
A Context Query Language for Pervasive Computing Environments

Roland Reichle1, Michael Wagner1, Mohammad Ullah Khan1, Kurt Geihs1,
Massimo Valla2, Cristina Fra2, Nearchos Paspallis3, George A. Papadopoulos3

1 Distributed Systems Group, University of Kassel, Germany
{reichle, wagner, khan, geihs}@ vs.uni-kassel.de

2 Telecom Italia Lab
{massimo.valla, cristina.fra}@telecomitalia.it

3 Department of Computer Science, University of Cyprus
{nearchos, george}@cs.ucy.ac.cy

Abstract

This paper identifies requirements for querying and
accessing context information in mobile and pervasive
computing environments. Furthermore it studies
existing query languages showing that they satisfy only
a subset of these requirements or cover some of them
only to a limited extent. A new context query language
is presented to overcome these shortcomings,
improving the state of the art in several respects:
heterogeneous representations of context information,
definition of complex filtering mechanisms, elaborate
aggregation functions and ontology integration, all in
one language.

1. Introduction

In context-aware computing, information about the
execution environment is analyzed and used to adjust
the behavior and properties of applications to the
running context. For the development of such context-
aware applications and in order to be able to reuse such
a generic context management system [12], developers
need methods and tools for querying and accessing
relevant context information. An important aspect of
this problem is the definition and provision of a
suitable Context Query Language (CQL).

Several projects have dealt with the general
characteristics of context information as well as the
challenges of context management systems [1][3][4].
Our work is focused especially on pervasive and
mobile computing environments. In such environments
context management has to cope with aspects of
mobility, autonomy, distribution, heterogeneity and
spatio-temporal variation. Different context models
and context management systems have been proposed

which are tailored to a sub-set of these characteristics
and challenges.

Obviously, a query language for context
information has to address these characteristics.
Several CQL have been proposed in the literature that
provide sufficient expressive power and can satisfy
most of the characteristics and challenges mentioned
above. However, a detailed analysis (see Section 3)
revealed, that none of them satisfies all of our
requirements. For pervasive and mobile computing
environments, a CQL is required to support
heterogeneity of context sources (particularly with
regard to different context data representations),
incorporation of ontology reasoning mechanisms,
complex filtering conditions and elaborate aggregation
functions - all in one language. In order to overcome
these limitations, we have developed a new XML-
based language for context querying. It goes beyond
existing CQLs as it explicitly addresses the challenges
pointed in the previous paragraph.

The rest of this paper is organized as follows.
Section 2 identifies the requirements for a CQL in
mobile and pervasive computing environments.
Section 3 gives an overview of existing approaches and
discusses their shortcomings. The basic concepts of our
new CQL and examples are presented in Section 4.
Then, in Section 5 we evaluate our CQL and show that
it meets all of the identified requirements. Finally,
Section 6 concludes the paper by summarizing its main
contributions.

2. Requirements

In [2], a number of characteristic aspects of context
information are summarized and used to evaluate

Sixth Annual IEEE International Conference on Pervasive Computing and Communications

0-7695-3113-X/08 $25.00 © 2008 IEEE
DOI 10.1109/PERCOM.2008.29

434

different context query languages. According to this
evaluation, context information
• can be static or dynamic;
• can be in the form of continuous data streams;
• can be temporal, imprecise, erroneous, ambiguous,

unavailable or incomplete [6]. Therefore it must be
annotated with meta-data indicating its quality;

• often expresses location, proximity and spatio-
temporal relationships;

• can represent a situation which is derived from
other (more elementary) context information.

Apart from these general characteristics of context
information, the nature of pervasive computing raises
more challenges for context management in general.
Perich et al [3] describe four orthogonal axes which
characterise context management in pervasive systems:
autonomy, distribution, mobility and heterogeneity.
The first three imply that there is no centralized control
of the individual context sources, and that part of the
context information may reside on different devices.
Also, it implies that context sources may dynamically
appear and disappear. Therefore, the context queries
should not address a specific context source. They
should rather be formulated at a more abstract level
allowing the retrieval of context information from
several context sensors with a single query.
Heterogeneity is also an important issue, as it can not
be assumed that in a pervasive environment all context
sources work on a single common data model. Hence,
semantic annotations have to be incorporated to
establish a common understanding of the exchanged
information, and also different options for representing
a certain piece of information have to be considered.

A requirements analysis that has been conducted in
the MUSIC project [11] has revealed a number of
additional requirements for a CQL in pervasive
computing environments. These requirements are:
• The CQL has to provide support not only for

accessing single context elements, but also for
retrieving a whole set of context elements with a
single query. For example, the mood of all persons
in a room.

• The CQL has to provide support for specifying
filters and conditions, in order to retrieve only
context information with certain properties. Filters
should be applicable to both the values of context
elements and also to their associated metadata.

• Query filters and conditions should support the
subscription to context information, i.e.
subscription to asynchronous context change
events.

• In order to combine elementary conditions to more
complex ones, a set of logical operators must be
defined.

• Aggregation functions should be provided, such as
computing the average of a series of context values.
Aggregation functions are also useful when
defining subscriptions for context change events
such as “average network bandwidth has dropped
below 100 Kbps”.

• It should be possible to access current and past
context information from a history.

• It should also be possible to formulate queries that
incorporate semantic reasoning, e.g. “all persons
that are in a business meeting with a specific person
named Peter”.

3. Discussion of existing CQLs

An evaluation of existing CQLs in [2] argues that so
far SQL-based and RDF-based query languages are the
best matches for the characteristics of context
management in pervasive computing environments. Of
course, the way of accessing context information
highly depends on the underlying context modeling
approach and reflects its expressiveness and flexibility.
According to that evaluation, two approaches to
context modeling and context accessing stand out: the
Context Modeling Language (CML) [4][5][6] and the
CQP of the MoGATU framework [8].

CML is a very powerful approach providing
modeling constructs for describing (fact) types of
information, their classification (i.e. whether static,
derived or sensed), relevant quality metadata and
dependencies among different types of information.
CML extends ORM and also includes a powerful
language to define and reason about situations that are
derived from simple facts. For accessing the context
information a simple programming API is exposed to
the application. The context management framework
for CML [4] enables mapping its models to relational
data schemes. Therefore, the corresponding CQL could
also be based on SQL, which is a well established,
declarative query language providing a solid basis for
creating and executing a wide range of queries. In [7],
it is stated that in the CML context management
system, context queries are internally mapped to SQL.
With SQL, most of the requirements identified above
are met. However, when accessing context information
spread over several tables, a number of joins may be
necessary which may result in quite complex queries,
in particular when performing context reasoning. Pure
SQL also does not deal with semantic annotations and
does not incorporate the concept of ontologies used for
establishing a common understanding of the context
information. Therefore, appropriate enhancements are

435

needed. With regard to our requirements, the
programming API of CML does not address the
retrieval of context information with heterogeneous
representations. Furthermore the inclusion of complex
preprocessing functions is not supported to a sufficient
extent. Another big difference to the programming API
of CML is that the CQL presented in this paper
provides the possibility to specify context queries in a
platform and programming language independent way.

The MoGATU framework [8] incorporates the
Collaborative Query Processing (CQP) protocol, which
is a quite innovative approach in the area of context
querying. MoGATU is a profile-driven, proactive,
peer-to-peer semantic context management system for
pervasive environments. Queries are defined in
DAML-OIL and context is requested with the help of
the DAML-OIL and DAML-S specifications. In the
CQP protocol, queries can also be decomposed to sub-
queries which are assigned to different context
services. However, support for defining filters and
operators to combine filters and aggregation functions
is limited.

Another approach to context modeling and context
representation was proposed by Bettini et al [1] as part
of the CARE middleware. Shallow context
information, such as devices, is modeled using simple
CC/PP profiles, whereas non-shallow context data,
such as the socio-cultural environment of the user, is
represented using ontologies. As a consequence, this
work supports a hybrid context access and reasoning
approach. However, support for heterogeneous
representations and easy integration of complex
filtering and processing functions is also not
sufficiently addressed.

In the SPICE project [9], SPARQL is used as a
CQL. SPARQL [14] is a W3C standard proposal for a
RDF query language whose syntax is inspired by SQL.
The approach is interesting as a way of incorporating
semantic concepts and ontologies into a SQL-based
query language. However, pure SPARQL is found to
be inadequate as a context query language. It facilitates
querying concepts of an entity, but it is not intended to
be used for querying complex data constructs with
several levels of nesting. Appropriate support for filter
operators and aggregation functions is also missing.
Another obvious weakness of SPARQL is the fact that
queries easily become quite long and complex, as the
query must be specified on the RDF triples.

A simple XML-based context description and query
language was developed in the MobiLife project [10].
This CQL provides a good set of simple relational
operators and also string-based operators. There are

some operators to combine simple filters to more
complex ones as well. A query can be expressed with
regard to a value of a parameter , the timestamp of a
parameter and on associated meta-data, as for example
the accuracy or the confidence of a parameter
(probability of context information to be correct).
There is also support for including the position of a
parameter in an array of context elements, which
allows the selection of a specific parameter in the
array. The concept of placeholders is also supported.
However, there is lack of aggregation functions and the
need for ontologies and semantic reasoning is not
sufficiently addressed. Furthermore, another important
limitation is that the application must know beforehand
the provider of the context information and then query
the provider. Thus, support for specifying queries
involving sub-queries for different context providers is
not provided.

4. The MUSIC Context Query Language

This section describes a new CQL which is based on
XML and has been designed within the scope of the
MUSIC project [11]. As this CQL is strongly related to
the underlying context model, we start by describing
this model first.

4.1 Context Modeling Approach

For the MUSIC context modeling, a simple but
highly extensible approach was chosen. The approach
is based on XML and makes use of ontologies that are
described in OWL. The context information is
represented in terms of context elements, which
provide information about context scopes and context
entities. The former describe a specific domain, e.g.
position, civil address, environment, user proximity,
etc. The latter refers to concrete entities in the world
e.g. user, room, device, etc.

As illustrated in Figure 1 the Context Scopes, or
more precisely, all the Concepts in the context model,
are associated with one or more Representations
describing the structure of the context data in terms of
Parameters (par: attributes of the context data and
associated meta-data along with admitted
types/values), structures of Parameters (parS), and
arrays of (structures of) Parameters (parA). In order
to establish a common understanding about the
semantics of the different concepts in a heterogeneous
pervasive environment, the Context Scopes, the types
of Context Entities and the different Representations
are all described using an ontology. Like in the Aspect-

436

Scale-Context (ASC) model by Strang et al [13], the
ontology also includes so-called Inter-Representation-
Operations (IROs), facilitating the automatic
conversion of measure units, as well as more complex
conversions between completely different
representations (for example a position in GPS
coordinates to an address in terms of street and city).
For this purpose, the ontology provides the grounding
to a certain method in a library or to a certain service
providing the appropriate functionality. In the same
way, we allow the definition of Aggregation Functions
in the ontology, in order to enable the aggregation of
(sets of) context elements to a certain value or to derive
more elaborate context information. Besides, the
ontology is also used to describe relationships between
entities, e.g. a child has a father and a mother, or a
room belongs to a building. This allows the description
of semantically complex queries in a compact manner,
as an ontology reasoner can be used to automatically
resolve the relationships.

As ontology reasoning on mobile devices with low
resources may not be feasible at run-time, we also
allow characterizing context entities and context
scopes simply through predefined types. The type
implicitly corresponds to a certain semantic concept
and to a default representation of the context
information.

4.2 Context Query Language Definition

The main structure of a query is given through the
enclosing XML element ctxQuery, the elements for the
entities and scopes involved in the query, the element
defining the action that has to be performed and the
elements for the conditions specifying the required
filtering. For example, a query may look like:

<ctxQuery resultName=”addressOfMaryInItaly”>
<entity ontConcept=”prefix:music:username”>
user|Mary
</entity>
<scope
 ontConcept=”prefix:music:CivilAddress”
 ontRep=”prefix:music:DefaultAddressRep”>
 civilAddress
</scope>
<action type=”SELECT”/>
 <conds>
 <cond type=”ONVALUE”>
 <constraint par=”civilAddress.country”
 op=”EQ” value=”Italy”/>
 </cond></conds></action>

</ctxQuery>
(get address of Mary if her context shows she is in
Italy)

The enclosing element, ctxQuery, has only one
optional attribute called resultName. With the help of
this attribute the result of the query, which may simply
comprise a number but may also be a whole set of
context elements or context entities, can be referred to
and used in conditions of other queries.

The entities and the scopes involved in the query are
described through a number of elements named entity
and scope, accordingly. These elements have the
attributes ontConcept, referring to the corresponding
semantic concept described in the ontology, and
ontRep, referring to the requested representation which
is also defined in the ontology. As already mentioned
above, for mobile devices with low resources this
information can also be provided through some
predefined types which are contained in the body of the
elements. Here, it is worth noting that in the query
presented above, this information is redundant. Also,
the query above shows that it is also possible to set a
condition directly on entities. Wildcards are supported,

Figure 1: The MUSIC context ontology

437

but the query can also be constrained to only one entity
(e.g. user Mary in the example above).

The action element identifies through its attribute
type an operation that the system has to perform on the
context data; the action determines the structure of the
query condition and the query response. Depending on
the query action, the query response could be a subset
of the available context data or inferred information
obtained from the computation of context data. For
context querying we only need the action type
SELECT. However, in MUSIC we also provide the
action types SUBSCRIBE and UNSUBSCRIBE, in
order to indicate to the underlying context management
system that the query is used to subscribe or
unsubscribe to asynchronous notification and retrieval
of context information. The optional attribute option is
used to define a post-processing operation on the
results of the query. Here, we have included some
predefined operations such as COUNT, AVERAGE,
MINIMUM and MAXIMUM. Other operations can also
be included through a reference to the ontology which
contains the corresponding grounding. Therefore, the
corresponding action element may look as follows:

<action type=”SELECT”
option=”prefix:music:average”, on=”user.age”/>

The conds element encloses the conditions for the

query. A query condition defines filtering criteria for
the selection of context data; three types of conditions
are defined:
• ONCLOCK is used to specify that we would like to

obtain context information periodically
independently of some constraints.

• ONCHANGE is used to indicate that we would like
to be informed when there is an actual change in
the context data.

• ONVALUE is used when the condition is related to
one or more specific parameter values.

The first two types of conditions are used in queries
to subscribe to context data, the last one to request for
actual context data. A single condition can contain one
or more constraints connected with logical operators
(AND, OR) and with unlimited nesting. In this way,
complex conditions can be constructed by connecting
one or more simple conditions in a logical way.

For constraints, we distinguish between ordinary
constraints, and reasoning constraints.

An ordinary constraint defines a constraint on a
certain parameter. Therefore, the corresponding
element can have one or more of the following
attributes:

• par – the name of the parameter which the
constraint refers to. Its structure follows the
structure of the context data (e.g. scope.par,
scope.parS.par, scope.parA[n].par, etc). This is
given through the referred representation specified
in the ontology and thus this attribute refers to
elements in the ontology.

• value – the value of the parameter.
• delta – when the constraint refers to a continuous

parameter, this attribute represents the accepted
threshold.

• op – the operator applied to the parameter for
constraint verification. The operators actually
defined are arithmetic or string-based and are listed
by Table 1:

Table 1: Constraint operators
GT Greater than NCONT Not contains
NGT Not greater than STW Starts with
LT Lower than NSTW Not starts with
NLT Not lower than ENW Ends with
EQ Equals NENW Not ends with
NEQ Not equals EX Exists
CONT Contains NEX Not exists

In ordinary constraints is also possible to involve a

function for the comparison value. Therefore, the value
attribute is replaced by an element specifying the
involved function and its input parameters. For
example:

 <constraint par=”user.age” op=”LT”>

 <value>
 <function ontRef=”prefix:music:average”/>
 <input>UsersInRoom.age</input>
 </value>

 </constraint>

It is worth noting that UsersInRoom is the result of

another query performed earlier on the context data.
The underlying context query processing system is able
to extract the attribute age from the set of users that
was retrieved by the previous query and to provide it as
input to the function. For the average function we refer
to the ontology, where its semantics and grounding are
specified.

A reasoning constraint is indicated through the tag
reasconstraint. It defines a constraint on entities
making use of the relationships between entities
defined in the ontology, and has the listed attributes:
• relation: defines the relationship between the

entities that is used for the constraint.
• toEntities: defines the set of entities with which the

returned entities have the specified relation.

438

For example to retrieve all relatives of Mary:

<ctxQuery […]>
<entity […]>user|*</entity>
<action type=”SELECT”/>
 <conds>
 <cond type=”ONVALUE”>
 <reasconstraint
 relation=”prefix:music:isRelativeOf”
 toEntities=”user|Mary”/>
 </cond>
 […]

</ctxQuery>

As mentioned already, queries involve an ontology
reasoner which can for example automatically resolve
relations between entities like isChild and the reverse
of hasBrother or hasSister to isRelativeOf.

Furthermore, a query refers to the current context or
the context history. This feature is modeled with a
special condition indicated through the tag timerange
which describes the effective time period. This tag has
two attributes:
• from – identifies the initial timestamp of context

data involved in the computation.
• to – identifies the final timestamp of context data

involved in the computation.
If the time range tag is not present, it is implied that

the query refers to the current context; if the timestamp
in the two attributes is the same, then the query refers
to a specific point (instant) in time.

5. Evaluation

In this section we show that the proposed CQL extends
the state-of-the-art by fulfilling the requirements that
were introduced in Section 2 and by overcoming the
limitations of related works.

Many of the initially identified requirements have
already been addressed explicitly in the description of
the CQL in the previous section. The new CQL
provides support not only for accessing single context
elements, but also for retrieving a whole set of context
elements with a single query. Furthermore, it offers
various ways to specify filters and conditions. By using
logical operators, conditions can be combined to more
complex filters, theoretically in unlimited nesting.
Besides, query filters and conditions are also
applicable for context subscriptions. For this purpose,
we have defined the actions SUBSCRIBE,
UNSUBSCRIBE and the condition types ONCLOCK
and ONCHANGE. The subscription mechanisms come
also handy when requesting context information in
terms of a continous data stream. A client subscribes
for the stream using a context query, and whenever

information satisfying the query is available it is
notified. As the context information is represented in
XML, the actual data is included in the body of an
element, whereas the attributes of the element provide
additional information as e.g. the position in the
stream.

The proposed CQL is also capable to deal with the
common characteristics of context information. With
the help of the timerange tag clients can query for
current and also past context information. Therefore,
its temporal nature is considered, and dynamic context
information can be handled as well. The underlying
context modeling approach is not limited to certain
context scopes. Rather, it is highly extensible as all
concepts defined in the ontology can be requested.
Therefore, the new CQL is inherently able to handle
concepts like location, proximity and spatial
relationships. As we are not constrained to certain
representations, defining custom representations in the
ontology is allowed, and support is provided to include
arbitrary meta-data in the context. These meta-data can
also be referenced in a query to construct elaborate
filtering mechanisms.

One of the main advantages of our approach is also
the seamless incorporation of an ontology. With the
use of semantic references, reasoning on context data is
supported and heterogeneity is explicitly addressed.
The CML system supports powerful reasoning on
context information, but ontologies have been
proposed only to be included to cover some special
aspects, as e.g. privacy issues. Furthermore,
heterogeneity is not addressed at all. The RDF-based
MoGATU system allows the semantical description of
context and reasoning about this information.
However, it does not support heterogeneity unlike the
proposed CQL which allows the description of context
entities with different representations and the definition
of associated Inter-Representation-Operations. The
proposed CQL also facilitates the request for context
information in a specific representation. The
underlying query processing system automatically
performs the necessary conversions between different
representations. A further shortcoming of existing
approaches is the lack of appropriate sets of
aggregation functions. We not only provide several
predefined aggregation functions like average, sum,
max or min, but we also provide support to define
more elaborate aggregation functions and their
groundings in the ontology.

As the proposed CQL does not refer to specific
instances of context sources, it is well suited for a
dynamic pervasive computing environments. Context
sources may be locally deployed or remotely
accessible, and context sources can appear or
disappear. These characteristics - autonomy, mobility

439

and distribution - are also explicitly supported by the
corresponding context management system of MUSIC.

In conclusion, we can summarize that the proposed
CQL satisfies all requirements introduced in section 2
in a single context query language. The main
differences to CML system and the RDF-based
MoGATU system are its integrated support for all
characteristics of context information, support for
context reasoning based on semantic knowledge
represented using ontologies, heterogeneity and
elaborate aggregation functions.

6. Conclusions and future work

This paper has presented a new CQL for mobile and
pervasive computing. The requirements were derived
from the analysis of related work as well as from case
studies in the MUSIC project. As existing CQLs fail to
satisfy all the identified requirements sufficiently, we
developed a new CQL. It is shown that this CQL
significantly improves the state of the art by explicitly
addressing heterogeneous representations of context
information, supporting the definition of complex
filtering mechanisms, allowing the incorporation of
elaborate aggregation functions and enabling the use of
knowledge represented through an ontology.

In our future work we will further improve and
finalize the structure of the CQL, and we will integrate
it into the MUSIC context management middleware.
As part of the MUSIC project, the new context
management system and its query language will be
field tested in several case study applications.

Acknowledgements

The authors of this paper would like to thank their
partners in the MUSIC-IST project and acknowledge
the financial support given to this research by the
European Union (6th Framework Programme, contract
number 35166).

References

[1] C. Bettini, D. Maggiorini, D. Riboni “Distributed

Context Monitoring for the Adaptation of Continuous
Services”, World Wide Web Journal, Vol. 10 No. 4
Springer, 2007, pp. 503-528.

[2] P. D. Haghighi, A. Zaslavsky, S. Krishnaswamy, “An
Evaluation of Query Languages for Context-Aware
Computing”, 17th International Conference on Database
and Expert Systems Applications (DEXA), Krakow,
Poland, September 2006, pp. 455-462.

[3] F. Perich, A. Joshi, T. Finin, Y. Yesha, “On Data
Management in Pervasive Computing Environments”,

IEEE Transactions on Knowledge and Data
Engineering, Vol. 16 No. 5, May, 2004, pp. 621-634

[4] K. Henricksen, J. Indulska, “A Software Engineering
Framework for Context-aware Pervasive Computing”,
2nd IEEE International Conference on Pervasive
Computing and Communications (PerCom'04), Orlando,
Florida, March 2004, IEEE, pp.77-86.

[5] K. Henricksen, J. Indulska, “Developing context-aware
pervasive computing applications: Models and
approach”, Journal of Pervasive and Mobile Computing,
Vol. 2, No. 1, Elsevier, February 2006, pp. 37-64.

[6] K. Henricksen, J. Indulska, “Modelling and using
imperfect context information”, 1st Workshop on
Context Modeling and Reasoning (CoMoRea) in
conjunction with the 2nd IEEE International Conference
on Pervasive Computing and Communication
(PerCom'04), March 14, 2004, Orlando, Florida, IEEE
Computer Society, p. 33-37.

[7] T. MacFadden, K. Henricksen, J.Indulska, “Automating
Context-aware Application Development”, 1st
International Workshop on Advanced Context
Modelling, Reasoning and Management (UbiComp
2004), Nottingham, UK, September 2004, pp. 90-95.

[8] F. Perich, A. Joshi, Y. Yesha, T. Finin, “Collaborative
Joins in a Pervasive Computing Environment”, The
International Journal of Very Large Databases, Vol. 14,
No. 2, April 2005, Springer Verlag, pp 182-196.

[9] European IST-FP6 project SPICE (Service Platform for
Innovative Communication Environment),
http://www.ist-spice.org/

[10] European IST-FP6 project MobiLife, http://www.ist-
mobilife.org/

[11] European IST-FP6 project MUSIC (Self-adapting
applications for Mobile Users In ubiquitous Computing
environments), http://www.ist-music.eu

[12] N. Paspallis, A. Chimaris, G. A. Papadopoulos,
“Experiences from Developing a Context Management
System for an Adaptation-enabling Middleware”, 7th
IFIP International Conference on Distributed
Applications and Interoperable Systems (DAIS),
Paphos, Cyprus, June 5-8, 2007, Springer LNCS 4531,
pp. 225-238

[13] T. Strang, C. Linnhoff-Popien, K. Frank, “CoOL – A
Context Ontology Language to enable Contextual
Interoperability”, 4th IFIP WG 6.1 International
Conference on Distributed Applications and
Interoperable Systems (DAIS2003), Paris, France,
November 2003, Springer LNCS 2893, pp. 236-247.

[14] E. Prud'hommeaux, A. Seaborne (editors), “SPARQL
Query Language for RDF”, W3C Candidate
Recommendation, 14 June 2007 (http://www.w3.org/TR
/rdf-sparql-query/).

440

