deal with the special properties of context informa-
tion and also facilitates merging of context information when nodes have been
partitioned. Last but not least, we incorporate some ideas from Henricksen and
Indulska [6] [7] in order to ease the development task by employing an MDD
approach. In summary, our new context model provides:

– Support of all three context management layers (conceptual, exchange and
functional layer). The exchange layer and the corresponding links to the
conceptual and functional layers are introduced to face the challenges that
arise from a distributed context sharing scenario in heterogeneous computing
environments.

– Explicitly addressing MDD by using the ontology, not only to introduce a
general vocabulary and relationships between context elements, but also to
define different representations which comprise information about the used
data structures.

– An ontology that is divided into two corresponding hierarchies: concepts and
representations. The hierarchy of concepts contains the general vocabulary
and the relations between the elements, whereas the hierarchy of represen-
tations is used to define the internal structure of context elements. With
this division, it is possible to use only the light-weight concepts hierarchy
for context reasoning while omitting large parts of the ontology that only
contain the representations.

Our new context model is based on concepts that have already been proved vi-
able. However, only a simplified version of the context model has been prototyped
so far. It is currently used by the pilot service developers in the MUSIC project
[3]. They will provide feedback from the implementation phase of the pilot ap-
plications. This feedback will then be leveraged to improve and fine-tune our
approach. Although we have not yet implemented the complete context man-
agement system, we are very confident that it can be done. The first experiences

294 R. Reichle et al.

with the new approach are quite promising and it seems to be applicable and
sufficient for all our case studies.

However, we are aware that some issues deserve further attention. One issue
for example might be the resource limitations of mobile devices that are currently
available.Althoughwekeep the ontology as small as possible, utilizing the two-level
approach, ontology reasoning at run-time remains a resource consuming task, but
is unavoidable to some extent. Furthermore, the classes and data-structures that
are generated at design-time can be loaded at run-time, and furthermore, they pro-
vide serialization and de-serialization methods. Additionally, they allow interpre-
tation of context information and the conversionbetweendifferent representations.
Thus, we provide a convenient and efficient method for dealing with heterogeneous
context information, although these advantages incur additional memory require-
ments, which could be a serious problem on devices with limited resources. Fur-
thermore, some problems could also arise from the plugging mechanisms used for
the ontology. In many cases, extending ontologies through other ontologies also
implies ontology merging to some extent, which is a really challenging task.

6 Conclusions and Future Work

In this paper, we have introduced a comprehensive context modeling framework
for pervasive computing. We have adopted a three-layer architecture, featuring
a conceptual, an exchange and a functional layer. In the conceptual layer, an
ontology-based model is used, mainly at design-time, to enable model-driven de-
velopment of context aware applications. The same context model is also used
at run-time for the representation and the exchange of context information in
the functional and exchange layers. We have also shown how we extend the state
of the art by overcoming some of the limitations of existing approaches and by
working towards a comprehensive solution which meets a set of preset require-
ments. In our on-going and future work, we endeavor to strengthen these results,
first by evaluating the potential drawbacks as discussed in Section 5. Further-
more, we will extend our prototype implementation to completely support our
approach. The prototype implementation will be used by the pilot application
developers in the MUSIC project. Their feedback will then be leveraged to fur-
ther improve and fine-tune our approach.

Acknowledgments. The authors of this paper would like to thank their part-
ners in the MUSIC-IST project and acknowledge the partial financial support
given to this research by the European Union (6th Framework Programme, con-
tract number 35166).

References

1. Chen, H., Finin, T.: An Ontology for a Context Aware Pervasive Computing En-
vironment. In: IJCAI workshop on ontologies and distributed systems, Acapulco
MX (August 2003)

A Comprehensive Context Modeling Framework 295

2. European EC-FP6 project MADAM (Mobility and ADaptation enAbling Middle-
ware), http://www.intermedia.uio.no/confluence/display/madam

3. European IST-FP6 project MUSIC (Self-adapting applications for Mobile User. In:
ubiquitous Computing environments), http://ist-music.eu

4. Gu, T., Wang, X.H., Pung, H.K., Zhang, D.Q.: An Ontology-based Context Model
in Intelligent Environments. In: Proceedings of communication Networks and Dis-
tributed Systems Modeling and Simulation Conference, San Diego, California,
USA, pp. 270–275 (2004)

5. Held, A., Buchholz, S., Schill, A.: Modeling of Context Information for Pervasive
Computing Applications. In: Proceedings of the 6th World Multiconference on
Systemics, Cybernetics and Informatics (SCI), Orlando (July 2002)

6. Henricksen, K., Indulska, J.: A Software Engineering Framework for Context-
Aware Pervasive Computing. In: Second IEEE International Conference on Per-
vasive Computing and Communications, pp. 77–86. IEEE Computer Society, Los
Alamitos (2004)

7. Henricksen, K., Indulska, J.: Developing context-aware pervasive computing appli-
cations: Models and approach. Journal of Pervasive and Mobile Computing 2(1),
37–64 (2006)

8. Horrocks, I.: DAML+OIL: a Reason-able Web Ontology Language. In: Chaudhri,
A.B., Unland, R., Djeraba, C., Lindner, W. (eds.) EDBT 2002. LNCS, vol. 2490,
Springer, Heidelberg (2002)

9. JSON (JavaScript Object Notation), http://www.json.org/
10. OWL Web Ontology Language, http://www.w3.org/TR/owl-features/
11. Hoenle, N., Kaeppeler, U., Nicklas, D., Schwarz, T.: Benefits Of Integrating Meta

Data Into A Context Model. In: Proceedings of 2nd IEEE PerCom Workshop on
Context Modeling and Reasoning (CoMoRea), Hawaii, March 12 (2005)

12. Preuveneers, D., Van den Bergh, J., Wagelaar, D., Georges, A., Rigole, P., Clerckx,
T., Berbers, Y., Coninx, K., Jonckers, V., De Bosschere, K.: Towards an extensible
context ontology for ambient intelligence. In: Markopoulos, P., Eggen, B., Aarts, E.,
Crowley, J.L. (eds.) EUSAI 2004. LNCS, vol. 3295, pp. 148–159. Springer, Heidelberg
(2004)

13. Ranganathan, A., Campbell, R.H.: A Middleware for Context-Aware Agents in
Ubiquitous Computing Environments. In: Endler, M., Schmidt, D.C. (eds.) Mid-
dleware 2003. LNCS, vol. 2672, pp. 143–161. Springer, Heidelberg (2003)

14. Reichle, R., Wagner, M., Khan, M.U., Geihs, K., Valla, M., Fra, C., Paspallis, N.,
Papadopoulos, G.A.: A Context Query Language for Pervasive Computing Envi-
ronments. In: Proceedings of 5th IEEE Workshop on Context Modeling and Rea-
soning (CoMoRea 2008) in conjunction with the 6th IEEE International Conference
on Pervasive Computing and Communication (PerCom), pp. 434–440 (2008)

15. Strang, T., Linnhoff-Popien, C., Frank, K.: CoOL - A Context Ontology Language
to enable Contextual Interoperability. In: Stefani, J.-B., Demeure, I., Hagimont, D.
(eds.) DAIS 2003. LNCS, vol. 2893, pp. 236–247. Springer, Heidelberg (2003)

16. Strang, T., Linnhoff-Popien, C.: A Context Modeling Survey. In: 1st International
Workshop on Advanced Context Modeling, Reasoning And Management during
UbiComp 2004 (2004)

17. Wang, X.H., Gu, T., Zhang, D.Q., Pung, H.K.: Ontology Based Context Modeling
and Reasoning using OWL. In: Proceedings of Workshop on Context Modeling and
Reasoning (CoMoRea 2004), Orlando, Florida, USA (March 2004)

http://www.intermedia.uio.no/confluence/display/madam
http://ist-music.eu
http://www.json.org/
http://www.w3.org/TR/owl-features/

	A Comprehensive Context Modeling Framework for Pervasive Computing Systems
	Introduction
	Requirements
	Discussion of Existing Context Models
	Existing Approaches on Context Modeling
	Why Another Context Model?

	The MUSIC Context Model
	Three Layers of Abstraction
	The Conceptual Layer of the MUSIC Context Model
	Model-Driven Development

	Discussion
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

