A Multi-Objective Evolutionary Algorithm for the Deploynm¢ and Power
Assignment Problem in Wireless Sensor Networks

Andreas Konstantinidis, Kun Yang, Qingfu Zhang, Demetrios Zeinalipour-Ya#i

aSchool of Computer Science and Electronic Engineering, University of Essex, Colchester, CO4 33Q, UK
bDepartment of Computer Science, University of Cyprus, 1678 Nicosia, Cyprus

Abstract

A Wireless Sensor Network (WSN) design often requires thuésitn of optimal locations (deployment) and transmit
power levels (power assignment) of the sensors to be deghloyan area of interest. Few attempts have been made on
optimizing both decision variables for maximizing the netlwcoverage and lifetime objectives, even though, most
of the latter studies consider the two objectives indivijud his paper defines the multiobjective Deployment and
Power Assignment Problem (DPAP). Using the Multi-Objeetivolutionary Algorithm based on Decomposition
(MOEA/D), the DPAP is decomposed into a set of scalar subdprod that are classified based on their objective
preference and tackled in parallel by using neighborhofmtimation and problem-specific evolutionary operators, in
a single run. The proposed operators adapt to the requitsraed objective preferences of each subproblem dynam-
ically during the evolution, resulting in significant immements on the overall performance of MOEA/D. Simulation
results have shown the superiority of the problem-specifdEM/D against the NSGA-Il in several network instances,
providing a diverse set of high quality network designs tilii@te the decision maker’s choice.
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1. Introduction and background

The design of Wireless Sensor Networks (WSNSs) [1] is a higbiyplicated task with substantial impact on the
quality, cost and efficiency of real life sensor applicaioSensors are small electronic devices with limited energy
memory and transmit power capabilities, which in some senstwork applications are also limited in number
because of their high cost [2]. A typical goal of these nefwaesigns is to form a long lived WSN, such that the
sensors, using their sensing capabilities and wirelessdravers, effectively cover a region of interest and fadva
important information to a common collection point, usya#iferred to as a data sink.

For most WSNs, a major design step is to selectively decieléoitations of the sensors to maximize the covered

area of a targeted region. This particular problem hasrdiffeappellations in the literature, e.g. placement, cayer
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or deployment problem in WSNs, where Younis et al. [3] preva good overview of various strategies. Many
practitioners, such as Meguerdichian et al. [4], have jgainiut that the coverage objective is a measure of the quality
of service (QoS) that is provided by a particular networkigies Several researchers [5, 6] have proven the NP-
hardness of various deployment problems. The main focu$tén do determine an optimal sensor placement to
cover a grid area (sometimes under uncertainty [6]) andrmii@ the cost or prolong the network lifetime [7]. None
of the above studies, however, have considered an energsedamnsmit power level assignment for maximizing the
network lifetime while tackling a deployment problem. Imser network applications, where the number of available
sensors is limited and the desired area is large, the sensoadly operate under high transmit power levels, which
is the dominant parameter of their total energy consumptidris often results on a premature exhaustion of their
initial power supply. Thus, another major step in WSN dessgn assign energy efficient transmit power levels to the
sensors to maximize the network lifetime under certaing@neonstraints [8]. This problem is commonly known as
the power/range assignment problem in WSNSs [9] and it isgmdVP-hard by [10], with the objective of minimizing
the total communication ranges of the network. The samel@mbwhile maintaining the connectivity [11, 12], is
proven NP Complete by Cheng et al. in [13], where Santi etld]. $olved it by means of a probabilistic approach.

Few researchers, however, have tackled the Deployment anwdrPAssignment Problem®PAPs) in WSNs,
simultaneously. For example, Cheng et al. [15] and Liu ef2lhave studied various formats of the DPAP. Their
main focus was to determine both the locations of the sermmighe distance between the sensors (transmission
range) for maximizing the network lifetime or minimizingetllleployment cost under certain coverage requirements,
or maximize the covered area given a fixed number of sensataatesired lifetime. In both cases, the authors
have analytically tackled the problem for linear networkd ¢hey have proposed several heuristic methods for planar
networks. The goal of the DPAP, tackled by Chen et al. [16} tedind the minimum number of sensors, the optimal
sensor placement and the transmission structure for maixigha utilization efficiency objective, which is defined as
the network lifetime per unit deployment cost. The autheoppsed an approximation approach where the placement
of the sensors ensures a fully covered area and a simultaugieletion of their initial power supply. All the latter
approaches, however, optimize the lifetime and coveragertibes individually and sequentially, or by constramin
one and optimizing the other. This often results in ignoangd losing “better” solutions since coverage and lifetime
are conflicting objectives and a decision maker needs amaptiade-off. Thus, there is not a single solution that can
optimize both objectives simultaneously, but a set of dgualportant solutions.

Because so many different aspects are involved, the regpdaPAPs are a proper object for Multi-Objective
Optimization (MOOQ). Considering a maximization Multiobjeze Optimization Problem (MOP) with objectives, a
solutionX * is considered non-dominated or Pareto optimal with regpeiother solutioly’, if Vi € {1, ..., k}, X; >
YiAnTie{l,...,k}: X; >Y;, thisis denoted aX > Y. The set of all Pareto optimal or non-dominated solutions in
the search space, also called Pareto Set (PS), is often chappdareto Front (PF) in the objective space [17].

In [18], we introduced the multi-objective DPAP in WSNSs, whiis typical for applications that invoke a limited

number of expensive sensors, where their operation isfgigntly affected by their position and communication
2



[19]. In these cases, the random massive deployment [20¢anaimic power assignment [9] is not the only choice;
and the application affords the “luxury” of using a centzali or even an off-line algorithm to compute the locations
and transmit power levels of the sensors, prior deployméhntis, we have considered it critical and challenging to
investigate the following problem: for a given surveillengensing field, determine the locations and the transmit
power levels of a limited number of sensors to be deployethagimize the network coverage and lifetime, at the
same time. By obtaining the PS and PF of the DPAP prior depémgna critical decision making dilemma is mainly
tackled. Namely, Having a limited number of available sensors, what portion of the area should be covered and

for how long?”. In MOO, a decision maker can analyze both the PS and PF,lerddhoose the most appropriate
Pareto optimal network topology for each scenario, instfadaking the decision and then designing the topology.
For example, possible choices of the PS in DPAP could be, fd@m(1) a network topology for covering the whole
area for a very short time, (2) a long-lived network topolegyering a small portion of the area, or alternatively, (3)
a network topology that balances the network lifetime andecage.

In the design and analysis of communication systems andonk$wresearchers have successfully introduced
techniques inspired by other disciplines, such as anaagih physics [21] or natural biology [22] (e.g. Evolutiaga
Algorithms (EASs) inspired by the biological evolution) ftackling difficult problems, such as DPAP. The successful
adaptation of EAs in sensor networks led to the developnfeseveral EA-based application specific approaches for
WSN design, often dealing with a single objective functi@8][or multiple objectives combined to a single objective
function [24]. MOO is a relatively new area in WSNs and it iffidult to apply an existing linear/single objective
method to effectively tackle the multiobjective DPAP, gigia set of non-dominated solutions. Thus, the DPAP may
serve as a real world benchmark for multiobjective methddee literature hosts several interesting approaches for
tackling MOPs, with Multi-Objective Evolutionary Algotitns (MOEAS) posing all the desired characteristics for
obtaining a set of non-dominated solutions, in a single rimthe following, we discuss several MOPs in WSNs
which are tackled by general purpose MOEASs that utilizeddath EA operators [25].

Jourdan and Weck [26] tackled a layout optimization probiem/SNs with the general purpose Multi-objective
Genetic Algorithm (MOGA), utilizing a single point crossevand a random mutation for offspring reproduction. In
2005, Rajagopalan and co-workers have formulated a setemment problem [27], with main focus on optimiz-
ing the sensor locations for maximizing the probability aoget detection and minimizing both the energy dissipa-
tion and the number of sensors, simultaneously. The authokéed the MOP with their own Evolutionary Multi-
objective Crowding Algorithm (EMOCA), utilizing the gerapurpose tournament selection, single-point crossover
and random mutation operators. In 2007, Oh et al. [28] adbfite Non-Dominated Sorting Genetic Algorithm-
[1129] (NSGA-II) to tackle a WSN deployment problem, gentimg new solutions with the conventional single-point
crossover and random mutation operators. More recentBQ@8), Kim et al. [30] have also used NSGA-II to tackle
a surveillance sensor placement problem. The authors hHidized the single point crossover for offspring repro-
duction, adding a restriction, i.e. the common elementfiintivo parents are not exchanged and a node-exchange

mutation. NSGA-Il is also used by Jia et al., in 2009, for tacktwo multiobjective optimization scheduling prob-
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lems [31] and [32]. The authors have utilized the basic tanrent selection, two-point crossover and random/swap
mutation operators, respectively. Even though the latteblpms are considerably different from DPAP, the main
difference between their studies and ours is in the way tiegt treat the MOPs and apply the MOEAs. That is, all
the aforementioned studies treat a WSN MOP as a “black bd; [2. without using problem-specific knowledge,
which may have undesirable effects, such as forcing theugeolary process into unnecessary searches and destruc-
tive mating, negatively affecting their overall perforneanThis can be considered as a main drawback of the generic
MOEAs when dealing with real life problems (such as DPAP).

Therefore, the incorporation of problem-specific knowkedgMOEASs to direct the search into promising areas of
the search space can be proven beneficial [34]. Howevegrdagiproblem-specific operators for a MOP, as a whole,
is difficult. The Multi-Objective Evolutionary Algorithm dsed on Decomposition (MOEA/D) [35] alleviates this
difficulty by decomposing the MOP into many scalar subprotd¢hat are optimized in parallel, by using neighbor-
hood information and scalar techniques. The difficulty idiag knowledge on a decompositional MOEA is that the
subproblems have different objective preferences, reqliiferent treatment and have to be solved simultaneously,

a single run. Therefore, the problem-specific evolutiorapgrators should adapt to the requirements and objective
preference of each subproblem dynamically, during theutigol. In this paper, we propose a MOEA/D-based ap-
proach, which strategically monitors problem-specificlettonary operators and provides different treatment tthea
subproblem of the DPAP based on its WSN requirements.

The remainder of the paper is organized as follows. Sectiomr@duces the multiobjective DPAP, including a
DPAP analysis that classifies the Pareto optimal solutioiise objective space based on their objective preferences.
Section 3 presents the proposed MOEA/D, i.e. details theleno-specific evolutionary operators. Sections 4 and 5
introduce the experimental setup and the performanceasetespectively. The simulation results in Section 6 yerif
the necessity of the proposed operators for improving tfapaance of MOEA/D with respect to the conventional

MOEA/D and the NSGA-II. Section 7 concludes this paper argyests some topics for future research.

2. The Deployment and Power Assignment Problem (DPAP)
2.1. Systemmodel and assumptions

Consider a 2-D static WSN formed by: a rectangular sensieg4r N homogeneous sensors and a static $ink

with unlimited energy, placed at the center4f The sensors are responsible for monitoring and peridgiogbort

an event of interest té/. Hence, each sensémust be able to communicate directly or via multiple hopstigh
nearby sensors with. We assume a perfect medium access control, such as SMAG\Bigh ensures that there are
no collisions at any sensor during data communication andde@t the simple but relevant path loss communication
model as in [2]. In this model, the transmit power level tHatdd be assigned to a sensdo reach a sensgris

P = 3 x dg;, wherea € [2,6] is the path loss exponent afl= 1 is the transmission quality parameter. The
energy loss due to channel transmissioris d;; is the Euclidean distance between sensasd j, R! = d;; is

sensofi’s communication range, s.i!. < Rmax whereRmaxis a fixed maximum communication distance, which
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is constrained by the maximum power that sensors can transmiPmax. The calculated power assignments are

considered static for the whole network lifetime. The rasicenergy of sensar at timet, is calculated as follows:

Ei(t) = Ei(t = 1) — [(rs(t) + 1) x P; x amp] (1)

where(r;(t)+1) is the total traffic load that sensoforwards towarddT att, r;(t) is the traffic load that receives and
relays, “+1” is the data packet generated byo forward its own data information andnp is the power amplifier's
energy consumption. In DPAP, we assume that the areaiselarge andN is relatively small. Consequently,
the sensors should spread, to adequately cdyemd communicate through long transmission distancess, tha
transmit power is a major factor on the sensors’ total eneogygumption and the energy consumed by the transceiver
electronics as well as for reception and generation of data@nsidered negligible and ignored [2, 16].

For sensing purposes and simplicity, we assumeAhiatcomposed of rectangular grids of identical dimensions
centered atz’,y’) and we adopt a sensing model based on the definite range lawxapption [6]. Namely, a
grid at (', ) is covered, denoted by(z’,y’) = 1, if it falls within a sensor’s sensing diskR? of radius R,
otherwiseg(z’,4’) = 0. We consider unit-size grids, which are several times smélant R2 for a more accurate

placement [37].

2.2. Problem formulation
The DPAP can be formulated as a MOP,

Given:

e A:a?2-Dplane, wherdl = {(z,y)[0 <2 <1,0<y <1}.

e N: number of sensors to be deployed4n

e F: initial power supply, the same for all sensors.

e R,: sensing range, the same for all sensors.

e Pmax maximum transmission power level, the same for all sensors
Decision variables of a network design¥X:

e (z;,y;) : the location of sensoj.

e P; : the transmission power level of sengor

Objectives: Maximize coverag€'v(X) and lifetimeL(X):
The network coverag€'v(X) is defined as the percentage of the covered grids over thegtada of A and is

evaluated as follows:

x

EZEZ /(@ x y) 2
'=0y’'=0
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where,z x y is the total grids ofA and
1 if 3] (S {1, ...,N}, d(wj,yj),(w’,y’) < RS

0 otherwise
is the monitoring status of the grid centered:t y').

The network lifetime is defined as the duration from the dgmlent of the network to the cycteat which a sensor

j depletes its energy suppl¥, [2, 16]. The lifetime objective.(X) is evaluated as in Algorithm 1.

Algorithm 1 Lifetime evaluation
Step0:  Sett:=1; E;(0) :== E,Vj € {1,...,N};
Step1:  For all sensorg at each time interval do

Step1.1: UpdateE;(¢) according to Equation (1);
Step1.2:  Assign each incoming link of sensga weight equal td¥7; (¢);
Step 1.3:  Calculate the shortest path frono H;

Step2:  If 35 € {1,..., N} such thatF;(¢) = 0 then stop and set:
L(X) =t ©)
Elset =t + 1, go to step 1;

The same algorithm can be easily modified to consider diftegaergy models in Step 1.1 and routing algorithms

(e.g. geographical-based [12] routing algorithms) in St&p

2.3. DPAP Analysis

In the multiobjective DPAP defined here, there does not exgsiution that can optimize all objectives at the same
time. Therefore, we will be interested in achieving a setanfeo optimal solutions, or an approximation to it. The
Pareto optimal solutions, however, which are close in theative space, should have many similarities with each
other in the search space, recalling the so-called Progi@atimality Principle (POP) [38]. The POP, an underlying
assumption in most heuristics, assumes that good soluieressimilar structure.

This subsection aims at providing some insights about thpgaties and features of some particular solutions that
might be part of the PF. For example, tiéreme solutions X and X Z (Figure 1(a)), which optimize one objective
each, are identified and good solutibiase designed analytically. Moreover, ad hoc design guidslare provided
for the remaining subsétF’ — { X4, X}, named theron-extreme set of solutions, based on some network concepts
and their positions (e.g. area$ andc in Figure 1(b)) in the objective space (i.e. objective prefiee).

The extreme solutioX 4 provides the maximum lifetime and minimum coverage amohthalsolutions in PF,

E
L(XA) = mv C’U(XA) =A'/(z xy),

min

INote that good solutions do not imply optimal solutions.
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Figure 1: Classifying the optimal network designs in DPAP

where A’ ~ (2 x (Rs + dmin))?, dmin is @ controllable parameter that indicates the minimumadis¢ allowed
between a sensor arifl. Hence, a dense deployment of all sensors ardiligith minimum transmission distances,
R! = dnin, and direct communication witll (hencer;(t) = 0) is desirable.

The extreme solutioX Z provides the maximum coverage and minimum lifetime amohthalsolutions in PF.

(zxy)

(2R.)?"
designed by regularly deployinyg sensors with a fixed distaneéz, between each other aiifl, avoiding any sensing

Cv(XB) highly depends oV, which in DPAP is assumed to be small. Thus,Net< In that case X is

range overlaps:
N x mR?

(z X y)

E
~ kx (N/4) x (2R,)™ x amp’
where(k x (N/4) x (2Rs)™ x amp) is the energy consumption of each senstirat is directly connected t& at

Cv(XB) = , L(XB)

eacht, andN/4 x k is a fixed minimum number of packets of sizdi.e. the traffic load) that should be carried by
each sensal, assuming a regular, symmetrical deployment.

The goal of DPAP, however, is to provide the interested usétsa diverse set of network design choices, giving
the trade-off between the extreme solutioXi$ and XZ. However, the procedure of designing the non-extreme
topologies is complicated, since there is not a scalar ndetitich can design all of them, in a single run. In the
following, we introduce some general concepts for searchimd/or designing good solutions in different areas of the

objective space (e.g,b, andc in Figure 1(b)):

e Solution X ¢: favors a high network lifetime. Hence, the focus is to pdevilense network designs by placing
the sensors close fid, with low transmit power levels. This, however, leads tahégnsing range overlaps and

poor coverage.

e Solution X ¢: favors a high network coverage. Therefore, the focus isdwide spread network designs, by
placing the sensors with high transmit power levels and kemsgg range overlaps between each other [39] and

the area boundaries. This, however, leads to a high energparption, which results to a poor lifetime.
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Furthermore, it is expected that the interrelation betwbersolutionsX * and X ¢ and the aforementioned network
concepts “fades” as they get closer to the center of the Bperdively. Thereinafter, a combination of those concepts

could provide a balance on the DPAP’s objectives as follows:

e Solution X?: the sensors are connected in such a way that their transmirdevel decreases/increases, and
the sensing range overlaps increase/decrease as theysget @ H, according to a slight preference on the

lifetime or coverage objective, respectively.

2.4. DPAP solution representation and ordering
In this paper, a candidate solutich consists ofN items. lItsj-th item has two parts,z;, y;) and P;, which

represent the location and the transmit power level of gensespectively.

Semsorl | Semsorz | | | SenswN1l | Sensorn
X:| Gpw) Py | (%, ¥5) | Py | | ‘ G Yoo | Py | Gy ) | Py
Gene 1 ‘ Gene2 ‘ ‘ | Gene N-1 | Gene N
Dense Spread

Figure 2: The dense-to-spread solution representation.

In our approach, the items of a solutidhare ordered as follows: the sensor locationXimare sorted based on
their distance td7, wherel is the closest and/ is the farthest sensor location with respectprespectively. This
results in having the locations of the sensors that are tledeployed around{ at the beginning of each solution and
the locations of the sensors that are spread away at the braiehse to spread ordering (denoted as dtsOr) facilitates
the crossover operator that will be introduced shortlyu8oh X is illustrated in Figure 2. Thereinafter, each sensor
j is assigned a transmit power levé! proportional toR? < Rmax such that it reaches its closest neighbor sensor,

e.g.k, wherek < j. The whole process is outlined in Algorithm 2.

e In Step 1, the sensors are ordered based on their distamaddfravhich facilitates the proposed evolutionary

operators that will be introduced shortly.

e Step 2 assigns a minimum transmission power to each sendotlsat it reaches its closest neighbor. This is
due to the concept that multiple short hops are more bendgfigia a long hop in applications wheheis small
and the sensors communicate through long transmissioesdf§]. The reason is that,

(rj () + 1) xdj, > ((rj (1) + 1) x dfi + (ri(t) + 1) x di,.),
8



Algorithm 2 The dense-to-spread representation process for eaciosofut
Input: A solutionY’;

Output: A solution X;
Step 1. Calculate the dense-to-spread ordering’db getX;
Step 2: foreach(z;,y;) in X do

(dj,z)* If (zm,ym)isj's closest location and;, z < Rmax—(a)
P; = (dj,)* If (zk,yw) is j’s closest locationk < j, P, # 0 andd;,x < Rmax—(b)

0 otherwise

sinced;, > dji + diu.

o If Step 2 (a) and (b) are not satisfied thé#,= 0, which means that senspis disconnected.

3. The proposed MOEA/D for the DPAP

This section details each operator of the proposed MOEAApded for the DPAP. Note that, the underlying idea
behind the problem-specific EA operators might shed sonhe dig the design of MOEA/Ds for other MOPs.

3.1. Decomposition

Initially, MOEA/D needs to decompose a MOP into a set of subfms. Any decompositional technique can
serve for this purpose [35]. In this paper, the Weighted Sppr@ach is used, as follows. The multiobjective DPAP
is decomposed inten scalar optimization subproblems considering two objestiv Thei-th scalar optimization

subproblem can be defined as:
maz  ¢'(X,\") = NL(X) + (1 = \)Cv(X),

where)’ is the weight coefficient of subproblein= 1, ..., m. For the remainder of this paper, we consider a uniform

spread of the weights?, which remain fixed for eachfor the whole evolution and are determined as follows:
No=1—(i/m)

fori = 1,...,m and\! = 1. Hence, the\’ coefficient is mainly utilized for decomposing a MOP into & sk
scalar subproblems by adding different weights to the dibvges. In this paper, we have also given a problem-specific
meaning to this parameter. Considering tieweight coefficient of a subproblem we can predict the objective
preference of a particular design and therefore, its osith the objective space, e.g. Figure 1(b). Thereinafter,
appropriate scalar strategies can be employed to optimaordingly. Note that, this beneficial procedure cannot

be utilized by any non-decompositional MOEA framework.



3.2. MOEA/D general framework

A general MOEA/D approach usually proceeds as in Algorithm 3

Algorithm 3 The MOEA/D general framework
Input: e network parameters4, N, E, Rs, Pmax);
e m : population size and number of subproblems;
e T': neighborhood size;
e uniform spread of weight vectofa\', 1 — A1), ..., (A™, 1 — \™);
e the maximum number of generationgnmaz;

Output: the external populatiory P.
Step 0-Setup: SetEP := 0; gen := 0; [ Pyen := 0;
Step 1-Initialization: Uniformly randomly generate an initial internal populatibP, = {X*,--- , X™};
Step2: Fori=1,... mdo
Step 2.1-Genetic Operators: Generate a new solutidri using the genetic operators.

Step 2.2-Repair heuristic: Apply a problem-specific repair heuristic dhto produceZ.
Step 2.3-Update Populations:Use Z to updatel P,.,,, EP and theT" closest neighbor solutions &f.

Step 3-Stopping criterion: If stopping criterion is satisfied, i.eien = genma., then stop and outpuf’ P, otherwise gen =
gen + 1, go to Step 2.

The following remarks are related to the MOEA/D framework :

e The internal populatioi P,.,, of sizem keeps the best solution found so far for each subproblem.

e SolutionY is generated by using a selection operator (which will baitést in Subsection 3.4.1) to choose two
parent solutions from theP,.,,, e.g. Pry, Pry, a crossover operator (which will be detailed in Subse@idrR)
to produce a new solution frofr,, Pro and a mutation operator (which will be detailed in Subsec8at.3)

to modify the new solutiofy”. SolutionZ is produced by using a repair methodBn

e The T closest neighbor solutions &f are the solutions of th&' closest subproblems afin terms of their

weights{\!, ..., A™}. This is commonly known as tHE neighborhood of subprobleim
e The external populatio®’ P stores all the non-dominated solutions found so far dutiegsearch.

In the following the MOEA/D-based, DPAP-specific operatans presented.

3.3. Initialization

In Step 1 of MOEA/D, we adopt a random method to generatolutions for the initial internal population (i.e
1P,). Namely, a solutiofY” is initiated by uniformly randomly generating sensor locationgér;, y;) € A. Solution

Y is then ordered tX using Algorithm 2. EachX is then added id P,.

3.4. Genetic Operators

In thei-th pass of the loop in Step 2 of the MOEA/D, the genetic opesajenerate a new solution in Step 2.1.
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3.4.1. Sclection operator

The first genetic operator in Step 2.1 is the selection. $eleds responsible for emulating the survival of the
fittest concept and to choose promising solutions from threeat population, known as parents, to be included for
offspring reproduction in the next generation. In this pape propose a/-tournament selection operator (denoted
as M-tourS) that combines the mating restriction considerednduselection in [35] and a standard tournament
selection [25].M -tourS, which proceeds as in Algorithm 4, mainly relies oe ofthe core ideas of MOEA/D. That
is, two neighbor solutions in the weight space (i.e. witlpees to the Euclidean distance of their weights, ..., A\™})

should be similar to each other in the decision space (plediseto [35] for more details).

Algorithm 4 The M -tournament selection operatdv/ttourS) for each subproblein
Input: A population of solutions] P,en;

Output: Two parent chromosomesgyr1, Pra;

Step 1: Select the solutionX € I P,., of the M closest subproblems éfto compete in the tournament;
Step 2: Evaluate each solutioR of the tournament in terms gf (X, \%);

Step 3: Find the best two solutions of the tournament, set the:as Pr2 and stop;

Hereupon, the main differences of the proposed operatopaced to the standard tournament selection opera-

tor [25] (denoted as tourS) and the selection operator stgd®y [35] (denoted d5-randomS) are the following:

e In Step 1, the solutions selected to compete in a subprobidetmurnament are the solutions of thé closest
subproblems of in I P,.,,, in terms of the Euclidean distance of their weigfs, - - - , A™}, which are called

X*¥s neighbors, instead of:

— randomly selecting\/ solutions fromI P,,, to compete in the tournament as in [25], having a higher

probability of providing poor offspring for a particularisproblem;.

— randomly selecting solutions from the closest subproblems af as in [35], without competing in a

tournament.

e In Steps 2 and 3X"'s neighbors, e.g.X7 and X*, are competing iri’s tournament in terms of’(X, \?),
ignoring their own\’ and\*, their Pareto domination and/or ranking. In this way, malestion pressure is

provided towards the optimal point of each particuléor better exploitation.

Remark 1: the optimization of a network desigki‘, should mainly acquire good topological information (i.e.
efficient sensor locations and transmit power levels) frameighbor network desigi 7 ; instead of a network
designX™ which is far away in the weight space (everXif* is a non-dominated solution). This is due to the
highly non-linear multi-hop nature of WSNs. A tiny changetlie topology may lead to a big change on the
objective values, because of the connectivity and the expkiadl relationship between the sensors transmission

distance and energy consumption. According to Subsect®&ni subproblems of aregrefer dense network
11



designs comprised of sensors located clos# tavith low transmit power levels. In contrast, subproblems in
areac prefer spread network designs comprised of sensors splaagl the sensing field with high transmit
power levels. Thus, it should be preferable to increasedleEton pressure, initiate tournaments composed of

neighbor solutions and select the best for mating, deargdise probability of generating poor offspring.

Remark 2: The persistent selection of the best solutions in the neigtdnd for parenthood might also have
some undesirable effects such as premature convergemcéoiice the evolutionary search to get trapped in
local optima and have a negative impact on the diversity efptbpulation. These cases are usually alleviated

by the mutation operator (which will be detailed in Subsmt.4.3).

The two selected parent solutioRs; and Pr, are then forwarded for recombination to the crossover dapera

3.4.2. Crossover operator
In Step 2.1 (Algorithm 3), the crossover combines the tweptPr; and Prs to generate a new solution-the
offspring denoted a®, with a probability rate-.. In this paper, we propose an adaptive crossover operatap{ed
asaX) that probabilistically controls two crossover stratagieach favoring different areas of the objective space.
Initially, the window crossover is designed in which the tohparameters (behaviors) change dynamically from

subproblem to subproblem based on instant requiremento $o, it determines a “window” of size:
w' =N+ N x (1-\), (4)

to select promising genetic material from each parent arettdihe search into promising areas of the search space

for each particulai. The window crossover strategy proceeds as in Algorithm 5,

Algorithm 5 Window crossover for a subprobleim
Input: Two solutionsPr, and Pro;

Output: A solutionO;
Step 0: SetO = (); U = Pry U Pro;
Step 1: Order solutionJ by using Algorithm 2;
Step 2: Uniformly randomly generate an integgfrom {1, 2, ... [w’]}, wherew® is defined as in Equation 4;
Step 3 Ifthere exists &z, y;) inU = {(z1,y1), (z2,92), - .., (x2n,y2n)} then

Step 3.1: Delete(z;, y;) from U and add it inO;

Step 3.2: Ifthe size ofO is not N then goto Step 2;

otherwise stop and outpu©;

e The merged solutioly is of size2 V.

e When\' is large and. (X)) favorsCv(X), the window is small such that the sensor locations thatheithdded

in O are as close té/ as possible with low transmit power levels to provide highetwork lifetime.

12



e When )\ decreases andwv(X) starts favoringL(X), w* gradually increases to give the chance to the sensor

locations which are spread ifto be added i) and therefore to provide better network coverage.

¢ Note that, the window always start at position 1 of solutirto always include the sensor locations of the
“dense” part of the network (i.e. close #d, see Figure 2) and therefore to maintain the connectivitthas

sensor locations spread in the topology.

Figure 3(a) shows a crossover operation for the extremersblgm1 with A\! = 1 and a minimumu! = N. The

sensor locations which are closerfiofrom both Pr; and Pry are added in offsprin@, giving a new dense network

design. Figure 3(b) shows a crossover operation for ther @kteeme subproblem: with A™ = 1 and maximum

w™ = 2 x N. Sensor locations are randomly selected from léth and Pr, and added in offsprin@ giving a new

spread network design. Thus, the window strategy shouldapelde of providing offspring solutions in all areas of

the objective space in Figure 1(b).

pr,': (EBNI[e[7[s 5[ pry: BB 3]0 [Begsel P pr;m: [EBLAIs[el7 s [>]10)
p,u[1[2 73456 7[8 o wo[u]12]13[14[15[16[17]18]19]20] pmi[A12[3[4[5 617[8[9 to]11]12]13 14]15[16]17]18[19]20]
k=1, window size: w, =10 =0, window size: w™ = 20
() . 20
— ORH0 1
6) 4, ) ) )
@ 611'
8
o [12]3]4]5]6 7]8[9]10] Spljead B om: [3]4 7 ]9 13115[16]18[19]20]
(a) Window crossover for subproblem 1 (b) Window crossover for subproblem

Figure 3: Examples on the problem-specific window crossoperator

Remark 1: The window crossover on its own, however, may have some inadhés effects for low weights
(e.gA™) and particularly for area of the objective space, generating poor offspring. Moretigally, when

At — 0thenw® — 2 x N, which basically drives the crossover operation into aamifrandom selection of
sensor locations from the merged parent{$etin that case, there is a high probability of selecting lmoet
which are too close to each other, resulting in high sensinge overlaps and low network coverage. This is
not beneficial for the particular subproblems and consettyutar offspring reproduction of network designs

that require high coverage quality.

To overcome this undesirable effect, a clustering crogsisw@esigned, which aims at obtaining network topologies

of high coverage. The clustering crossover proceeds asgorthm 6.
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Algorithm 6 Clustering crossover strategy for a subprobiem
Input: Two solutionsPrq and Pro;

Output: A solutionO;
Step 0: SetO = Pri U Pra; d = dg;
Step 1: Order infeasible solutio® = {(z1,41), ..., (z2n,y2n)} by using Algorithm 2;
Step 2: Forj =1to2N
While (x;,y;) € O and3(zk, yx) € O|djx < d’ do;
Step 2.1: Uniformly randomly delete either locatiqn:;, y;) or (z, yx) from O;
Step 2.2: Ifthe size ofO is equal toN then stop and outpu®;

End while
Step 3: Setd’ = d’ + d. and goto Step 2;

e Initially, solution O is of size2N. This solution is infeasible sincd is the maximum number of locations
allowed in each solution. Each sengat location(x;, y;) € O represents a cluster, havitigas the minimum
Euclidean distance measure between each cluster, whinhialy set as the distancé. between the centers

of two adjacent diagonal grids in arga

¢ In Step 2, two clusters centered at locatidng, y,;) and (zx, yx) are merged itl;;, < d’. In that case, either

location(z;, y;) or (xx, yx) is deleted fromD. This continues untilV locations remain irD.

e When Step 3 is reached, soluti6his still infeasible and there are no more locations with < d’. Thus,

increase the Euclidean distance meastire d’ + d. to further spread the locations in the solution.

Remark 2: This approach benefits the coverage objective and pantigulse solutions of the subproblems

with low weights in area c, having less probability to creaoor offspring than the window crossover.

Remark 3: In contrast, it might provide a poor lifetime objective, ®inthe sensors should be assigned high

transmit power levels to support the spread-like deployrdiacted by the clustering-based crossover.

Algorithm 7 Adaptive crossover operator for each subproblem
Input: Two solutionsPr, and Pro;

Output: A solutionO;

Step 1: _
1 if X' >0.5
Setd=<¢ A +0.1 1f03 <A <05 5)
0 otherwise
Step 2: Uniformly randomly generate a numbeind from [0,1].
Step 3:
Appl Algorithm 5-window to generate O if rand < § ©)
PPy Algorithm 6-clusteringto generate O otherwise
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The combination of the window and the clustering crossoears be a promising example of a probabilistic
mixture or an adaptive crossover operator for DPAP, asraadlin Algorithm 7. In this kind of crossovers, different
mechanisms are adopted with a probabilitior producing a new solution, whefe= \* means that two crossover
strategies are almost equally applied in each generatidhid paper, we suggestarobability such that the window

crossover is applied with highest probability in areandb and the clustering in area(considering Remarks 1-3).

3.4.3. Mutation operator

The last operator in Step 2.1 of MOEA/D (Algorithm 3 in Sultsae 3.2) is the mutation, which is responsible for
maintaining the diversity of the population by modifyingtlocations of a solutio® with ar,, probability. However,
the choice of the new location should be carefully deterohisance an improper choice may damage all the preceding
actions of the problem-specific selection and crossoverabpes. For example, if the mutation operator modifies a

sensor locatiofz;, y;) without considering the subproblem’s objective prefesemight result in:
e adisconnected sensor, which is undesirable for subprattieat favor a high coverage.
e sensors with higlP;, which is undesirable for subproblems that favor a highitifie.

e partition of the network, since the deletion of a sensor iftiflop communication may disconnect other parts
of the network and might create a bottleneck that negatinéliyences the network lifetime and/or uncover any

previously covered region.

Thus, it is considered reasonable to allow the mutationaipeto randomly modify the locations of a solution
with anr,,, probability, but restricting the modification to close t@tturrent value or at least to bias the probability
distribution in its favor. This may maintain the diversitf/tbe population without destructive behavior or unneces-
sary searches. Thus, we propose an adaptive mutation op#rat is composed of two problem-specific mutation
strategies, namely the local and global mutations thatrfdifferent areas of the objective space, respectively. The

adaptive mutation operator (aM) proceeds as in Algorithm 8.

e In Step 2, if\’ favors the lifetime objective (i.e. areaand the beginning of arég then a locatior(z;, y;) is

modified “locally”, i.e.

Uniformly randomly generate’; € [z; — d., z; + d.] @)
andy’; € [y; — de,y; + dc],

to provide a minimum shift from its current position, whefgis the distance between the centers of two
adjacent diagonal grids, seeking to:
— either, slightly increas€v(X) in the sake of increasing;, when the shift is backward with respectify

— or, benefit the lifetime objective by decreasing the sensprs
15



Algorithm 8 Adaptive mutation operator for each subproblem
Input: A solutionO.

Output: A mutated solutiorY.
Step 0: Setr,,;
Step 1: Order solutionO by using Algorithm 2;
If A" > 0.5then
Step 2: Forj =1to N do
Step 2.1: Generate a uniform random numbemd € [0, 1];
Step 2.2: Ifrand < rp, then
Calculate(z’;, y;) using Equation (7). Replade;, y;) € O with (2}, y5);
Else
Step 3: Forj =1to N do
Step 3.1: Generate a uniform random numbemd € [0, 1];
Step 3.2: Ifrand < rn, then
CalculateA” and(z’;, y;) using Equation (8). Replade;;,y;) € O with (2}, y5);
End if
Step 4: OutputY = O;

e In Step 3, if\? favors the coverage objective (i.e. the end of dremd area) then a location(z;, y;) is

modified “globally”, i.e. a new locatio(’;, y;) is generated in a sub-aréia C A which is defined as follows:

Tmin = (T — |vm — 25]) — Bmax,  Ymin = (Yr — lyg — y;|) — Rmax

Tmaz = (Tu +|Tg — 25]) + Bmax, Ymaz = (yu + lymr —y;) + Rmax

T = Tmaz — Tmin, Y = Tmaz — Tmin; (8)
A’ C Ais a2-D area with length’ and widthy/'.

Uniformly randomly generater’, y;) € A’;

wherex’ andy’ are the width and height of’, respectively. Note that whek — 0 then it should be that
A — A

The modified offspring is then forwarded to the repair opmrat

3.5. Repair Operator

In Step 2.2 of MOEA/D (Algorithm 3), a local heuristic checksolutionY” if:
Case #1:there is a locatiorfiz;, y;) € Y at the same location &8 (i.e. (zx, yn));
Case #2:alocation(z;,y;) € Y is the same as another locati@r,, yi) € Y;

In both cases, the local heuristic repairs the solutidsy uniformly randomly generating a new locatior, y’) € A,

such that(z}, y;) does not fall in either Case #1 or Case #2. The repair heuiistieases the sensors’ individual
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utilization. Since, in both Cases #1 or #2 the sensors cdramafit either the lifetime objective by acting, for example
as relays to increase the load balancing and/or increasauhiple short hops toward#, or the coverage objective

by covering any uncovered regions in the topology. Soluffas then used to update the populations of MOEA/D.
3.6. Update of populations

In Step 2.3, the populations (defined in Subsection 3.2) oBM are updated for each soluticft as follows:

1 The(IP,.,) update phase. I§'(Z¢|\) > ¢'(X?|\)) thenIP,., U {Z} andIP,.,/{X"}, otherwiseX"

remains inf Pyep, .

2 The neighborhood (defined in Subsection 3.2) update piasmew solutiorZ? is compared with it closest
X7 € IPge, neighbor solutions. 1§7(Z|\) > ¢ (X7|\) then,I P, U {Z'} andI P,.,,/{ X"}, otherwise,

X7 remains inl P,.,,, wherej = 1,...,T.

3 The(EP) update phaseEP = EP U {Z'} if Z' is not dominated by any solutiok? € EP, andEP =
EP/{X7}if Z' = X7, forall X/ € EP.

3.7. Termination criterion

At the end of each generation the termination criterion (tla&imum number of generationgn,,...) is checked

to decide whether the search should stop.

4. Experimental setup

In this paper, we study four network test instances (Tahlevtijch represent a broad class of the large-scale and

spread DPAP WSN topologies. The network test instanceseaigried following our analysis in Subsection 2.3.

Table 1: Network Instances

Network Instanceq Area size, A fn?) | # of sensors, N| Density (N/A)
NInl 1 x 10° 13 0.13x 107 *
NIn2 4% 10° 52 0.13x 107*
NIn3 1x10° 50 0.5 x 1077
NIn4 4% 10° 200 0.5x 10~ *

In DPAP, there are too many possible parameter settingg them all. Hence, in our studies we have adopted the
widely used Factorial design [40]. Factorial design inigggtes all possible combinations of the levels of some facto
in a complete replication of an experiment. Factoere the parameters that affect the experiment and levelsZge.
a High and a Low level) are the factors’ values. In cases wtere@xperimenter can reasonably assume that certain
interactions between the factors are negligible thenyinédgion on the main effects may be obtained by running only
a fraction of the complete factorial experiment. This is\Wwnas the 2-level Fractional Factorial Design, denoted as
2k—r wherep are the factors which are not considered as a main effecteoaxperiment and their value is decided

based on the interactions of the remaining p factors. All algorithm factors and their levels are presenn Table 2.
17



Table 2: Parameter settings: algorithm factors with\bigh levels

Algorithm Factors Low | High
Crossover rate;. (subsection 3.4.2) 0.1 1
Mutation ratey, (subsection 3.4.3) 0.1 | 05

Max # of generationgzenmax (subsection 3.7) | 100 | 250
Pop. size & # of subproblems; (subsection 3.2) 120 | 200
Tournament size)! (subsection 3.4.1) 5 10
Neighborhood sizel” (subsection 3.2) 2 10

In all simulation studies, the following network parametare set [41], [42]:R;/Rmax = 100/200, E = 5J,
dmin = 100m, a = 2, amp = 100pJ/bit/m? and square-grids of side lengthm. Moreover, the network lifetime
and the network coverage are evaluated as in Subsectiom@.the lifetime objective is normalized by ttig X 4)
defined in Subsection 2.3. All algorithms were coded in Jaegamming language and run on an Intel/circledR
Pentium 4 3.2 GHz Windows XP server with 1.5 GB RAM.

5. Performance Metrics

This section briefly describes the performance metrics fimambmparing sets of solutions. In MOO, practitioners
are usually interested in the quality of the approximatmthie Pareto set that an algorithm is able to generate. In
addition, a fast and efficient approach is also desirabléngle metric, however, cannot provide adequate results for
the strength of an MOEA in all tasks. Therefore, a set of perénce metrics are adopted as follows.

The A-metric, proposed by Deb et al. [29], measures the exterirefsl achieved among the obtained solutions,

as follows: « _
A dr +d; + Zj:i |d; — d|
df+dl+(K—1)E ’

whered; andd, are the distances between the extreme solutiohand X™ and the optimal solutioX 4 and X &,

respectively. A lowA(A) implies a uniform spread of the non-dominated network desig the objective space by
algorithm A, giving a variety of network design choices te WSN decision maker.

A straightforward comparison metric between two sets of-dominated solutions is the C-metric [29]. The
C(A, B) metric, which is usually considered as a MOEA's quality nwetevaluates the ratio of the non-dominated
solutions in an algorithmit’s Pareto Front dominated by the non-dominated solutioasialgorithmB’s PF, divided
by the total number of nondominated solutions obtained ggrithm A, i.e.NDSA). Hence, letF P4 be the external
population of an algorithm A an# PZ be the external population of an algorithm B. Then,

_ |EPA —{€ EPA|3y € EP : y - 1}

¢4, B) NDS(A)

The smaller the”' (A, B) is, the better Ais. Note that(A, B) # C(B, A).

A common metric, usually considered in cases of real-lifedite optimization problems [30],[34], such as DPAP,
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is the number of Non-Dominated Solutions (NDS) obtainedralgorithm A, i.e.
NDS(A) = |EP4|.

In DPAP, it is very difficult to obtain many different NDSs. Rige, the higher the NDS(A) is, the better A is, in order
to provide an adequate number of choices. However, NDS dhmutonsidered in combination with other metrics,
(e.g.A andC metrics), since it is usually desirable to have a high nurobBIDS, when the set of solutions is of high
quality and spread in the objective space. In contrast, aodlly in cases of continuous optimization [35], when the
number of NDS is too high, the decision making procedure tmesomore complicated and more time consuming.
Besides, an efficient algorithm should obtain high quald@iusons within an acceptable CPU time. Thus, the
combination of NDS with the C andh metrics and the CPU time should be an adequate set of matricsige
the effectiveness and efficiency of the concerned algogthin the following experimental study, statistical tests
are carried out to check the significant difference betwaenalverage results obtained by each algorithm for each
performance metric with a 95% confidence. A one-way ANOVA tesarried out when a group of algorithms is
compared and the two-sample t-test when two algorithmsarpared. Each test returns &aon the null hypothesis
that the average results are not significantly differentrexjahe alternative that the average results are signtfican
different. Theh = + indicates a rejection on the null hypothesis d@ne- — indicates a failure to reject the null

hypothesis. Note that, each algorithm is executed arounihi in each study.

6. Experimental results and discussion

The goals of this section are: 1) to study the effect of th@psed problem-specific evolutionary operators on the
MOEA/D, with respect to several widely used operators, undeous parameter settings. 2) To test the strength of
the problem-specific MOEA/D against the NSGA-II in severatiwork instances.

6.1. The effect of the evolutionary operators

Table 3: Evolutionary components combinations

Algorithm | Representation/Ordering Selection | Crossover| Mutation
Algl rOr tourS 1X rM
Alg2 xyOr tourS 1X rM
Alg3 rOr tourS 2X rM
Alg4 xyOr tourS 2X rM
Alg5 dtsOr tourS aX rM
Alg6 xyOr M-tourS 2X rM
Alg7 dtsOr T-randomS aX rM
Alg8 dtsOr M-tourS aX rM
Alg9 dtsOr M-tourS aX aM

In this subsection, we study the effect of the proposed éawlary operators (i.e. dtsOl/-tourS, aX and aM)

and evaluate theirimpact on MOEA/D. To do so, the followitanslard operators were used for comparison purposes:
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Ordering: Two techniques were designed and compared with the propleses-to-spread ordering (dtsOr) defined

in Subsection 2.4:
(I) Random ordering (rOr): the solution remains in a randémacsure during the search.

(I x-y axis ordering (xyOr): each solution is ordered ininareasing order of the locationscoordinates. In cases

where ther-coordinates are the same then theoordinates are considered.

Selection: The standard tournament selection [25] (denoted as toum$}reT-random selection (denoted @5
randomS) proposed by [35] were compared with the propdgedurnament selection operatav/ttourS) defined

in Subsubsection 3.4.1:

(I) Standard tournament selection (tourS): initiate anamnent by uniformly randomly selectidg solutions from

the population. The two best solutions (in terms of Paretaidance [17]), are selected for parenthood [25].

(I The T-random selectionI(-randomS) proposed by [35]: for each subproblertwo solutions are randomly

selected from its neighborhood of sizgthe neighborhood is defined in Subsection 3.2).

Crossover Operators: Two standard crossover operators [25] were compared witlptbposed adaptive crossover

operator (aX) defined in Subsubsection 3.4.2:

(I) One-point crossover (1X): suppose two parent soluti@g. Pry, Prs) of size N. A crossover point is ran-

domly selected from 1 to N-1. The pieces of the parents areasged to produce two offspring, e@;, Os.

(I1) Two-point crossover operator (2X): two crossover psiare randomly selected from numbers 1 to N-1. The
pieces of the parents are exchanged to produce two offspeigg O1, O>. The two-point crossover was
originally proposed for MOEA/D in [35].

Note that, thel X and2X usually produce two offspring in each recombination. Irsthaper, one offsprin@ is
uniformly randomly chosen frofi0;, O} to keep the number of function evaluations the same, fonéais.
Mutation Operators: A standard (random) mutation operator was compared witlpthposed adaptive Mutation

operator (aM), defined in Subsubsection 3.4.3:

(I) Random Mutation (rM): a locatiorfz;,y;) is modified by uniformly randomly generating a new location

(«},yl) € A. A standard (random) mutation is originally proposed for E¥ID in [35].

This subsection involves nine representative MOEA/D warsj as summarized in Table 3. Each algorithm is
composed of different evolutionary operators. The alpani are studied in three tests in NIn1. In each tegf&

fractional factorial design of the parameter settings (@& is adopted.
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Test 1 - The effect of the adaptive crossover (aX) with the dese to spread ordering (dtsOr)

Test 1 studies the effect of the adaptive crossover (aX) e@fim Subsubsection 3.4.2, with the dense to spread
ordering (dtsOr) defined in Subsection 2.4. Thus, the ckassater., genmax andm (wheregenmax x m is the
total number of function evaluations performed by eachritlgm in each run) are considered in the basic design as

the main effects of test 1 (Table 4). Then, Algorithms 1 to Faifle 3 are compared on NIn1.

Table 4: Algorithm parameter settings of test 1, ParSettiaig

Algorithms: Algl-5
Basic Design
Settings re genmax m rm M T

ParSettingl 0.1 100 120 05 10 10
ParSetting2 1 100 120 01 5 10
ParSetting3 0.1 250 120 01 10 P
ParSettingd 1 250 120 05 5 2
ParSetting5 0.1 100 200 05 5 %
ParSetting6 1 100 200 01 10 2
ParSetting7 0.1 250 200 01 5 10
ParSetting8 1 250 200 05 10 1o

Table 5: The statistical results of test 1 for ParSetting1-8
Metric Algl Alg2 Alg3 Alg4 Alg5 ANOVA
A 0.9383 1.0131 0.9069 0.9208 0.9081 +
CPU time: | 0.9100 1.4366 0.8787 1.4241 0.7645 -
#NDS: 9.5000 8.7500 9.2500 7.7500 [ 12.3750 -

C-metric: | Alg(1,2) | Alg(2,1) || Alg(3,4) | Alg(4,3) || Alg(2,4) | Alg(4,2) || Alg(4,5) | Alg(5,4)
Average: 0.6749 0.0235 0.6158 0.0000 0.4750 0.2556 0.2899 0.4996
t-test: + + + +

From the results of test 1, summarized in Table 5, the folhgwdonclusions are drawn:

e Alg3 obtains the besh = 0.9069 performance with Alg5 being slightly worse with = 0.9081. There is
a significant difference between the results in termaahetric. Alg5 is the fastest method, with respect to
Alg1-4, since it requires 0.7645hrs in average, to obtamnhighest number oN DS = 12.3750. Both the
CPU time andN DS are not significantly different from the results obtainedtvy other MOEA/Ds.

e the comparison in terms of th&-metric shows that the xyOr encoding favors the 1X crossimvaig2, which
outperforms Algl. In contrast, the rOr is more effective fiog 2X crossover, since Alg4 outperforms Alg3.
Thereinafter, the comparison between Alg2 and Alg4 showsstiperiority of 2X crossover with rOr, which

also outperforms Alg5. In all cases, the quality differehetveen the MOEA/Ds is significant.

The reason that Alg5 (composed of the proposed aX and dtstaderg) performs poorly in test 1 is mentioned

in Subsubsection 3.4.1, Remark 1. That is, the generic tonemt selection operatasurS, used in test 1, does not
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provide adequate selection pressure (i.e. does not skéebest parents in the population). This has a negative impac
on the proposed aX with dtsOr, resulting in poor offspringroeluction. Therefore, in the next test, the proposed

M -tourS operator is adopted to improve Alg5’s performance.

Test 2 - The effect of theM -tournament selection operator (M -tourS):

Table 6: Algorithm parameter settings of test 2, ParSe3tihg
Algorithms: Alg4-8
Basic Design
Settings M genmax m  rm  Te T
ParSetting9 5 100 120 05 1 1

o

ParSettingl0 10 100 120 0.1 0.1 10
ParSettingll 5 250 120 01 1 ?
ParSettingl2 10 250 120 05 01 p
ParSettingl3 5 100 200 05 01 P
ParSettingl4 10 100 200 01 1 p
ParSettingl5 5 250 200 01 0.1 10
ParSettingl6 10 250 200 0.5 1 10

Table 7: The statistical results of test 2 for ParSetting9-1

Metric Alg4 Alg5 Alg6 Alg7 Alg8 ANOVA
A: 0.9507 0.9209 0.9762 0.9088 0.9309 -
CPUtime: 0.7244 0.4161 0.7700 0.3705 0.7542 -
NDS: 9.1250 11.2500 | 12.8750 | 15.8750 | 13.5000 -

C-metric: | Alg(4,6) | Alg(6,4) || Alg(5,7) | Alg(7,5) || Alg(4,7) | Alg(7,4) || Alg(4,8) | Alg(8,4)
Average: | 0.2125 0.6274 0.6734 | 02135 0.2798 0.3543 0.3820 0.3645
t-test: + + - -

In this test, we study the effect of the proposed selecti@ratpr (i.e.)M -tourS), defined in Subsubsection 3.4.1.
The experimental design of test 2 is presented in Table 6 hiciw)/ replaces . sinceM is a selection operator
parameter. Alg7 extends Alg5 by replacing the standaratsefetourS with the selection operator proposed by [35],
i.e. T-randomsS. Alg8 extends Alg5 by replacing the:rS with the proposed selection operatdr {tourS) to add
network knowledge in this particular operator of MOEA/D dndrease the selection pressure. Alg6 extends Alg4
(which is currently the algorithm with the highest quality the PF according to test 1) by also replaciogrS with

the proposed/-tourS. Table 7 summarizes the results of test 2. The foligwibnclusions are drawn:

e by increasing the selection pressure of Alg4, i.e. Alg6.algerithm becomes slightly slower, obtaining lower
diversity and significantly lower quality solutions in th&.Frhe solutions obtained by Alg4 dominate 62% of
those obtained by Alg6. A slight increase is shown in the nemald NDS.

e In contrast, Alg5 is outperformed by its extended versiog7Algiving a significant difference in quality. The
performance of Alg7 increases with respect to Alg4 as welterms ofA, number of NDS and CPU time, at
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the cost of a lower quality of solutions in the PF (i.e. 35%tefdolutions are dominated by Alg4). When the
selection pressure is increased in Alg8, the MOEA/D becaostasger and slightly worse than its predecessor
Alg5, in terms of diversity. However, it provides a highemmoer of NDS and the highest quality solutions

obtained so far, with respect to Alg1-7.

Hence, the increase in the selection pressure provided HgurS, improves the performance of MOEA/D in terms
of the NDS and the quality of solutions in the PF, at the cost slightly lower diversity (see section 3.4.1, Remark
2). To avoid the loss of diversity, the proposed adaptiveatia operator is further adopted in Test 3.

Test 3 - The effect of the adaptive mutation operator (aM):

Table 8: Algorithm parameter settings of test 3, ParSetiing4

Algorithms: Alg7-9
Basic Design
Settings rm genmax m M r. T

ParSettingl7 0.1 100 120 10 1 10
ParSettingl8 0.5 100 120 5 01 10
ParSettingl9 0.1 250 120 5 1 ?
ParSetting20 0.5 250 120 10 01 p
ParSetting21 0.1 100 200 10 01 P
ParSetting22 0.5 100 200 5 1 ?
ParSetting23 0.1 250 200 5 01 10
ParSetting24 0.5 250 200 10 1 10

Table 9: The statistical results of test 3 for ParSetting47-
Metric Alg7 Alg8 Alg9 ANOVA
A: 0.9135 0.9362 0.9010 -
CPU time:| 0.3179 0.4975 0.4940 -
NDS: 15.8750 | 14.0000 | 14.6250 -

C metric: | Alg(7,9) | Alg(9,7) || Alg(8,9) | Alg(9,8)
Average: | 0.5289 | 0.2736 0.7061 0.2187
t-test: + +

Test 3 studies the effect of the proposed adaptive mutap@nador (aM), defined in Subsubsection 3.4.3. The
experimental design of test 3 is presented in Table 4, wherartutation rate-,,, replacesM. In this test, Alg9
extends Alg8 by introducing the proposed aM to add networdwkadge in this particular evolutionary component
of MOEA/D and increase the diversity of the PF. The statitiesults of test 3, summarized in Table 9, show the

effectiveness of the proposed mutation operator, as fstlow

o Alg9 performs better in terms of diversity and quality ofigidns in the PF, with respect to both its predecessors
Alg7 and Alg8. Besides, Alg9 is faster than Alg8 with a higlagerage number of NDS. However, only the

difference in quality (i.eC-metric) is significant.
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In conclusion, the proposed evolutionary operators composefficient problem-specific MOEA/D, providing a
large, diverse set of high quality network designs withinaaneptable CPU time. The superiority of the proposed
MOEA/D (i.e. Alg9) with respect to the two conventional MOHJs (i.e. Algl and Alg3) is illustrated in Figure 4.
Note that in all cases the lines between the points are judidtier visualization and do not necessarily imply the

presence of Pareto optimal solutions.
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Figure 4: The DPAP-specific MOEA/D (i.e. Alg9) vs. generatmse MOEA/Ds (i.e. Algl and Alg3), NInl1

6.2. Further discussion on the adaptive crossover operator

In this subsection, we verify the effectiveness of the psggbadaptive crossover operator. This is empirically
shown by comparing the MOEA/D with the two crossover strigegndividually and probabilistically (i.e. adaptive
crossover operator) for the parameter settings of TableNind. The results in Figure 5 clearly show the preference
of each problem-specific crossover strategy on differebpsablems. The window crossover is more flexible and
generates non-dominated solutions across, almost, thieewdsoge of the PF. However, the drawback mentioned in
Subsubsection 3.4.2 (Remark 1) is clearly demonstratetl cases. That is, the window crossover produces poor
offspring when the\ parameter is low and consequently, when the subprobleniedebkigh coverage quality. In
other words, the window crossover lacks obtaining highigablution(s) in area and to approximate solutioki Z.

On the other hand, the clustering crossover is dedicaterbtading solutions in the aforementioned areas of the
PF, giving non-dominated solutions of higher coverageityuial almost all test instances, approximating the optimal
solution X2 (Subsubsection 3.4.2, Remark 2). However, it lacks obtgimigh quality solutions for the rest of
the PF. This is due to the high transmission distances ansecmently the high transmit power levels assigned to

the sensors through the clustering crossover (Subsubsetd.2, Remark 3). Thereinafter, the adaptability of the
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Figure 5: MOEA/D with the window, the clustering and the atilap(aX) crossovers in ParSetting1-8, Ninl

proposed crossover operator is demonstrated. The aX tdkastage of both the window and the clustering crossover

strategies and provides a diverse set of high quality smistacross the whole range of the objective space.

6.3. Comparison of MOEAs

In this subsection, we study the efficiency and effectiveméshe proposed problem-specific MOEA/D on DPAP.
To do so, we have compared the proposed method with a state @frt in MOEAs based on Pareto dominance.
Namely, the Non-dominated Sorting Genetic Algorithm-IISGA-II) [29]. NSGA-II maintains a populatiohPy.y,
of sizem at each generatiayen, for genmaxgenerations. NSGA-II adopts the evolutionary operatoes §election,
crossover and mutation) for offspring reproduction as MUEAT he key characteristic of NSGA-Il is that it uses a
fast non-dominated sorting and a crowded distance estméir comparing the quality of different solutions during
selection and to update th&>,.,, and theEP. We refer interested readers to [29] for details. In thisqpaNSGA-
Il adopts the following non-decompositional operators th@ve shown promising performance in Subsection 6.1:
the x-y axis ordering (xyOr) (Ordering-Il), the standardireament selection (tourS) (Selection-1), the two-point
crossover (2X) (Crossover-11) and the random mutation ((Mitation-1). For comparing the two MOEAs we have
adopted both visual and statistical comparison, througlpérformance metrics introduced in Section 5, in all nekwor
test instances of Table 1. The parameter settings were figdwing the experience we gained from the latter
experimental studyyenmax = 250, m = 120, r. = 0.9, r,,, = 0.5 andM = 10. For MOEA/D, the number of
subproblems isn andT = 2. Note that it is difficult to select optimal parameter valaesl a set of experiments
cannotyield an insight that can be claimed in generality.

Figure 6 and Table 10 show the superiority of the proposed MDEgainst the NSGA-II. MOEA/D performs
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Figure 6: MOEA/D vs. NSGA-Il on NIn1-4, NInl1

Table 10: MOEA/D (MD) vs. NSGA-II (NG), NIn1-4

Metric: | A(MD) | A(NG) || CPUMD) | CPU(NG) || NDS(MD) | NDS(NG) || C(MD,NG) | C(NG,MD)
Ninl: | 0.9842 | 0.7417 || 0.2588 2.7466 10 8 0.1000 0.7500
NInZ: | 09780 | 0.6535 || 2.2655 2.7451 21 10 0.1905 0.2000
Nin3: | 0.6515 | 0.6852 1.3784 1.3300 23 17 0.0000 1.0000
Nind: | 0.7597 | 0.8235 || 37.5989 | 9.0934 21 21 0.0000 0.8571

| ttest | - 1 - 1 - 1 + |

better than NSGA-II in terms of quality and number of NDS ihratwork instances and in terms of diversity in
dense network topologies. In network topologies with lomsig, NSGA-II provides a more uniform spread of
solutions. The PF obtained by MOEA/D, however, is much witian the one obtained by NSGA-II in all cases,
giving solutions in almost the whole area of the objectivacgp In contrast, NSGA-II lacks obtaining non-dominated
network designs in areaand obtains few designs in aréd he difference between the two algorithms in terms of
quality is significant. Note that, the CPU time required by two approaches is not significantly different. Table 11
summarizes the lifetime and coverage of the extreme netdesignsX 4 and X 2, which are analytically measured
according to Subsection 2.3 for each network instance, laidapproximation by the solutiods' andX™ obtained

by each MOEA. The results show that MOEA/D approximates ttteeee network designs more efficiently than
NSGA-II. Another conclusion that can be empirically drawnttiat, MOEA/D is not sensitive on the WSN'’s area size
or density giving similar results in each case. That is, MTEAbtains a similar approximation towards the extreme
solutionsX 4 and X Z in terms of lifetime and coverage quality, for the same 1669&nd 400002 area sizes with

different densities and for the same 0.0013 and 0.005 dessitdifferent area sizes.

7. Conclusions and Future Research

In this paper, the DPAP in WSNs is formulated as a MOP and ismposed into a set of scalar subproblems.
The subproblems are classified based on their objectivergretes and tackled by MOEA/D using problem-specific
knowledge, simultaneously. A solution representationaidd to DPAP and several DPAP-specific, MOEA/D-based
evolutionary operators are proposed. Namely, Mi¢ournament selection, the adaptive crossover and thetiadap

mutation operators, which are highly interrelated withreather and adapt to the needs and objective preferences of
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Table 11: Analytical extreme solutiod§# and X & and their approximation by the solutio&' and X obtained by MOEA/D and NSGA-II

Nin | Method | L(XA\X1) | Co(XA\X") | L(XB\X™) | Co(XB\X™)
Analytical 1 0.16 0.00003 0.408

1 MOEA/D 1 0.1511 0.065 0.3956
NSGA-II 1 0.0974 0.25 0.1793
Analytical 1 0.04 7.69<10~° 0.3926

2 MOEA/D 1 0.027475 0.01 0.341525
NSGA-II 1 0.0272 0.125 0.05
Analytical 1 0.16 8 x 107° 1

3 MOEA/D 1 0.1431 0.04 0.944
NSGA-II 1 0.1118 0.045 0.4221
Analytical 1 0.04 2x10~° 1

4 MOEA/D 1 0.0342 0.01 0.949575
NSGA-II 1 0.0262 0.04 0.131

each subproblem dynamically, during the evolution. Sirmoiteresults have shown the effectiveness of the proposed
EA operators on improving the performance of MOEA/D. Thehpemn-specific MOEA/D has finally demonstrated
its superiority against NSGA-11 on several network testanses. MOEA/D obtains a diverse set of high quality WSN
designs, without any prior knowledge on the objective periees to facilitate the decision maker’s choice.

There is a number of avenues for further research. For examplill be interesting to test the performance of
the proposed operators against more sophisticated EAtopgrauch as [43]. Moreover, the DPAPs in WSNs include
many features (e.g. small, massively dense topologies)ssnés (e.g. connectivity), which are also important as
those in the proposed DPAP. Thus, various multiobjectivdP#can be defined and tackled by problem-specific
MOEA/Ds, similarly to this work. In principle, MOEA/D can s#ly adopt local search techniques. Hence, designing

low-level problem-specific local heuristics, for furtherproving the performance of MOEA/D is also a future study.

References

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, E. CayircisArvey on sensor networks, IEEE Comms Magazine (2002) 1eR—-1
[2] X. Liu, P. Mohaparta, On the deployment of wireless daakshaul networks, IEEE Trans. on Wireless Comm. 6 (4) (20926-1435.
[3] M. Younis, K. Akkaya, Strategies and techniques for npliEement in wireless sensor networks: A survey, ElsevieHAc Networks 6 (4)
(2007) 621-655.
[4] S.Meguerdichian, F. Koushanfar, M. Potkonjak, M. Bvasitava, Coverage problems in wireless ad-hoc sensor netwo: IEEE Infocom,
Vol. 3, 2001, pp. 1380-1387.
[5] K. Chakrabarty, S. S. lyengar, H. Qi, E. Cho, Grid coverdgr surveillance and target location in distribuuted semsetworks, IEEE
Transactions On Computers 51 (12) (2002) 1448-1453.
[6] Q.Wu, N. S. V. Rao, X. Du, S. Sitharama, V. K. Vaishnavi, €fficient deployment of sensors on planar grid, Elsevier @aer Communi-
cations 30 (2007) 2721-2734.
[7] M. Cardei, J. Wu, Handbook of Sensor Networks: CompacteWss and Wired Sensing Systems, CRC Press, 2005, Ch.agevarWireless
Sensor Networks, pp. 19-1-19-12.
[8] Q. Xue, A. Ganz, On the lifetime of large scale sensor oeks, Elsevier Computer Communications 29 (2006) 502-510.
[9] P. Santi, Topology control in wireless ad hoc and senstwarks, ACM Computing Surveys 37 (2) (2005) 164-194.
[10] A. E.F. Clementi, P. Penna, R. Silvestri, Hardnessltedar the power range assignmet problem in packet radioworés, in: Proceedings
of the International Workshop on Approximation Algorithiies Combinatorial Optimization Problems, Springer-Vegrla999, pp. 197-208.
A. Konstantinidis, K. Yang, H.-H. Chen, Q. Zhang, Eneayvare topology control for wireless sensor networks usi@gnetic algorithms,
Elsevier Computer Communications 30 (14-15) (2007) 273842
T. Melodia, D. Pompili, I. F. Akyildiz, On the interdepdence of distributed topology control and geographicating in ad hoc and sensor
networks, IEEE Journal on Selected Areas In Communica2@n(8) (2005) 520-532.
X. Cheng, B. Narahari, R. Simha, M. Cheng, D. Liu, Strangnimum energy topology in wireless sensor networks: Npholeteness and
heuristics, IEEE Transactions on Mobile Computing 2 (30@®48-256.
P. Santi, D. M. Blough, F. Vainstein, A probabilistic aysis for the range assignment problem in ad hoc networksManaging Next
Generation Networks and Services, Lecture Notes in Com@dience, Vol. 4773/2007, Springer Berlin / Heidelberd)20op. 523-526.

27

[11]
[12]
[13]

[14]



[15]
[16]

[17]
(18]

[19]
[20]
[21]
[22]
(23]
[24]

[25]
[26]

[27]
(28]
[29]
[30]
[31]
[32]
(33]
[34]
[35]
[36]
[37]
(38]
[39]

[40]
[41]

[42]

[43]

P. Cheng, C. N. Chuah, X. Liu, Energy aware node plac¢inemireless sensor networks, in: IEEE Global Telecommaiimnis Conference,
Vol. 5, 2004, pp. 3210-3214.

Y. Chen, C.-N. Chuah, Q. Zhao, Network configuration émtimal utilization efficiency of wireless sensor netwqriEsevier Ad Hoc
Networks 6 (2008) 92-107.

K. Deb, Multi-Objective Optimization Using Evolutiany Algorithms, Wiley and Sons, 2002.

A. Konstantinidis, K. Yang, Q. Zhang, An evolutionarjgarithm to a Multi-Objective Deployment and Power Assigamth Problem in
wireless sensor networks, in: IEEE Global Communicatioosférence, GlobeCom08, Vol. AH16, 2008, pp. 475-481.

P. Baronti, P. Pillai, V. W. C. Chook, S. Chessa, A. GottaF. Hu, Wireless sensor networks: A survey on the stateeétt and the 802.15.4
and zigbee standards, Elsevier Computer Communicatio2087) 1655-1695.

S. Toumpis, Mother nature knows best: A survey of recestlts on wireless networks based on analogies with phiySemputer Networks
52 (2) (2008) 360-383.

S. Toumpis, L. Tassiulas, Optimal deployment of largesless sensor networks, IEEE Transactions on Informafieeory 52 (7) (2006)
2935-2953.

J. Knowles, M. Oates, D. Corne, Advanced multi-objextevolutionary algorithms applied to two problems in telaeunications, BT
Technology Journal 18 (4) (2000) 51-65.

C. W. Ahn, R. S. Ramakrishna, A genetic algorithm forrgést path routing problem and the sizing of population&BHTrans. Evolutionary
Computation 6 (6) (2002) 566-579.

K. P. Ferentinos, T. A. Tsiligiridis, Adaptive desigptimization of wireless sensor networks using genetic ritlyms, Elsevier Computer
Networks 54 (1) (2007) 1031-1051.

C. Reeves, Handbook of Metaheuristics, Kluwer, 2008, Genetic algorithms, pp. 65-82.

D. B. Jourdan, O. L. de Weck, Layout optimization for areléss sensor network using a multi-objective geneticrilgun, in: IEEE
Semiannual Vehicular Technology, Vol. 5, 2004, pp. 2466424

R. Rajagopalan, P. K. Varshney, C. K. Mohan, K. G. MetapSensor placement for energy efficient target detectioniieless sensor
networks: A multi-objective optimization approach, in:f@erence on Information Sciences and Systems, Baltimoegylsind, 2005.

S. C. Oh, C. H. Tan, F. W. Kong, Y. S. Tan, K. H. Ng, G. W. Ng, Hai, Multiobjective optimization of sensor network depteent by a
genetic algorithm, in: IEEE Congress on Evolutionary Cotapon, 2007. CEC 2007, 2007, pp. 3917-3921.

K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast antisti multiobjective genetic algorithm: NSGA Il, IEEE Traactions on Evolutionary
Computation 6 (2) (2002) 182-197.

K. Kamyoung, M. T. Alan, N. Xiao, A multiobjective evdionary algorithm for surveillance sensor placement, Emuinent and Planning
B: Planning and Design 35 (2008) 935-948.

J. Jia, J. Chen, G. Chang, Z. Tan, Energy efficient c@e@ntrol in wireless sensor networks based on multi-tisgegenetic algorithm,
Computers and Mathematics with Applications 57 (11-12p@A756—-1766.

J. Jia, J. Chen, G. Chang, Y. Wen, J. Song, Multi-objectiptimization for coverage control in wireless sensomoét with adjustable
sensing radius, Computers and Mathematics with Applinatte7 (11-12) (2009) 1767-1775.

E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, V. @.Fbnseca, Performance assessment of multiobjective iaptsn An analysis and
review, IEEE Transactions on Evolutionary Computation )7(2003) 117-132.

N. Weicker, G. Szabo, K. Weicker, P. Widmayer, Evolaagy multiobjective optimization for base station transemi placement with fre-
quency assignment, IEEE Transactions on Evolutionary Goatipn 7 (2) (2003) 189-203.

Q. Zhang, H. Li, MOEA/D: A multi-objective evolutiongralgorithm based on decomposition, IEEE Transactions aiuenary Compu-
tation 11 (6) (2007) 712-731.

W. Ye, J. Heidemann, D. Estrin, An energy-efficient maatpcol for wireless sensor networks, in: INFOCOM, 2002, Pp67-1576.

X. Xu, S. Sahni, Approximation algorithms for sensoplbyment, IEEE Transactions on Computers 56 (12).

F. Glover, M. Laguna, Tabu Search, Norwell, MA: Kluw&g98.

L. Liu, F. Xia, Z. Wang, J. Chen, Y. Sun, Deployment issu wireless sensor networks, in: Lecture Notes in CompBtéence, Mobile
Ad-hoc and Sensor Networks, Vol. 3794, Springer Berlin /de#erg, 2005, pp. 239-248.

D. C. Montgomery, Design and Analysis of Experimenthrd Wiley & Sons, 2001.

X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, C. Gill, Intated coverage and connectivity configuration in wirelessser networks, in:
Proceedings of the 1st international conference on Emiokdelsvorked sensor systems, 2003, pp. 28-39.

M. Cardei, M. O. Pervaiz, I. Cardei, Energy-efficienhge assignment in heterogeneous wireless sensor netirrksternational Confer-
ence on Wireless and Mobile Communications, 2006.

Q. Zhang, J. Sun, E. P. K. Tsang, An evolutionary al@onitvith guided mutation for the maximum clique problem, IEE&ns. Evolutionary
Computation 9 (2) (2005) 192-200.

28



