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Abstract: There is a growing demand for context-aware applications that can dynamically 
adapt to their run-time environment. An application offers a collection of functionalities 
that can be realized through a composition of software components and/or services that 
are made available at runtime. With the availability of alternative variants of such 
components and/or services that provide the basic functionalities, while differ in extra-
functional characteristics, characterized by quality of services (QoS), an unforeseen 
number of application variants can be created. The variant that best fits the current context 
is selected through adaptation reasoning, which can suffer from the processing capabilities 
of resource-scarce mobile devices, especially when a huge number of application variants 
needs to be reason about. In this paper, we present a reasoning approach, which provides a 
meaningful adaptation decision for adaptive applications having a large number of 
variants within a reasonable time frame. The approach is validated through two arbitrary 
applications with large number of variants. 
Keywords: self-adaptation, ubiquitous computing, adaptation reasoning, variability, 
scalability, utility function 

1 Introduction 
Mobile and ubiquitous computing introduce a growing demand for applications that are able to 
adapt to dynamically changing execution environments, resources and user preferences. For 
example, applications may want to react dynamically to fluctuations in network connectivity, 
battery capacity, appearance of new devices and services, and to a change of user profiles and 
their choices. Such adaptations are handled by automatically choosing a different variant of the 
application that provides the same basic functionality with a changed quality of service. [1] 

For component-based applications, with the option of integrating external services, application 
variants can be created according to a variability model; similar to what is practised by the 
product-line community [1]. An application is composed of components and/or services, 
where each component/service can have a number of different variants1. Therefore, the total 
number of application variants is a product of the variants of each of its constituent 
components. In a ubiquitous computing environment, components and services can appear and 
disappear at runtime. This fact advocates against a static architecture of the application, which 
requires that at least one variant of a constituent component must be present. Therefore, the 
architecture of the application can also evolve, with the possibility of using a completely 
different set (and number) of components and services to realize the application. For such an 
                                                      
1 The details on constructing the variability model are presented in section 2. 
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evolving architecture, possible application variants can not be foreseen at design-time. The 
variability model of creating application variants suffer from the possibility of combinatorial 
explosion, because in worst case the number of application variants is a product of number of 
variants of individual components.  

Runtime adaptation involves detecting and keeping track of available components, services 
and their meta-information, selecting a variant through adaptation reasoning based on the 
current context and then (re)configuring the composition to realize the selected variant of the 
application. Adaptation reasoning performs the selection of the application variant that fits best 
to the current context and resource situation. This step suffers the most from the combinatorial 
explosion, because ideally the fitness of each variant needs to be checked. In the utility 
function-based approach [3], the fitness is calculated by evaluating utility functions. In our 
previous work [4], we have presented the concept and methodology for supporting such 
adaptations. However, test results showed that the adaptation reasoning technique presented at 
[4] works well only for applications with a limited number of variants; but becomes practically 
useless for applications, which may offer a huge number of variants. Such a reasoning 
technique requires evaluating not only the utility separately for each application variant; but 
also property predictors [5] that compute its quality of service requirements and used by the 
utility evaluation. Especially for resource scare mobile devices, such computational effort 
makes meaningful adaptation infeasible. 

In this paper, we present a reasoning approach which is stable against combinatorial 
explosions and thus can provide adaptation reasoning within a meaningful time-frame, even 
for devices with low computational resources. The rest of the paper is organized as follows: 
Section 2 describes a technique of creating application variants with the help of a simple 
example. Section 3 presents the reasoning approach and section 4 provides some evaluation 
results for arbitrarily large application architectures. Section 5 compares the work with the 
state of the art and in section 6, the paper is concluded summarizing its achievements and 
pointing to future works. 

2 Application Variability Model 
The application architecture is created based on a variability model and thus it offers the 
possibility of creating different variants of the application that differ in extra-functional 
characteristics. When there is a significant context change, the middleware evaluates and 
compares all available application variants based on different QoS-metadata associated to the 
involved component realizations. Thus we consider applications that are developed with a 
QoS-oriented component model, which defines all reasoning dimensions used by the planning-
based middleware to select and deploy the component implementation providing the best 
utility.  The utility of a component utilization is computed using a developer-defined utility 
function. Such utility functions evaluate the fitness of a particular component variant based on 
the QoS-properties required by its realization and that provided by the current context [6]. 

Application Conceptual Metamodel 
An Application Type is viewed as a Component Type that can have different realizations 
(Figure 1), where an application is such a realization of the application type. The meta-
information of a certain realization is described using Plans. A component type can be realized 
by a single component, or by a composition of components, resulting in the concepts of atomic 
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and composite component types, respectively. Corresponding to the atomic and composite 
component types, there are two types of Plans: Atomic Realization and Composite Realization. 
In addition to the QoS-properties, an Atomic Realization Plan describes an atomic component 
and contains a reference to the class or the data structure that realizes the component. The 
Composite Realization Plan describes the internal structure of a composite component by 
specifying the involved Component Types and the connections between them.  

 
Figure 1: Application concepts and meta-information 

Variation is obtained by describing a set of possible realizations of a Component Type using 
Plans. In order to create a possible variant, one of the Plans of a Component Type is selected. 
If the Plan is a Composite Realization Plan, it describes a collaboration structure of further 
Component Types, which in turn are described by Plans. Now we proceed by recursively 
selecting one realizing Plan for every involved Component Type. The recursion stops if an 
Atomic Realization Plan is chosen. Therefore, by resolving the variation points we create 
application variants that correspond to a certain composition of components depending on the 
plans that are chosen for each of the Component Types. 

With service-based adaptation a part-functionality may be provided through a dynamically 
discoverable and accessible service. Thus, compositional adaptation is extended by taking a 
service as a possible realization of a Component Type. To do so, the QoS-properties, 
interfaces, and binding information have to be included in a corresponding plan. Service plans 
are created at runtime, based on the discovery of a service and along with Composition and 
Atomic Plans, they are also considered during the adaptation reasoning. 

Runtime Creation of Application Variants 
Application types, components, component types and plans are combined together in OSGi 
bundles that are deployed on an adaptation middleware [6]. A distributed environment can 
include any number of nodes in the middleware domain that are reachable or not due to 
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changes in the network. Bundles can be deployed on these nodes at any time, such that 
components, component types, and plans can appear and disappear unpredictably. When a new 
bundle is deployed on an existing node or on a node entering the domain, the middleware 
collects the information about the deployed application types, component types, plans and 
components. References to these component types and plans are stored in respective 
repositories. The middleware provides the repository service and therefore such repositories 
can as well be distributed over several nodes. The relation between a component type and a 
plan is established through their information model. When a node leaves the domain, the 
bundles deployed on them are removed from the repository, eventually removing the bundle 
contents like plans, component types etc. Thus the middleware keeps an up-to-date trace of all 
the available component types and plans. 

Another task of the middleware is to discover services that realize different component types, 
marked as realizable through services. Each discovered service has a service description based 
on which a service plan is created and registered in the plan repository. Thus, at runtime the 
application architecture corresponds to a variability hierarchy containing component types and 
their realization plans. 

«applicationtype»
SatMotion

«compositionplan»
OneWayCommunication

«compositionplan»
TwoWayCommunication

«atomicplan»
Offl ine

«componenttype»
UserInterface

«componenttype»
Controller

«componenttype»
Recorder

«atomicplan»
HandsFreeUI

«serviceplan»
TextModeUI

«atomicplan»
SignalTra ceRecord

«atomicplan»
RecordTrace AndCommand

«atomicplan»
BasicMonitoring

«compositionplan»
Monitor ingAndControl

«componenttype»
SignalM onitor

«componenttype»
Computation

«atomicplan»
NormalEnv Monitor

«atomicplan»
NoisyEnv Monitor

«atomicplan»
BasicCommand

«atomicplan»
ReportAndCommand

«serviceplan»
WeatherReportGen

U1 = f(U(CT11), U(CT12), properties) U2 = f  (U(CT21), U(CT22), U(CT23), properties) U3 = f(properties)

U(CT11) = U(CT21) = max (U211, U212)

U(App) = max (U1, U2, U3)

U211 = f(properties) U212 = f(properties) U231 = f(properties)

U221 = f(properties)

U2211 = f(properties) U2212 = f(properties) U2221 = f(properties) U2222 = f(properties) U2223 = f(properties)

U232 = f(properties)

U222 = f(U(CT221), U(CT222), properties)

U(CT22) = max (U221, U222)

U(CT23) = max (U231, U232)

U(CT221) = max(U2211, U2212) U(CT222) = max (U2221, U2222, U2223)

«compone...
UserInterface

«componen...
CrossPola rization

 
Figure 2 A variability hierarchy consisting of component types and plans 
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We illustrate the approach with a simplified version of a proof-of-concept application called 
SatMotion [7]. The purpose of this application is to aid an installer of satellite antennas to 
align them depending on the network characteristics of the execution environment. The 
SatMotion application can run in a number of different modes. For example, in the Two Way 
mode, besides receiving the trace of the antenna signal, it can communicate with a server and 
send command signals requesting different antenna parameters. In the One Way mode, it can 
only receive the signal trace but cannot send commands to the server. In the Offline mode, it 
can only playback and analyze the recorded signal. The details of the application are beyond 
the scope of the paper and are not required to understand the variability architecture. 

Figure 2 presents an example of a variability hierarchy for the SatMotion application created at 
runtime, consisting of component types and their realizing plans. These component types and 
plans may be deployed separately on different nodes as part of different bundles. At runtime, 
let us consider that the SatMotion application type has three realization plans; two of them are 
composition plans and the other one, the Offline realization, is an atomic plan. The 
OneWayCommunication composition plan realizes a variant that has a composition of two 
component types UserInterface and CrossPolarization. The first one has two realizing plans; 
but no plan is available at runtime for the CrossPolarization component type. The plan 
TwoWayCommunication has a composition specification consisting of three component types, 
UserInterface, Recorder and Controller. The component types UserInterface and Recorder 
have only atomic and service plans, while the Controller component type has one atomic plan 
BasicMonitoring and one composition plan MonitoringAndControl. Each of the component 
types SignalMonitor and Computation has atomic and/or service realization plans. 

In such a variability hierarchy, an atomic plan or a service plan indicates the bottom level of 
the variability tree. So, they can be always applied to realize the component type. However, a 
composition plan is only applicable if each of the component types involved in its composition 
specification has at least one applicable plan. For example, the OneWayCommunication plan 
is not applicable because there is no plan for the realization of the CrossPolarization 
component type used in its composition. Therefore, the application can be realized either using 
the Offline atomic plan or the TwoWayCommunication plan. Being a composition plan, the 
latter contains a composition of components. The UserInterface and the Recorder component 
types have two atomic plans each to choose from, while the Controller component type has 
one atomic plan and one composition plan. Such options of alternating plans offer variability 
in composing an application.  

3 Runtime Reasoning 
We have developed a middleware to provide the runtime support of adapting the application 
[6]. The number of application variants (section 0) increases rapidly with the number of 
component types participating in a composition. Though this increase is not prominent for a 
very simple architecture like that presented in Figure 2, it becomes an issue of great concern 
quite rapidly. For example, a composition plan having 6 different component types, where 
each of the types has 10 different atomic plans, will have one million (1M = 106) variants for 
this particular composition plan only. Selecting the best-fit variant calculating the utility of 
each of such variants, resulting from a combinatorial explosion, is a time consuming task and 
often fails to provide a solution within a reasonable time frame. Therefore, we have developed 
a new reasoning approach, looking at the problem from a different perspective to make it free 
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of such combinatorial explosions. We first present the reasoning approach and afterwards, we 
explain the integration of related aspects like checking resource limits along with reacting on 
context changes. 

The Reasoning Approach 
A component or a service has a certain utility for a particular context based on its QoS-
properties. The utility can be evaluated at runtime by a developer defined utility function. An 
application is composed of components and services. Moreover, other properties, like the 
communication among different components may influence the fitness of a particular 
component composition. Therefore, it is assumed that the utility of the application can depend 
on the utility of its constituent components as well as such properties. We also assume that a 
higher utility of a constituent component will contribute to a higher utility for the overall 
application.  

In the application variability model (section 2), each atomic realization plan and service plan 
has a set of QoS-property specifications that indicates the quality of service characteristics 
required from the context and resources for the component or service to be usable. A utility 
function takes those requirements into account and computes a utility for the realizing plan by 
comparing them with the context and resource characteristics of the run-time environment.  

In addition to a utility function, a composite realization plan contains a composition of 
component types. Let us consider that CT = {CT1, CT2, …, CTn} is the set of component types 
that is involved in a composition C. For all CTi ∈  CT, there exist sets A = {a1, a2..., ap}, B = 
{b1, b2..., bq}, …, N = {n1, n2..., nz} where, ai ∈Realization Plans of CT1, bi ∈Realization Plans 
of CT2, …, ni ∈Realization Plans of CTn.  

Let us denote the utility of the realization plan ai as Uai. The utility of each chosen realization 
plan for a component type contributes to the overall utility of a particular composition, and 
eventually the composite realization plan, of which the component type is a part of. If UCT(ai) 
denotes the contribution to utility for the composition when the realization ai is chosen, then it 
is assumed that 

(I) Uai ≥ Uaj ⇒  UCT(ai) ≥ UCT(aj); ∀ ai , aj∈A  

The maximum utility available for the realization of a particular component type UCT1 is, 

(II) UCT1 = max (UCT(a1), UCT(a2), …, UCT(ap))  

In order to derive the maximum utility of the composition, Uc, a function satisfying (I) can be 
defined as  

(III) Uc = f(UCT1, UCT2, …., UCTn, Uprop)  

where, Uprop is the contribution of properties (non-related to the individual components, rather 
related to the composition, communication among components etc.) to the utility. 

In general, the equation (III) can take any form, given that for each realization plan ai , 
equation (I) is also maintained. A special case of equation (III) can be represented as follows: 

(IV) Uc = ∑
=

n

i 1
wiUCTi + wn+1Uprop  
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where, ∑
+

=

1

1

n

i
wi = 1.0 and each wi indicates the relative importance (weight term) of a component 

type within a composition, as assigned by the developer while specifying the realization plan. 

In order to illustrate the approach with the help of the example architecture presented in Figure 
2, let us consider that the QoS-properties of the NoisyEnvMonitor plan are as follows:  
   Memory = 100; 
   EnvNoise = HIGH; 
   NetworkType = WiFi; 

Based on these QoS-properties, a utility function can be defined follows: 

  U2212 = 0; if EnvNoise = LOW 

     ( 
       ( 
     1.0; if context.Memory ≥ 100 
     1.0 – (100 – context.Memory)/100; otherwise; 
       ) 
     + (   
     1.0; if context.NetworkType = WiFi 
     0.0; if context.NetworkType = None 
     0.5; otherwise 
       ) 

   )/2.0; otherwise 
A runtime value of Memory = 90 and NetworkType = WiFi, with a HIGH EnvNoise will 
result in a utility value of 
  U2212 = ((1.0 – (100-90)/90) + 1.0)/2.0 = 0.95 
U2211 can be calculated similarly according to another function and if U2212>U2211, the 
NoisyEnvMonitor plan is chosen for the realization of the SignalMonitor component type. 
Then U(CT221) = max(U2211, U2212) = 0.95 

The utility for the Computation component type, U(CT222) can be computed in the same 
manner. For this example, let us consider that U(CT222) = 0.8 

Now, in the simplest case, let us assume that the utility of the MonitoringAndControl plan has 
a contribution of 50% from U(CT221), 30% from U(CT222) and 20% from its properties. The 
property contribution can be expressed the same way using a function. Let us presume that the 
value is 0.7. Then, 
  U222  = 0.5xU(CT221)+0.3xU(CT222)+0.2x0.7 
        = 0.5x0.95+0.3x0.8+0.2x0.7 = 0.855 
 
Following this approach, the utilities U2 for the TwoWayCommunication and U3 for the 
Offline plan can be calculated and the one providing the highest utility is selected to run. 
While realizing the application, the chosen plans at different levels are considered to 
instantiate the components and/or to bind to the services.  

It is to be noted that the successful application of the approach depends on a few reasonable 
assumptions (e.g., equation (I)); but it does not apply to utility functions that violate these 



 
An Adaptation Reasoning Approach for  
Large Scale Component-based Applications 

 

Proc. CAMPUS 2009  9 / 13 

assumptions. For example, when the utility of a constituent component reduces the overall 
utility of the composition (though, unlikely) or when the utilities of a component influences 
the utility of another component in the composition, then the assumption becomes invalid. 

Fitting within the Resource Constraints 
In our approach, each running application is allowed to use a certain amount of resources, 
assigned to it by an underlying middleware or operating system. Therefore, the application 
variant chosen (by applying the reasoning approach of section 0) might not be practically 
realizable. This problem demands a check of resource constraints of the chosen variant against 
the runtime availability of the required resources. If such constraints are not met, another 
variant must be chosen that will probably provide lower utility; but fits within the resource 
constraints. 

Ideally, resource constraints could be checked for each of the variants before checking for their 
utilities; but that process would suffer from the combinatorial explosion, which we would like 
to avoid. Therefore, we first find a variant by applying the reasoning approach and then apply 
a local search mechanism to find a variant that provides a feasible solution satisfying 
constraints for each of the resources with the minimum sacrifice to the utility. 

The search is performed once for each of the resources. The target is to use a different variant 
for the individual components until the resource constraints are met. The first step in the search 
mechanism is to select the starting point among the chosen components for the application 
composition. The component that requires the most resource can be a reasonable target, 
because a second variant of that component would most probably release an appreciable 
amount of resources, in a way to speed up the search. A second choice would be to start with 
the least important component so that replacing it with its second best variant would not result 
in much loss of utility. Both of these choices have their pros and cons and a combination of 
them would suggest using the ratio resource needs to importance as the guiding factor to select 
the starting point. 

For the starting component, an alternative is chosen, which consumes less resource than the 
previously chosen one, while provides the highest utility among the remaining options. For 
example, in Figure 2, if ReportAndCommand plan (for corresponding component) was 
initially chosen; but fails in resource constraint, then the one between BasicCommand and 
WeatherReportGen provides the higher utility is chosen in this step, given neither of them 
requires more resource than the ReportAndCommand plan. If the resource saved because of 
selecting this new variant is still not sufficient to meet the resource constraint, then we proceed 
with the next component. For example, we could now replace NoisyEnvMonitor by 
NormalEnvMonitor, if the later requires less resource, though provides a slightly lower utility. 
The search mechanism also takes into account the cases, where a composite realization plan 
may appear as an alternative to an atomic realization plan. For example, if the 
BasicMonitoring atomic realization plan were initially chosen; but fails in resource constraint, 
then the search will consider the MonitoringAndControl composite realization plan to find the 
best configuration applying the reasoning approach of section 0, given this configuration 
collectively requires less resource than the component corresponding to the BasicMonitoring 
plan. 

The approach has the limitation that in extreme cases, we might have to sacrifice utilities in 
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great extent; but it helps avoiding the combinatorial explosion and therefore fits well within 
the reasoning approach. Therefore, it will provide a feasible (satisfying architectural and 
resource constraints) solution, if any, within a time frame acceptable to the user of the 
application 

Integrating the Effect of Context Changes 
In order to further improve the adaptation reasoning performance, we selectively reason about 
composition plans incorporating component types that have been affected by the specific 
context change which has triggered the current adaptation process. Through realization plans 
each component type explicitly defines its context and resource dependencies. Thus, whenever 
a context change triggers an adaptation, the adaptation reasoner can omit recalculating the 
utility values for the component types not being associated with the changed context elements. 
Of course, such an optimization technique requires keeping track of the lastly calculated utility 
score, for each component type or composition plan. This technique will enable evaluation of 
composition plan utilities, without recalculating utilities of unaffected component types.  

To illustrate the effect of context-based adaptation reasoning, we provide an example based on 
the variability hierarchy model depicted in Figure 2. For the SatMotion application it is 
reasonable to assume that only the SignalMonitor component type is associated with the 
EnvNoise context element. Thus, a possible context change to the ambient noise level may 
only affect the utilities of SignalMonitor and of its realizing components: NormalEnvMonitor 
and NoisyEnvMonitor. Therefore, if we remember the previous utility score for the 
Computation component type, we can evaluate U222 without recalculating U2221, U2222 and 
U2223. Based on the same reasoning, we may skip U221, U231, U232, U211, U212 and U3 
(U1 is omitted anyway since OneWayCommunication is not applicable) which leads us to a 
total gain of 69.2 percent (i.e., only 4 out of 13 applicable utility functions were recalculated). 

Advantages of the Approach 
In this approach, the number of times the utility function has to be evaluated corresponds to 
the number of ‘applicable’ plans. In the simple example of Figure 2 we need to evaluate it only 
for 13 times (the OneWayCommunication plan is not applicable), while in the case of the one 
million variant as mentioned at the start of section 3, we have to evaluate the utility for only 60 
times. Thus, the approach becomes stable against scalability and more advantageous as the 
number of variants increases.  

Moreover, our experiences show that the specification of proper utility functions is a big 
challenge requiring lot of intuition for the developer, especially for the one covering the 
complete application. However, this task is simplified, if they have to specify utility for 
individual components. 

4 Evaluation Results 
The superiority of the proposed evaluation approach is established by the fact that it requires 
the evaluation of the utility function once for each plan. Therefore, with the increase of 
number of plans in the variability hierarchy, the evaluation time should also increase linearly, 
unlike the number of possible application variants, which may increase exponentially due to 
combinatorial explosions. 
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The effect is negligible for simple cases like what we have 
presented in Figure 2. Therefore, we have tested the scalability 
effect with two large scale examples; the first one comprises ~2M 
application variants while a second set up consists of a total of 
around 15M application variants. Please note that these examples 
are no real life applications and therefore, the used components 
only helps printing some messages to denote the selected variant. 
The focus is on the speed of the adaptation reasoning, rather than 
on the application functionalities. 

The evaluation results are presented in Table 1. The reasoning 
time on a Desktop PC is negligible, while for a Mobile device2, it 
is only a few seconds. More importantly, the reasoning time does 
not increase drastically, even though there is a huge increase in 
the possible number of application variants. As a comparison to 

such numbers, a Brute-force reasoning approach, which calculates 
utility separately for each application variants, takes almost 14 
minutes on a Desktop PC for the 2M (million) variant example. 

Table 1: Evaluation result 
Device Reasoning Time 

for 2M variants for 15M variants 

Desktop PC 
WinXP, 3GHz, 1GB RAM 

<20 ms < 20 ms 

ARM 920T Device Emulator 
Windows Mobile 5, 62MB 

~ 1 s 1.5 – 2.0 s 

These results show that this new approach can be applied to reason about the adaptation within 
an acceptable time, even for large scale applications having a huge number of application 
variants. This improvement is particularly important where the application architecture can 
dynamically evolve at runtime, because the availability of new components, component types, 
realization plans, and services may result in growing the number of possible variants quite 
rapidly. 

5 Related Work 
Development methodologies, platforms and middleware supporting dynamic adaptation of 
context-aware applications on mobile computing devices have been studied extensively during 
the last decade. Some early approaches [11] provided support for adaptations foreseen during 
the design of the application. They usually have only a limited number of adaptation options 
and therefore, they are easier to handle and usually a policy-based approach [12] for the 
adaptation decision is sufficient. 

                                                      
2 We have used Windows Mobile 5 Emulator on a Laptop to support using PhoneME with Knopferfish, 
which we could not run on a real device having WM 2003. The performance of an emulator depends 
also on the host device (Laptop) and from our experience with WM 2003, Emulators usually perform 
worse than a real device. 

Figure 3 Reasoning time on 
Windows Mobile Emulator 
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The complexity is increased when the need for runtime adaptation arises. The policy-based 
approach becomes inapplicable, because the context and resource situation can not be fully 
predicted. The utility function-based approach of adaptation decision might be applied in such 
cases [3][4][13]. As for example, SAFRAN [9] is a framework for building self-adaptive, 
component-based applications that separates the application logic from the adaptation. It is 
very high level and, in principle, allows for the implementation of techniques similar to 
distributed utility-based adaptation by allowing each component to decide upon which 
reconfiguration to operate. In [3], utility functions express service level attributes to 
dynamically allocate resources in an autonomic data centre system. Works like [4] and [13] are 
predecessors of our work, applied in the same application areas, though they did not provide 
solutions for taking care of scalabilities. 

Utility-function based adaptation policies get rid of the shortcomings of predicting all 
adaptation decisions at design-time; however, they introduce the need for evaluating utilities at 
runtime. One of the shortcomings of the utility-function based solutions of adaptation decision 
is the scalability [8], especially when they are combined with the variability approach of 
creating the application architecture. The computation effort may increase exponentially with 
the number of variation points. Some works [8][10] have tried to apply some heuristics in 
simplifying that computation. However, the computation effort is still not linear with the 
variation points and the need for property predictors has added to extra computation. The 
approach presented in this paper can greatly aid the solution to such problems. 

6 Conclusions 
Adaptations of applications running in a ubiquitous computing environment require an 
application architecture created through the composition of components and services available 
at runtime. Such an adaptation process involves a number of tasks like retrieving information 
about components and services, building the application architecture at runtime, reasoning 
about them and configuring the best-fit composition. In this paper, we have presented an 
approach that aids adaptation reasoning, which would otherwise suffer from the scalability 
problem due to the combinatorial explosion of the number of application variants. 

The presented approach provides a solution for adaptation reasoning, which is stable against 
the scalability and can be applicable, even when the number of application variants becomes 
quite huge. The combinatorial explosion is avoided by considering the utilities of each 
realization plan separately than combining them together to find the complete application 
variant before reasoning. The superiority of the approach is supported theoretically as well as 
through practical test cases. It also aids the application developers by easing the process of 
defining utility functions and QoS-properties for their components. 

The solution also integrates support for checking resource constraints, which have to be dealt 
with during the reasoning of adaptation. Besides, we are currently updating our solution to 
architectural constraints [7], which would limit choosing among different realization plans by 
specifying constraints, to fit within this new adaptation reasoning approach. 

However, the effectiveness of the approach depends on a few assumptions. These assumptions 
may not be applicable in cases, where the utility of a composition does not positively depend 
on the utilities of its constituent components. In the future, we are going to investigate more on 
such cases and improve the solution as necessary. 
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