Coordination of Systems with Real-Time Properties in Manifold

George A. PapadopoulosT

Department of Computer Science
University of Cyprus
75 Kallipoleos Str, P.O.B. 537
CY-1678 Nicosia, Cyprus
E-mail: george@turing.cs.ucy.ac.cy

Abstract

This paper combines work done in the areas of asynchronous
timed computations and coordination models in order to
derive a framework able to express real-time coordination
without adhering to special architectures or real-time
programming languages. In particular, it is shown how the
coordination language MANIFOLD can be used to support
coordinators with bounded response time. The only
assumption made about the coordinated components is that
they adhere to some constraints as imposed by timed
asynchronous computational models derived for concurrent
constraint languages. The model can be used as a basis for
building complex software and hardware systems with the
distinct advantage of enhancing reusability of existing
components. Indeed, it is already being used in a project
aiming 1o develop distributed multimedia applications.

Keywords: Real-Time Coordination; Timed Asynchronous
Languages; Reactive Systems; Software Development for
Distributed and Parallel Processing Systems; Interoperability
in Systems and Tools; Large-Scale Software System
Integration.

1 Introduction

The concept of coordinating a number of activities,
possibly created independently from each other, such that
they can run concurrently in a parallel and/or distributed
fashion has received wide attention and a number of
coordination models have been developed ([3]). Most of the
proposed coordination frameworks however are suited for
environments where the sub-components comprising an
application are conventional ones in the sense that they do
not adhere to any real-time constraints. Those few that are
adressing this issue of real-time coordination either rely on
the ability of the underlying architecture apparatus to provide
real-time support ([7]) and/or are confined to using a specific
real-time language ([6]). However, all the issues pertaining to

T This work was done while the author was visiting CW1
as part of the ERCIM-HCM Fellowship Programme
financed by the Commission of the European
Community under contract no. ERBCHBGCT930350.

0730-3157/96 $5.00 © 1996 IEEE

50

Farhad Arbab

Department of Interactive Systems

Centre for Mathematics and Computer Science (CWI)

Kruislaan 413, 1098 SJ Amsterdam
The Netherlands
E-mail: farhad@cwi.nl

conventional coordination frameworks are still valid in those

exhibiting real-time properties. Even more, the use of a

separate coordination formalism with real-time capabilities

“gluing together” real-time (software and/or hardware)

components helps in separating issues related to specifying

the computational part of the components from those
concerned specifically with their real-time behaviour ([7]).

In this paper we address the issue of real-time
coordination but with a number of self imposed constraints
which we feel, if satisfied, will render the proposed model
suitable for a wide variety of applications. These constraints
are:
= The coordination model should not rely on any specific

architecture configuration supporting real-time response

and should be implementable on a variety of systems
including distributed ones.

» Language interoperability should not be sacrificed and
the real-time framework should not be based on the use
of specific language formalisms.

In addition, the proposed framework shouid be able to
enjoy the properties of state-of-the-art coordination models
proposed for conventional (non real-time) environments but
also address issues peculiar to the presence of real-time
behaviour such as the separation of the computational part of
an application from that of real-time coordination.

We attempt to meet the above mentioned targets by
combining work done in the area of coordination models with
that done for asynchronous timed computations. Our starting
points are the coordination event-driven language
MANIFOLD ([1,2]) and the tcc computational model ([8])
developed for concurrent constraint languages. More to the
point, we show how MANIFOLD coordinators can exhibit
real-time behaviour in the sense that reaction to events can
always be done in bounded time, even if not instantaneously.
This combination yields a coordination environment
exhibiting real-time properties without imposing any
difficult to meet constraints on the implementation of the
programming languages used or the underlying architecture.

2 The IWIM Model and the Language
MANIFOLD

Most of the message passing models of communication
can be classified under the generic title of TSR (Targeted-
Send/Receive) in the sense that there is some asymmetry in

the way the sending and receiving of messages between

processes is performed: it is usually the case that the sender

is in general aware of the receiver(s) of its message(s)
whereas a receiver does not care about the origin of a received
message. Alternatively, the IWIM (Ideal Worker Ideal

Manager) communication model aims at completely

separating the computational part of a process from its

communication part, thus encouraging a weak coupling
between worker processes in the coordination environment.
In IWIM there are two different types of processes:
managers (or coordinators) and workers. A manager is
responsible for setting up and taking care of the
communication needs of the group of worker processes it
controls (non-exclusively). A worker, on the other hand, is
completely unaware of who (if anyone) needs the results it
computes or from where it itself receives the data to process.

This suggests that a suitable (albeit by no means unique)

combination of entities a coordination language based on

IWIM should possess is the following:

Processes. A process is a black box with well defined
ports of connection through which it exchanges units of
information with the rest of the world. A process can be
either a manager (coordinator) process or a worker. A
manager process is responsible for setting up and
managing the computation performed by a group of
workers. Note that worker processes can themselves be
managers of subgroups of other processes and that more
than one manager can coordinate a worker’s activities as
a member of different subgroups. The bottom line in
this hierarchy is atomic processes which may in fact be
written in any programming language.

« Ports. These are named openings in the boundary walls
of a process through which units of information are
exchanged using standard I/O type primitives analogous
to read and write. Without loss of generality, we assume
that each port is used for the exchange of information in
only one direction: either into (input port) or out of
(output port) a process. We use the notation p.. 1 to refer
to the port i of a process instance p.

e Channels. These are the means by which
interconnections between the ports of processes are
realised. A channel connects a (port of a) producer
(process) to a (port of a) consumer process. We write
p.o -> .1 todenote a channel connecting the port o
of a producer process p to the port i of a consumer
process a.

e Events. Independent of channels, there is also an event
mechanism for information exchange. Events are raised
by their sources in the environment (by means of
executing the command raise (e)), yielding event
occurrences. In principle, any process in the environment
can pick up a broadcast event; in practice though,
usually only a subset of the potential receivers is
interested in an event occurrence. We say that these
processes are tuned in to the sources of the events they
receive. We write e. p to refer to the event e raised by a
source p. Alternatively, a source p can post an event e
locally, within its own environment (by means of
executing the command post (e)). The occurrence of e
will not be observed by any process other than p itself.

51

MANIFOLD is a coordination language which can be
seen as a concrete version of the IWIM model just described
where:

« Communication is asynchronous and raising and reacting
to events (or signals) enforce no synchronisation
between the processes involved.

« The separation between communication and
computation, i.e. the distinction between workers and
managers, is more strongly enforced.

Activity in a MANIFOLD configuration is event driven.
A coordinator process waits for the raising of some specific
event (usually generated by the worker processes it
coordinates) which trigger it to enter a certain sfafe and
perform some actions. These actions typically consist of
setting up or breaking off connections of ports via channels.
It then remains in that state until it observes the occurrence
of some other event which causes the preemption of the
current state in favour of a new one specified by the event.
Once an event has been raised, its source generally continues
with its activities while the event occurrence propagates
through the environment independently and is observed (if at
all) by the other processes according to each observer’s own
sense of priorities. The following trivial program shows the
basic structure of a MANIFOLD process and should suffice
for the time being. Space limitations preclude a fuller
description of the language; nevertheless, in the following
sections we take the opportunity to introduce more details
about those features of the language relevant to this work.
manifold PrintUnits() import.
auto process print is PrintUnits.

manifold Main()

{

begin: "Hello World!" -> print.
}

The program redirects (connects) the (default output port
of the) character string (which in MANIFOLD is itself a
process) to the default input port of the process print
which is defined to be an instance of a predefined library
process. Ma in has just one state and observes just one event,
the predefined begin which is raised immediately upon
activation of the process.

More information on MANIFOLD can be found in [1,2].
Note that the language has already been implemented on top
of PVM and has been successfully ported on a number of
platforms including Sun, Silicon Graphics and IBM SP1/2.

3 Real-Time Coordinators in MANIFOLD

The event driven mechanism of MANIFOLD is well
suited to our purposes and provides a natural programming
metaphor for expressing real-time behaviour. We recall that
reacting to raised events is done asynchronously by the
processes that observe them. We would like to retain this
asynchronous behaviour, so that we do not have to impose
extra constraints on the implementation of MANIFOLD or
the underlying architecture, while providing bounded-time
response. The timed asynchronous model proposed for
concurrent constraint languages ([8]), as opposed to the
perfect synchronous one ([4]) advocated by state-of-the-art
real-time languages like ESTEREL, LUSTRE, or SIGNAL
([51), provides the basic principles for achieving our goal.

The fundamental difference between timed asynchronous
languages and ordinary asynchronous ones is that recursion
(or iteration for that matter) is “guarded” in the sense that it
can appear only in the next clock tick. Also, variables are
treated as signals with a life span equal to a clock tick. These
characteristics effectively guarantee that computation within a
time instance is bounded and reaction to events happens in a
very small amount of time (although not instantaneously).

Although MANIFOLD’s features were designed with
other purposes in mind, we have found them to be suitable in
expressing the above mentioned behaviour. In particular, a
MANIFOLD configuration exhibiting real-time behaviour in
the above mentioned sense consists of the following
components:

*+ A MANIFOLD coordinator process (the clock)
responsible for monitoring the status of the coordinated
processes, detecting the end of the current time instance,
and triggering the next one. The coordinator process is
also responsible for detecting the end of the
computation.

* A set of MANIFOLD coordinated processes, each one
monitoring the execution of some group of atomic
processes. Each such coordinated process performs a
bounded amount of work between the ticks as dictated by
the coordinator process (thus any loops in such a process
“spread over” the next one or more ticks).

» A set of groups of atomic processes (i.e., processes
written in some language other than MANIFOLD), each
group being monitored by a coordinated process. In order
for the whole configuration to exhibit real-time
behaviour, these atomic processes must also produce
results in bounded time. There are two approaches
possible here: (i) enforce the constraint that there are no
loops within these processes and instead, put these loops
in their respective coordinated processes, or (ii) treat
them as asynchronous parallel components that take an
unbounded amount of time.

The overall configuration is a hierarchical one with the
MANIFOLD coordinator process on the top, monitoring a
number of MANIFOLD coordinated processes, themselves
possibly monitoring groups of atomic (non MANIFOLD)
processes. One can regard MANIFOLD as being the “host
language™ for writing the control structures of reactive
systems, while most of the actual computation (data
handling, interfaces with any embedded systems) are done in
other more conventional languages, typically C. This fits
nicely into the spirit of real-time coordination models as we
perceive them and separates the real-time coordination
requirements from the rest of the performed activities.

An application featuring timed asynchronous behaviour
takes the general form:
< application> ::= <coordinator>

<coordinated>+
<atomic>+

The general behaviour of a coordinator (clock) process is
shown, as a first approximation, below (note that the
construct (Al, .., An) denotes a block where all n activities
will be executed concurrently; there is also a “;° separator
imposing sequentiality).
manifold Clock()
port in term_in, next_in.

52

port out term out, next_out.
event tick, next _phase, end conp.

begin: (<set up network of initial activ procs>;
terminated (void)) .

next._phase: (raise(tick), terminated(void)).

end_comp: (<perform clean up>; post(end)).

}

Clock first sets up the initial network of
coordinated processes. It then suspends waiting for
either of the following two cases to become true (one way to
achieve suspension in MANIFOLD is by waiting for the
termination of the special process void which actually never
terminates):

» The coordinated processes have completed execution
within the current time instance and are waiting for the
next clock tick. C1lock raises the appropriate event (or
signal) and suspends again.

» The computation has terminated in which case Clock
terminates, possibly after performing some clean up.
Detecting the completion of both the current phase and

the end of the computation is done in a distributed fashion,
provided some constraints regarding the organisation and
communication protocols between the participating
coordinated processes are imposed. We elaborate further on
the exact nature of the work done by Clock once we
describe the activities performed by a coordinated process.

The general behaviour of a coordinated process is as
follows:
manifold Process ()
port in term in, next in.
port out term out, next_out.

{
begin: (<raise event>;
<wait until input event received>).

input_event: (<perform data transfer pl->p2>,
<generate new processes>;
terminated (void)) .

tick.clock:

}

where clock is a global process instance of the manifold
Clock defined as follows (for the sake of simplicity we will
be using from now on the names clock and Clock
interchangeably when describing their functionality):

auto process clock is Clock.

A typical behaviour of a timed asynchronous coordinated
process, as understood in the MANIFOLD world, is to post
some events, possibly wait until the presence of some event
in the current time instance is detected and then react by
producing some data transfer between a group of atomic
processes that it itself coordinates (say from pl to p2), post
more events and/or generate further processes. Upon
termination of its activities within the current time instance,
the process suspends waiting for the next tick event from
the coordinator (C1lock) process, in which case it performs

(<perform further actions>;
post(end)) .

more activities of similar nature, or alternatively, simply
terminates within the current time instance.

Interestingly, the concept of activities within some time
instance provides a basis for enhancing MANIFOLD with
event patterns comprising negative operators detecting the
absence of some event, something that otherwise would have
nO meaning.

We now present in more detail the way detection of the
end of the current phase, as well as the whole computation,
is achieved. Due to space limitations only the most essential
parts of the MANIFOLD code are shown below. The
techniques we are using are reminiscent of the ones usually
encountered within the concurrent constraint programming
community based on short circuits. We recall that the
coordinator and each one of the coordinated processes have
(among others) two pairs of ports: the
term_in/term_out pair is used to detect termination of
the whole computation whereas, the next_in/next_out
pair is used to detect termination of the current clock phase.
Upon commencing the computation, the Clock process sets
up a configuration where all the processes involved are
connected by means of short-circuits. This is achieved by
means of the following MANIFOLD constructs set up
between a Clock process and n P coordinated processes:

(C.next_out->Pl.next in,..,Pn.next_out->C.next_in)
(C.term _out->Pl.term in,..,Pn.term out->C.term in)

Any process wishing to further generate other processes
is also responsible for setting up the appropriate port
connections between these newly created processes. Detecting
termination of the whole computation is done as follows: a
process P wishing to terminate, first redirects the stream
connections of its input and output term ports so that its
left process actually bypasses P. It also sends a message
down the term_in port of its right process. If P’s right
process is another coordinated process the message is ignored;
however, if it happens to be the C1ock controller, the latter
sends another message down its term_out port to its left
process. It then suspends waiting for either the message to
reappear on its term_in port (in which case no other
coordinated process is active and computation has terminated)
or a notification (by means of raising the got_token
signal) from its left coordinated process (which signifies that
there are still active coordinated processes in the network).
The basic MANIFOLD code realising the above scenario for
the benefit of the Clock controller is shown below.

// Clock code

begin: (guard(term in, transport,check terml),
terminated (void)) .

check terml: ("tcken" -> term out,
post (check term2)).

check term2: (guard(term in, transport,end),
terminated (void)) .

got_token: post (begin).

A guard process is set up to monitor the activity in
the term_in port. Upon receiving some input in this port,
guard posts the event check__terml, thus activating
Clock which then sends token down its term_out port

waiting to get either a got_token message from some
coordinated process or have token reappear again. The
related code for a coordinated process is as follows:

// Coordinated process code
begin: guard(term in, transport,check term).

check term: (<term in->void,
if data in port is "token"
raise(got_token)>).

Detecting the end of the current time instance is a bit
more complicated. Essentially, quiescence, as opposed to
termination, is a state where there are still some processes
suspended waiting for events that cannot be generated within
the current time instance. We have developed two methods
that can detect quiescent points in the computation. In the
first scheme, all coordinated processes are connected to a
Clock process by means of reconnectable streams between
designated ports. A process that has terminated its activities
within the current time instance breaks the stream connection
with Clock whereas a process wishing to suspend waiting
for an event e first raises the complementary event
i_want_e. Provided that processes wishing to suspend but
are also able to raise events for the benefit of other processes,
do so before suspending, quiescence is the point where the set
of processes still connected to Clock is the same as the set
of processes that have raised i_want_e events. The
advantage of this scheme is that processes can raise events
arbitrarily without any concern about them being received by
some other process. The disadvantage, however, is that it is
essentially a centralised scheme, also needing a good deal of
run-time work in order to keep track of the posted events.

An altemative approach requiring less work that is also
distributable is a modification of the protocol used to detect
termination of the computation. More to the point, a process
wishing to suspend waiting for an event performs the same
activities as if it were about to terminate (i.e. have itself
bypassed in the port connections chain) but this time using
the next input/output ports. A process wishing to raise an
event before suspending (or terminating for that matter) does
so, but waits for a confirmation that the event has been
received before proceeding to suspend (or terminate). A
process being activated because of the arrival of an event,
adds itself back into the next ports chain. Quiescence now
is the point where the Clock detects, as before, that its
next_out port is effectively connected to its own
next_in port, signifying that no event producer processes
are active within the current time instance. Note that unlike
the case for detecting termination, here the short circuit chain
can shrink and expand arbitrarily. Nevertheless, it will
eventually shrink completely provided that the following
constraints on raising events are imposed:

« Every raised event must be received within the current
time instance so that no events remain in transit. An
event multicast to more than one process must be
acknowledged by all receiver processes whose number
must be known to the process raising the event; this
latter process will then wait for a confirmation from all
the receiver processes before proceeding any further.

» A process must perform its activities (where applicable)
in the following order: 1) raise any events, 2) spawn any
new processes and set up the next and term port

connections appropriately, 3) suspend waiting for

confirmation of raised events, 4) repeat the procedure.

The code for the C1ock controller is very similar to the
one managing the term ports, with the major difference that
upon detecting the end of the current phase C1ock raises the
event tick, thus reactivating those coordinated processes
waiting to start the activities of the next time instance.

// Clock code

begin: (guard(next_in, transport, check_terml),
terminated (void)) .

check terml: ("token" -> next _out,
post (check _term2)) .
check term2: (guard(next in,transport,raise t),

terminated (void)) .
raise t: raise(tick).

got_token: post (begin) .
The code for a coordinated process is as follows:
// Coordinated process code

same_state: {begin: (raise(e),
<possibly spawn other processes>;
terminated (void)) .
i_got_e:
}

<continue>

We have elaborated extensively on how the detection of
termination or quiescence is achieved, because it is an
important issue in realising timed asynchronous models.

4 Examples

In this section, we present some examples of real-time
MANIFOLD coordinators where, for the sake of both clarity
and brevity, we only show the real-time part of the code;
however, the management part in each process, as described
in the previous section, should be considered as being present
in the code.

4.1 Real-Time Constructs

The framework presented in the previous section can be
used to mode! the functionality of standard constructs found
in the state-of-the-art real-time languages such as ESTEREL.
A small collection of them is shown below.

manifold Whenever Do(event e, manifold P)
{begin | wait: terminated(void).

e: (P, terminated(void)).
tick.clock:

}
manifold Always (manifold P)
{

{ignore *.
begin: post(wait).}.

begin: (P, terminated(void)).

tick.clock: post(begin).
}

54

manifold Do Watching (manifold P, event e)
{
begin: (P, terminated(void)).
{begin: terminated(void).
tick.clock: raise(abort).}.

e:

tick.clock: terminated(void).
}

Note that ignore * clears the event memory of the
manifold executing this command. By using ignore a
“recursive” manifold can go to the next time instance without
carrying with it events raised in the previous time instance.
Note also that ‘|’ is the “or” operator (el | e2 is satisfied if
either of the events el or e2 have been raised or posted).

4.2 Coordinating Real-Time Components

The next example illustrates the use of real-time
manifolds in coordinating the activities of concurrently
executing multimedia objects. This is a promising area for
real-time coordination models because they provide a
platform allowing different temporal coordination patterns to
be specified (and tested) between sets of active objects
encapsulating media processing activities ([6]).
manifold Decompress (process frame,

port in tolerance)
{

process alarm is Alarm(tolerance) .

begin: (activate alarm, frame->decompressor,
terminated (void)) .

tick.clock: {ignore *.
begin: terminated(void).
decamp . decanpressor : decanpressor - >display.
timeup.alarm: (disp prev_frame->display,
terminated (void) .} .
}
where decompressor,disp_prev_frame and
display are process instances of respective manifolds.The
above is a simplified version of some manifold responsible
for decompressing and displaying a video frame. Initially, the
manifold redirects the (compressed) frame to a decompressor
process, activates an alarm process and waits for the next
time instance. It then checks whether either the decompressor
has finished executing, in which case the frame is sent to a
display process, or the alarm has raised an event signifying
that the time during which the decompression should have
taken place is over, in which case the manifold displays again
the previous frame. Note that the detection of either of the
two events is made at a pace dictated by the application’s
Clock manifold and not by, say, the alarm process (which
may well be a true real-time device). Thus, response by
Decompress is not done instantaneously from alarm’s
point of view but, nevertheless, it is within a small period of
time.
4.3 Programming Synchronous Algorithms -
Timed Fibonacci Sequence

The final example is a timed version of the Fibonacci
sequernce, adapted from the one presented in [8]. It is by no
means the most efficient timed version one can write in our

framework but it has some interesting features like spawning
dynamically new processes over a number of clock ticks.
Recursion is unfolded and “spread over” two consecutive
clock ticks and each call to a Fib process lasts 3 clock ticks.
auto process v0 is variable(0).

auto process vl is variable(l).

auto process print is PrintUnits.

auto process sum(port in il1,i2) is Add.

event v.

manifold Fib0 ()

{

begin: (raise(v), v0->(->print, ->output)).
}

manifold Fibl()
{
begin: terminated(void).

tick.clock:
}

manifold FibN()
{
begin: terminated(void).

(raise(v), vl->(->print, ->output)).

v.*p: {process x is variable. // work at time T
begin: (p.output->x, terminated(void)).

tick.clock: // work at time T+1
{begin: (FibN, terminated(void)).

v.*p: {process y is variable.
begin: ((p->sum.il, x->sum.i2, sum->y);
terminated(void)) .

tick.clock: // work at time T+2
(FibN, raise(v),
: y->(->print, ->output)) }}.
At every time instance a new FibN process is created. It
then waits until it receives the event v signifying that some
other process has created the first of the two numbers needed
to compute the next Fibonacci number (note here that the
construct event. *p binds p to the id of the process raising
event). After storing locally the number, FibN waits for
the next time instance and then gets, in the same fashion, the
second number, spawns a copy of itself and computes the
next Fibonacci number. In the following and final (as far as
it is concerned) time instance, FibN passes the result to its
output port as well as to the printing process, raises the
event v for the benefit of the other FibN processes waiting
for the result, spawns another copy of itself and terminates.
Note that in the spirit of the MANIFOLD model,
processes have a minimal awareness about the activities
performed in their environment; an incaration of FibN for
instance, passes its result to its output port without any
concern as to whom will get it (aside from the printing
process).

5 Conclusions and Further Work

We combined work done in developing timed
asynchronous models for concurrent constraint languages
([8]) with that done for developing coordination models. We

55

showed that if the latter models are enhanced with the
properties imposed by the former ones we can derive
coordination models with real-time capabilities which do not
have to resort to special real-time languages ([5]) or impose
constraints on the underlying architecture or operating system
to meet the demands of the more traditional synchrony
hypothesis based real-time models ([4]). We believe that the
model is not only easier to implement (especially when
distributed environments are being considered) but can also be
used for a variety of application areas where soft real-time
deadlines suffice.

Compared to, say, [6] or [7] our approach is essentially
bottom up: we paid emphasis more on how such a
framework can be developed within the functionality offered
by a particular coordination language (MANIFOLD) and less
on what should be the exact nature of the top-level end-user
programming constructs or how these can be used to separate
the real-time part of the computation from the rest of the
activities performed (although we got a glimpse of this in
section 4).

We are currently developing suitable high-level
abstractions able to express real-time synchronisation
constraints as defined in this work. We are also working on a
more efficient implementation of the apparatus required to
support the real-time constraints. Finally, we are using this
model in a project aiming to derive a framework for
distributed multimedia applications.

References
[1] F. Arbab, “The IWIM Model for Coordination of
Concurent Activities”, Coordination'96, Cesena, Italy,

15-17 April, 1996, LNCS 1061, Springer Verlag, pp. 34-
56.

F. Arbab, 1. Herman and P. Spilling, “An Overview of
Manifold and its Implementation”, Concurrency: Practice
and Experience 5(1), Feb. 1993, pp. 23-70.

2]

N. Carriero and D. Gelernter, “Coordination Languages
and their Significance”, Communications of the ACM
35(2), Feb. 1992, pp. 97-107.

31

N. Hallbwachs, Synchronous Programming of Reactive
Systems, Kluwer Academic Publis., 1993.

(41

[S] IEEE Inc, “Another Look at Real-Time Programming”,
special section of the Proceedings of the IEEE 79(9),

Sept. 1991.

M. Papathomas. G. S. Blair and G. Coulson, “A Model for
Active Object Coordination and its Use for Distributed
Multimedia Applications”, Object-Based Models and
Languages for Concurrent Systems, Bologna, ltaly, July
5, 1994, LNCS 924, Springer Verlag, pp. 162-175.

S. Ren and G. A. Agha, “RTsynchronizer: Language
Support for Real-Time Specifications in Distributed
Systems”, ACM SIGPLAN Workshop on Languages,
Compilers and Tools for Real-Time Systems, La Jolla,
California, June 21-22 1995.

{61

7]

[8] V. Saraswat, R. Jagadeesan and V. Gupta, “Programming
in Timed Concurrent Constraint Programming”, in
Constraint Programming, NATO Advanced Science
Institution Series, Series F: Computer and System

Sciences, LNCS, Springer Verlag, 1994.

