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Abstract

A Wireless Sensor Network (WSN) design often requires the decision of optimal locations (deployment) and transmit

power levels (power assignment) of the sensors to be deployed in an area of interest. Few attempts have been made on

optimizing both decision variables for maximizing the network coverage and lifetime objectives, even though, most

of the latter studies consider the two objectives individually. This paper defines the multiobjective Deployment and

Power Assignment Problem (DPAP). Using the Multi-Objective Evolutionary Algorithm based on Decomposition

(MOEA/D), the DPAP is decomposed into a set of scalar subproblems that are classified based on their objective

preference and tackled in parallel by using neighborhood information and problem-specific evolutionary operators, in

a single run. The proposed operators adapt to the requirements and objective preferences of each subproblem dynam-

ically during the evolution, resulting in significant improvements on the overall performance of MOEA/D. Simulation

results have shown the superiority of the problem-specific MOEA/D against the NSGA-II in several network instances,

providing a diverse set of high quality network designs to facilitate the decision maker’s choice.
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1. Introduction and background

The design of Wireless Sensor Networks (WSNs) [1] is a highlycomplicated task with substantial impact on the

quality, cost and efficiency of real life sensor applications. Sensors are small electronic devices with limited energy,

memory and transmit power capabilities, which in some sensor network applications are also limited in number

because of their high cost [2]. A typical goal of these network designs is to form a long lived WSN, such that the

sensors, using their sensing capabilities and wireless transceivers, effectively cover a region of interest and forward

important information to a common collection point, usually referred to as a data sink.

For most WSNs, a major design step is to selectively decide the locations of the sensors to maximize the covered

area of a targeted region. This particular problem has different appellations in the literature, e.g. placement, coverage
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or deployment problem in WSNs, where Younis et al. [3] provide a good overview of various strategies. Many

practitioners, such as Meguerdichian et al. [4], have pointed out that the coverage objective is a measure of the quality

of service (QoS) that is provided by a particular network design. Several researchers [5, 6] have proven the NP-

hardness of various deployment problems. The main focus is often to determine an optimal sensor placement to

cover a grid area (sometimes under uncertainty [6]) and minimize the cost or prolong the network lifetime [7]. None

of the above studies, however, have considered an energy-aware transmit power level assignment for maximizing the

network lifetime while tackling a deployment problem. In sensor network applications, where the number of available

sensors is limited and the desired area is large, the sensorsusually operate under high transmit power levels, which

is the dominant parameter of their total energy consumption. This often results on a premature exhaustion of their

initial power supply. Thus, another major step in WSN designis to assign energy efficient transmit power levels to the

sensors to maximize the network lifetime under certain energy constraints [8]. This problem is commonly known as

the power/range assignment problem in WSNs [9] and it is proven NP-hard by [10], with the objective of minimizing

the total communication ranges of the network. The same problem, while maintaining the connectivity [11, 12], is

proven NP Complete by Cheng et al. in [13], where Santi et al. [14] solved it by means of a probabilistic approach.

Few researchers, however, have tackled the Deployment and Power Assignment Problems (DPAPs) in WSNs,

simultaneously. For example, Cheng et al. [15] and Liu et al.[2] have studied various formats of the DPAP. Their

main focus was to determine both the locations of the sensorsand the distance between the sensors (transmission

range) for maximizing the network lifetime or minimizing the deployment cost under certain coverage requirements,

or maximize the covered area given a fixed number of sensors and a desired lifetime. In both cases, the authors

have analytically tackled the problem for linear networks and they have proposed several heuristic methods for planar

networks. The goal of the DPAP, tackled by Chen et al. [16], was to find the minimum number of sensors, the optimal

sensor placement and the transmission structure for maximizing a utilization efficiency objective, which is defined as

the network lifetime per unit deployment cost. The authors proposed an approximation approach where the placement

of the sensors ensures a fully covered area and a simultaneous depletion of their initial power supply. All the latter

approaches, however, optimize the lifetime and coverage objectives individually and sequentially, or by constraining

one and optimizing the other. This often results in ignoringand losing “better” solutions since coverage and lifetime

are conflicting objectives and a decision maker needs an optimal trade-off. Thus, there is not a single solution that can

optimize both objectives simultaneously, but a set of equally important solutions.

Because so many different aspects are involved, the respective DPAPs are a proper object for Multi-Objective

Optimization (MOO). Considering a maximization Multiobjective Optimization Problem (MOP) withk objectives, a

solutionX∗ is considered non-dominatedor Pareto optimal with respectto another solutionY , if ∀i ∈ {1, ..., k}, Xi ≥

Yi ∧ ∃i ∈ {1, ..., k} : Xi > Yi, this is denoted asX ≻ Y . The set of all Pareto optimal or non-dominated solutions in

the search space, also called Pareto Set (PS), is often mapped to a Pareto Front (PF) in the objective space [17].

In [18], we introduced the multi-objective DPAP in WSNs, which is typical for applications that invoke a limited

number of expensive sensors, where their operation is significantly affected by their position and communication
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[19]. In these cases, the random massive deployment [20] anddynamic power assignment [9] is not the only choice;

and the application affords the “luxury” of using a centralized or even an off-line algorithm to compute the locations

and transmit power levels of the sensors, prior deployment.Thus, we have considered it critical and challenging to

investigate the following problem: for a given surveillance sensing field, determine the locations and the transmit

power levels of a limited number of sensors to be deployed, tomaximize the network coverage and lifetime, at the

same time. By obtaining the PS and PF of the DPAP prior deployment, a critical decision making dilemma is mainly

tackled. Namely, “Having a limited number of available sensors, what portion of the area should be covered and

for how long?”. In MOO, a decision maker can analyze both the PS and PF, and then choose the most appropriate

Pareto optimal network topology for each scenario, insteadof making the decision and then designing the topology.

For example, possible choices of the PS in DPAP could be, to employ: (1) a network topology for covering the whole

area for a very short time, (2) a long-lived network topologycovering a small portion of the area, or alternatively, (3)

a network topology that balances the network lifetime and coverage.

In the design and analysis of communication systems and networks, researchers have successfully introduced

techniques inspired by other disciplines, such as analogies with physics [21] or natural biology [22] (e.g. Evolutionary

Algorithms (EAs) inspired by the biological evolution) fortackling difficult problems, such as DPAP. The successful

adaptation of EAs in sensor networks led to the development of several EA-based application specific approaches for

WSN design, often dealing with a single objective function [23] or multiple objectives combined to a single objective

function [24]. MOO is a relatively new area in WSNs and it is difficult to apply an existing linear/single objective

method to effectively tackle the multiobjective DPAP, giving a set of non-dominated solutions. Thus, the DPAP may

serve as a real world benchmark for multiobjective methods.The literature hosts several interesting approaches for

tackling MOPs, with Multi-Objective Evolutionary Algorithms (MOEAs) posing all the desired characteristics for

obtaining a set of non-dominated solutions, in a single run.In the following, we discuss several MOPs in WSNs

which are tackled by general purpose MOEAs that utilize standard EA operators [25].

Jourdan and Weck [26] tackled a layout optimization problemin WSNs with the general purpose Multi-objective

Genetic Algorithm (MOGA), utilizing a single point crossover and a random mutation for offspring reproduction. In

2005, Rajagopalan and co-workers have formulated a sensor placement problem [27], with main focus on optimiz-

ing the sensor locations for maximizing the probability to target detection and minimizing both the energy dissipa-

tion and the number of sensors, simultaneously. The authorstackled the MOP with their own Evolutionary Multi-

objective Crowding Algorithm (EMOCA), utilizing the general purpose tournament selection, single-point crossover

and random mutation operators. In 2007, Oh et al. [28] adopted the Non-Dominated Sorting Genetic Algorithm-

II [29] (NSGA-II) to tackle a WSN deployment problem, generating new solutions with the conventional single-point

crossover and random mutation operators. More recently (in2008), Kim et al. [30] have also used NSGA-II to tackle

a surveillance sensor placement problem. The authors have utilized the single point crossover for offspring repro-

duction, adding a restriction, i.e. the common elements in the two parents are not exchanged and a node-exchange

mutation. NSGA-II is also used by Jia et al., in 2009, for tackling two multiobjective optimization scheduling prob-
3



lems [31] and [32]. The authors have utilized the basic tournament selection, two-point crossover and random/swap

mutation operators, respectively. Even though the latter problems are considerably different from DPAP, the main

difference between their studies and ours is in the way that they treat the MOPs and apply the MOEAs. That is, all

the aforementioned studies treat a WSN MOP as a “black box” [33], i.e. without using problem-specific knowledge,

which may have undesirable effects, such as forcing the evolutionary process into unnecessary searches and destruc-

tive mating, negatively affecting their overall performance. This can be considered as a main drawback of the generic

MOEAs when dealing with real life problems (such as DPAP).

Therefore, the incorporation of problem-specific knowledge in MOEAs to direct the search into promising areas of

the search space can be proven beneficial [34]. However, designing problem-specific operators for a MOP, as a whole,

is difficult. The Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) [35] alleviates this

difficulty by decomposing the MOP into many scalar subproblems that are optimized in parallel, by using neighbor-

hood information and scalar techniques. The difficulty in adding knowledge on a decompositional MOEA is that the

subproblems have different objective preferences, require different treatment and have to be solved simultaneously,in

a single run. Therefore, the problem-specific evolutionaryoperators should adapt to the requirements and objective

preference of each subproblem dynamically, during the evolution. In this paper, we propose a MOEA/D-based ap-

proach, which strategically monitors problem-specific evolutionary operators and provides different treatment to each

subproblem of the DPAP based on its WSN requirements.

The remainder of the paper is organized as follows. Section 2introduces the multiobjective DPAP, including a

DPAP analysis that classifies the Pareto optimal solutions in the objective space based on their objective preferences.

Section 3 presents the proposed MOEA/D, i.e. details the problem-specific evolutionary operators. Sections 4 and 5

introduce the experimental setup and the performance metrics, respectively. The simulation results in Section 6 verify

the necessity of the proposed operators for improving the performance of MOEA/D with respect to the conventional

MOEA/D and the NSGA-II. Section 7 concludes this paper and suggests some topics for future research.

2. The Deployment and Power Assignment Problem (DPAP)

2.1. System model and assumptions

Consider a 2-D static WSN formed by: a rectangular sensing areaA, N homogeneous sensors and a static sinkH

with unlimited energy, placed at the center ofA. The sensors are responsible for monitoring and periodically report

an event of interest toH . Hence, each sensori must be able to communicate directly or via multiple hops through

nearby sensors withH . We assume a perfect medium access control, such as SMAC [36], which ensures that there are

no collisions at any sensor during data communication and weadopt the simple but relevant path loss communication

model as in [2]. In this model, the transmit power level that should be assigned to a sensori to reach a sensorj is

Pi = β × dα
ij , whereα ∈ [2, 6] is the path loss exponent andβ = 1 is the transmission quality parameter. The

energy loss due to channel transmission isdα
ij , dij is the Euclidean distance between sensorsi andj, Ri

c = dij is

sensori’s communication range, s.t.Ri
c ≤ Rmax, whereRmax is a fixed maximum communication distance, which
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is constrained by the maximum power that sensors can transmit, i.e. Pmax. The calculated power assignments are

considered static for the whole network lifetime. The residual energy of sensori, at timet, is calculated as follows:

Ei(t) = Ei(t − 1) − [(ri(t) + 1) × Pi × amp] (1)

where(ri(t)+1) is the total traffic load that sensori forwards towardsH att, ri(t) is the traffic load thati receives and

relays, “+1” is the data packet generated byi to forward its own data information andamp is the power amplifier’s

energy consumption. In DPAP, we assume that the area sizeA is large andN is relatively small. Consequently,

the sensors should spread, to adequately coverA, and communicate through long transmission distances. Thus, the

transmit power is a major factor on the sensors’ total energyconsumption and the energy consumed by the transceiver

electronics as well as for reception and generation of data are considered negligible and ignored [2, 16].

For sensing purposes and simplicity, we assume thatA is composed of rectangular grids of identical dimensions

centered at(x′, y′) and we adopt a sensing model based on the definite range law approximation [6]. Namely, a

grid at (x′, y′) is covered, denoted byg(x′, y′) = 1, if it falls within a sensor’s sensing diskπR2
s of radiusRs,

otherwiseg(x′, y′) = 0. We consider unit-size grids, which are several times smaller thanπR2
s for a more accurate

placement [37].

2.2. Problem formulation

The DPAP can be formulated as a MOP,

Given:

• A: a 2-D plane, whereA = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.

• N : number of sensors to be deployed inA.

• E: initial power supply, the same for all sensors.

• Rs: sensing range, the same for all sensors.

• Pmax: maximum transmission power level, the same for all sensors.

Decision variables of a network designX :

• (xj , yj) : the location of sensorj.

• Pj : the transmission power level of sensorj.

Objectives: Maximize coverageCv(X) and lifetimeL(X):

The network coverageCv(X) is defined as the percentage of the covered grids over the total grids of A and is

evaluated as follows:

Cv(X) = [

x
∑

x′=0

y
∑

y′=0

g(x′, y′)]/(x × y) (2)
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where,x × y is the total grids ofA and

g(x′, y′) =







1 if ∃j ∈ {1, ..., N}, d(xj ,yj),(x′,y′) ≤ Rs

0 otherwise

is the monitoring status of the grid centered at(x′, y′).

The network lifetime is defined as the duration from the deployment of the network to the cyclet at which a sensor

j depletes its energy supply,E [2, 16]. The lifetime objectiveL(X) is evaluated as in Algorithm 1.

Algorithm 1 Lifetime evaluation
Step 0: Sett := 1; Ej(0) := E, ∀j ∈ {1, ..., N};

Step 1: For all sensorsj at each time intervalt do

Step 1.1: UpdateEj(t) according to Equation (1);

Step 1.2: Assign each incoming link of sensorj a weight equal toEj(t);

Step 1.3: Calculate the shortest path fromj to H ;

Step 2: If ∃ j ∈ {1, ..., N} such thatEj(t) = 0 then stop and set:

L(X) := t; (3)

Elset = t + 1, go to step 1;

The same algorithm can be easily modified to consider different energy models in Step 1.1 and routing algorithms

(e.g. geographical-based [12] routing algorithms) in Step1.3.

2.3. DPAP Analysis

In the multiobjective DPAP defined here, there does not exista solution that can optimize all objectives at the same

time. Therefore, we will be interested in achieving a set of Pareto optimal solutions, or an approximation to it. The

Pareto optimal solutions, however, which are close in the objective space, should have many similarities with each

other in the search space, recalling the so-called Proximate Optimality Principle (POP) [38]. The POP, an underlying

assumption in most heuristics, assumes that good solutionshave similar structure.

This subsection aims at providing some insights about the properties and features of some particular solutions that

might be part of the PF. For example, theextreme solutions XA andXB (Figure 1(a)), which optimize one objective

each, are identified and good solutions1 are designed analytically. Moreover, ad hoc design guidelines are provided

for the remaining subsetPF −{XA, XB}, named thenon-extreme set of solutions, based on some network concepts

and their positions (e.g. areasa,b andc in Figure 1(b)) in the objective space (i.e. objective preference).

The extreme solutionXA provides the maximum lifetime and minimum coverage among all the solutions in PF,

L(XA) =
E

dα
min × amp

, Cv(XA) = A′/(x × y),

1Note that good solutions do not imply optimal solutions.

6



(a) The PF of DPAP (b) Various Pareto optimal solutions of the PF

Figure 1: Classifying the optimal network designs in DPAP

whereA′ ≈ (2 × (Rs + dmin))2, dmin is a controllable parameter that indicates the minimum distance allowed

between a sensor andH . Hence, a dense deployment of all sensors aroundH with minimum transmission distances,

Ri
c = dmin, and direct communication withH (henceri(t) = 0) is desirable.

The extreme solutionXB provides the maximum coverage and minimum lifetime among all the solutions in PF.

Cv(XB) highly depends onN , which in DPAP is assumed to be small. Thus, letN ≤ (x×y)
(2Rs)2 . In that case,XB is

designed by regularly deployingN sensors with a fixed distance2Rs between each other andH , avoiding any sensing

range overlaps:

Cv(XB) =
N × πR2

s

(x × y)
, L(XB) =

E

k × (N/4) × (2Rs)α × amp
,

where(k × (N/4) × (2Rs)
α × amp) is the energy consumption of each sensori that is directly connected toH at

eacht, andN/4 × k is a fixed minimum number of packets of sizek (i.e. the traffic load) that should be carried by

each sensori, assuming a regular, symmetrical deployment.

The goal of DPAP, however, is to provide the interested userswith a diverse set of network design choices, giving

the trade-off between the extreme solutionsXA andXB. However, the procedure of designing the non-extreme

topologies is complicated, since there is not a scalar method which can design all of them, in a single run. In the

following, we introduce some general concepts for searching and/or designing good solutions in different areas of the

objective space (e.g.a,b, andc in Figure 1(b)):

• SolutionXa: favors a high network lifetime. Hence, the focus is to provide dense network designs by placing

the sensors close toH , with low transmit power levels. This, however, leads to high sensing range overlaps and

poor coverage.

• SolutionXc: favors a high network coverage. Therefore, the focus is to provide spread network designs, by

placing the sensors with high transmit power levels and low sensing range overlaps between each other [39] and

the area boundaries. This, however, leads to a high energy consumption, which results to a poor lifetime.
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Furthermore, it is expected that the interrelation betweenthe solutionsXa andXc and the aforementioned network

concepts “fades” as they get closer to the center of the PF, respectively. Thereinafter, a combination of those concepts

could provide a balance on the DPAP’s objectives as follows:

• SolutionXb: the sensors are connected in such a way that their transmit power level decreases/increases, and

the sensing range overlaps increase/decrease as they get closer toH , according to a slight preference on the

lifetime or coverage objective, respectively.

2.4. DPAP solution representation and ordering

In this paper, a candidate solutionX consists ofN items. Itsj-th item has two parts,(xj , yj) andPj , which

represent the location and the transmit power level of sensor j, respectively.

Figure 2: The dense-to-spread solution representation.

In our approach, the items of a solutionX are ordered as follows: the sensor locations inX are sorted based on

their distance toH , where1 is the closest andN is the farthest sensor location with respect toH , respectively. This

results in having the locations of the sensors that are densely deployed aroundH at the beginning of each solution and

the locations of the sensors that are spread away at the end. The dense to spread ordering (denoted as dtsOr) facilitates

the crossover operator that will be introduced shortly. SolutionX is illustrated in Figure 2. Thereinafter, each sensor

j is assigned a transmit power levelPj proportional toRj
c ≤ Rmax, such that it reaches its closest neighbor sensor,

e.g.k, wherek < j. The whole process is outlined in Algorithm 2.

• In Step 1, the sensors are ordered based on their distance from H , which facilitates the proposed evolutionary

operators that will be introduced shortly.

• Step 2 assigns a minimum transmission power to each sensor such that it reaches its closest neighbor. This is

due to the concept that multiple short hops are more beneficial than a long hop in applications whereN is small

and the sensors communicate through long transmission ranges [15]. The reason is that,

(rj(t) + 1) × dα
ju > ((rj(t) + 1) × dα

jk + (rk(t) + 1) × dα
ku),
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Algorithm 2 The dense-to-spread representation process for each solution Y
Input: A solutionY ;

Output: A solutionX;

Step 1: Calculate the dense-to-spread ordering ofY to getX;

Step 2: for each(xj , yj) in X do

Pj =

8>>>><>>>>: (dj,H)α if (xH , yH) is j’s closest location anddj,H ≤ Rmax–(a)

(dj,k)α if (xk, yk) is j’s closest location,k < j, Pk 6= 0 anddjk ≤ Rmax–(b)

0 otherwise

sincedju ≥ djk + dku.

• If Step 2 (a) and (b) are not satisfied then,Pj = 0, which means that sensorj is disconnected.

3. The proposed MOEA/D for the DPAP

This section details each operator of the proposed MOEA/D designed for the DPAP. Note that, the underlying idea

behind the problem-specific EA operators might shed some light on the design of MOEA/Ds for other MOPs.

3.1. Decomposition

Initially, MOEA/D needs to decompose a MOP into a set of subproblems. Any decompositional technique can

serve for this purpose [35]. In this paper, the Weighted Sum approach is used, as follows. The multiobjective DPAP

is decomposed intom scalar optimization subproblems considering two objectives. Thei-th scalar optimization

subproblem can be defined as:

max gi(X, λi) = λiL(X) + (1 − λi)Cv(X),

whereλi is the weight coefficient of subproblemi = 1, . . . , m. For the remainder of this paper, we consider a uniform

spread of the weightsλi, which remain fixed for eachi for the whole evolution and are determined as follows:

λi = 1 − (i/m)

for i = 1, . . . , m andλ1 = 1. Hence, theλi coefficient is mainly utilized for decomposing a MOP into a set of

scalar subproblems by adding different weights to the objectives. In this paper, we have also given a problem-specific

meaning to this parameter. Considering theλi weight coefficient of a subproblemi, we can predict the objective

preference of a particular design and therefore, its position in the objective space, e.g. Figure 1(b). Thereinafter,

appropriate scalar strategies can be employed to optimize it accordingly. Note that, this beneficial procedure cannot

be utilized by any non-decompositional MOEA framework.
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3.2. MOEA/D general framework

A general MOEA/D approach usually proceeds as in Algorithm 3.

Algorithm 3 The MOEA/D general framework
Input: • network parameters (A, N , E, Rs, Pmax);

• m : population size and number of subproblems;

• T : neighborhood size;

• uniform spread of weight vectors(λ1, 1 − λ1), ..., (λm, 1 − λm);

• the maximum number of generations,genmax;

Output: the external population,EP .

Step 0-Setup: SetEP := ∅; gen := 0; IPgen := ∅;

Step 1-Initialization: Uniformly randomly generate an initial internal population IP0 = {X1, · · · , Xm};

Step 2: For i = 1, . . . m do

Step 2.1-Genetic Operators:Generate a new solutionY using the genetic operators.

Step 2.2-Repair heuristic: Apply a problem-specific repair heuristic onY to produceZ.

Step 2.3-Update Populations:UseZ to updateIPgen, EP and theT closest neighbor solutions ofZ.

Step 3-Stopping criterion: If stopping criterion is satisfied, i.e.gen = genmax, then stop and outputEP , otherwisegen =
gen + 1, go to Step 2.

The following remarks are related to the MOEA/D framework :

• The internal populationIPgen of sizem keeps the best solution found so far for each subproblem.

• SolutionY is generated by using a selection operator (which will be detailed in Subsection 3.4.1) to choose two

parent solutions from theIPgen, e.g.Pr1, P r2, a crossover operator (which will be detailed in Subsection3.4.2)

to produce a new solution fromPr1, P r2 and a mutation operator (which will be detailed in Subsection 3.4.3)

to modify the new solutionY . SolutionZ is produced by using a repair method onY .

• The T closest neighbor solutions ofZ are the solutions of theT closest subproblems ofi in terms of their

weights{λ1, · · · , λm}. This is commonly known as theT neighborhood of subproblemi.

• The external populationEP stores all the non-dominated solutions found so far during the search.

In the following the MOEA/D-based, DPAP-specific operatorsare presented.

3.3. Initialization

In Step 1 of MOEA/D, we adopt a random method to generatem solutions for the initial internal population (i.e

IP0). Namely, a solutionY is initiated by uniformly randomly generatingN sensor locations(xj , yj) ∈ A. Solution

Y is then ordered toX using Algorithm 2. EachX is then added inIP0.

3.4. Genetic Operators

In thei-th pass of the loop in Step 2 of the MOEA/D, the genetic operators generate a new solution in Step 2.1.
10



3.4.1. Selection operator

The first genetic operator in Step 2.1 is the selection. Selection is responsible for emulating the survival of the

fittest concept and to choose promising solutions from the current population, known as parents, to be included for

offspring reproduction in the next generation. In this paper, we propose aM -tournament selection operator (denoted

as M -tourS) that combines the mating restriction considered during selection in [35] and a standard tournament

selection [25].M -tourS, which proceeds as in Algorithm 4, mainly relies on one of the core ideas of MOEA/D. That

is, two neighbor solutions in the weight space (i.e. with respect to the Euclidean distance of their weights{λ1, ..., λm})

should be similar to each other in the decision space (pleaserefer to [35] for more details).

Algorithm 4 TheM -tournament selection operator (M -tourS) for each subproblemi
Input : A population of solutions,IPgen;

Output: Two parent chromosomes,Pr1, P r2;

Step 1: Select the solutionsX ∈ IPgen of theM closest subproblems ofi to compete in the tournament;

Step 2: Evaluate each solutionX of the tournament in terms ofgi(X, λi);

Step 3: Find the best two solutions of the tournament, set them asPr1, P r2 and stop;

Hereupon, the main differences of the proposed operator compared to the standard tournament selection opera-

tor [25] (denoted as tourS) and the selection operator suggested by [35] (denoted asT -randomS) are the following:

• In Step 1, the solutions selected to compete in a subproblemi’s tournament are the solutions of theM closest

subproblems ofi in IPgen, in terms of the Euclidean distance of their weights{λ1, · · · , λm}, which are called

X i’s neighbors, instead of:

– randomly selectingM solutions fromIPgen to compete in the tournament as in [25], having a higher

probability of providing poor offspring for a particular subproblemi.

– randomly selecting solutions from theT closest subproblems ofi, as in [35], without competing in a

tournament.

• In Steps 2 and 3,X i’s neighbors, e.g.Xj andXk, are competing ini’s tournament in terms ofgi(X, λi),

ignoring their ownλj andλk, their Pareto domination and/or ranking. In this way, more selection pressure is

provided towards the optimal point of each particulari for better exploitation.

Remark 1: the optimization of a network designX i, should mainly acquire good topological information (i.e.

efficient sensor locations and transmit power levels) from aneighbor network designXj ; instead of a network

designXm which is far away in the weight space (even ifXm is a non-dominated solution). This is due to the

highly non-linear multi-hop nature of WSNs. A tiny change inthe topology may lead to a big change on the

objective values, because of the connectivity and the exponential relationship between the sensors transmission

distance and energy consumption. According to Subsection 2.3, the subproblems of areaa prefer dense network
11



designs comprised of sensors located close toH with low transmit power levels. In contrast, subproblems in

areac prefer spread network designs comprised of sensors spread along the sensing field with high transmit

power levels. Thus, it should be preferable to increase the selection pressure, initiate tournaments composed of

neighbor solutions and select the best for mating, decreasing the probability of generating poor offspring.

Remark 2: The persistent selection of the best solutions in the neighborhood for parenthood might also have

some undesirable effects such as premature convergence, i.e. force the evolutionary search to get trapped in

local optima and have a negative impact on the diversity of the population. These cases are usually alleviated

by the mutation operator (which will be detailed in Subsection 3.4.3).

The two selected parent solutionsPr1 andPr2 are then forwarded for recombination to the crossover operator.

3.4.2. Crossover operator

In Step 2.1 (Algorithm 3), the crossover combines the two parentsPr1 andPr2 to generate a new solution-the

offspring denoted asO, with a probability raterc. In this paper, we propose an adaptive crossover operator (denoted

asaX) that probabilistically controls two crossover strategies, each favoring different areas of the objective space.

Initially, the window crossover is designed in which the control parameters (behaviors) change dynamically from

subproblem to subproblem based on instant requirements. Todo so, it determines a “window” of size:

wi := N + N × (1 − λi), (4)

to select promising genetic material from each parent and direct the search into promising areas of the search space

for each particulari. The window crossover strategy proceeds as in Algorithm 5,

Algorithm 5 Window crossover for a subproblemi
Input: Two solutionsPr1 andPr2;

Output: A solutionO;

Step 0: SetO = ∅; U = Pr1 ∪ Pr2;

Step 1: Order solutionU by using Algorithm 2;

Step 2: Uniformly randomly generate an integerj from {1, 2, . . . [wi]}, wherewi is defined as in Equation 4;

Step 3 If there exists a(xj , yj) in U = {(x1, y1), (x2, y2), . . . , (x2N , y2N )} then

Step 3.1: Delete(xj , yj) from U and add it inO;

Step 3.2: If the size ofO is notN then goto Step 2;

otherwisestop and outputO;

• The merged solutionU is of size2N .

• Whenλi is large andL(X) favorsCv(X), the window is small such that the sensor locations that willbe added

in O are as close toH as possible with low transmit power levels to provide highernetwork lifetime.

12



• Whenλi decreases andCv(X) starts favoringL(X), wi gradually increases to give the chance to the sensor

locations which are spread inA to be added inO and therefore to provide better network coverage.

• Note that, the window always start at position 1 of solutionX to always include the sensor locations of the

“dense” part of the network (i.e. close toH , see Figure 2) and therefore to maintain the connectivity asthe

sensor locations spread in the topology.

Figure 3(a) shows a crossover operation for the extreme subproblem1 with λ1 = 1 and a minimumw1 = N . The

sensor locations which are closer toH from bothPr1 andPr2 are added in offspringO, giving a new dense network

design. Figure 3(b) shows a crossover operation for the other extreme subproblemm with λm = 1 and maximum

wm = 2×N . Sensor locations are randomly selected from bothPr1 andPr2 and added in offspringO giving a new

spread network design. Thus, the window strategy should be capable of providing offspring solutions in all areas of

the objective space in Figure 1(b).

(a) Window crossover for subproblem 1 (b) Window crossover for subproblemm

Figure 3: Examples on the problem-specific window crossoveroperator

Remark 1: The window crossover on its own, however, may have some undesirable effects for low weights

(e.gλm) and particularly for areac of the objective space, generating poor offspring. More specifically, when

λi → 0 thenwi → 2 × N , which basically drives the crossover operation into a uniform random selection of

sensor locations from the merged parent setU . In that case, there is a high probability of selecting locations

which are too close to each other, resulting in high sensing range overlaps and low network coverage. This is

not beneficial for the particular subproblems and consequently for offspring reproduction of network designs

that require high coverage quality.

To overcome this undesirable effect, a clustering crossover is designed, which aims at obtaining network topologies

of high coverage. The clustering crossover proceeds as in Algorithm 6.

13



Algorithm 6 Clustering crossover strategy for a subproblemi

Input: Two solutionsPr1 andPr2;

Output: A solutionO;

Step 0: SetO = Pr1 ∪ Pr2; d′ = dc;

Step 1: Order infeasible solutionO = {(x1, y1), . . . , (x2N , y2N )} by using Algorithm 2;

Step 2: For j = 1 to 2N

While (xj , yj) ∈ O and∃(xk, yk) ∈ O|djk ≤ d′ do;

Step 2.1: Uniformly randomly delete either location(xj , yj) or (xk, yk) from O;

Step 2.2: If the size ofO is equal toN then stop and outputO;

End while

Step 3: Setd′ = d′ + dc and goto Step 2;

• Initially, solution O is of size2N . This solution is infeasible sinceN is the maximum number of locations

allowed in each solution. Each sensorj at location(xj , yj) ∈ O represents a cluster, havingd′ as the minimum

Euclidean distance measure between each cluster, which is initially set as the distancedc between the centers

of two adjacent diagonal grids in areaA.

• In Step 2, two clusters centered at locations(xj , yj) and(xk, yk) are merged ifdjk ≤ d′. In that case, either

location(xj , yj) or (xk, yk) is deleted fromO. This continues untilN locations remain inO.

• When Step 3 is reached, solutionO is still infeasible and there are no more locations withdjk ≤ d′. Thus,

increase the Euclidean distance measured′ = d′ + dc to further spread the locations in the solution.

Remark 2: This approach benefits the coverage objective and particularly the solutions of the subproblems

with low weights in area c, having less probability to createa poor offspring than the window crossover.

Remark 3: In contrast, it might provide a poor lifetime objective, since the sensors should be assigned high

transmit power levels to support the spread-like deployment directed by the clustering-based crossover.

Algorithm 7 Adaptive crossover operator for each subproblemi

Input: Two solutionsPr1 andPr2;

Output: A solutionO;

Step 1:

Set δ =

8<: 1 if λi ≥ 0.5
λi + 0.1 if 0.3 < λi < 0.5
0 otherwise

(5)

Step 2: Uniformly randomly generate a numberrand from [0,1].

Step 3:

Apply

�
Algorithm 5-window to generate O if rand < δ

Algorithm 6-clustering to generate O otherwise
(6)
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The combination of the window and the clustering crossoverscan be a promising example of a probabilistic

mixture or an adaptive crossover operator for DPAP, as outlined in Algorithm 7. In this kind of crossovers, different

mechanisms are adopted with a probabilityδ for producing a new solution, whereδ = λi means that two crossover

strategies are almost equally applied in each generation. In this paper, we suggest aδ probability such that the window

crossover is applied with highest probability in areasa andb and the clustering in areac (considering Remarks 1-3).

3.4.3. Mutation operator

The last operator in Step 2.1 of MOEA/D (Algorithm 3 in Subsection 3.2) is the mutation, which is responsible for

maintaining the diversity of the population by modifying the locations of a solutionO with arm probability. However,

the choice of the new location should be carefully determined, since an improper choice may damage all the preceding

actions of the problem-specific selection and crossover operators. For example, if the mutation operator modifies a

sensor location(xj , yj) without considering the subproblem’s objective preference might result in:

• a disconnected sensor, which is undesirable for subproblems that favor a high coverage.

• sensors with highPj , which is undesirable for subproblems that favor a high lifetime.

• partition of the network, since the deletion of a sensor in multi-hop communication may disconnect other parts

of the network and might create a bottleneck that negativelyinfluences the network lifetime and/or uncover any

previously covered region.

Thus, it is considered reasonable to allow the mutation operator to randomly modify the locations of a solution

with anrm probability, but restricting the modification to close to the current value or at least to bias the probability

distribution in its favor. This may maintain the diversity of the population without destructive behavior or unneces-

sary searches. Thus, we propose an adaptive mutation operator that is composed of two problem-specific mutation

strategies, namely the local and global mutations that favor different areas of the objective space, respectively. The

adaptive mutation operator (aM) proceeds as in Algorithm 8.

• In Step 2, ifλi favors the lifetime objective (i.e. areaa and the beginning of areab) then a location(xj , yj) is

modified “locally”, i.e.

Uniformly randomly generatex′

j ∈ [xj − dc, xj + dc]

andy′

j ∈ [yj − dc, yj + dc],
(7)

to provide a minimum shift from its current position, wheredc is the distance between the centers of two

adjacent diagonal grids, seeking to:

– either, slightly increaseCv(X) in the sake of increasingPj , when the shift is backward with respect toH ,

– or, benefit the lifetime objective by decreasing the sensorsPj .
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Algorithm 8 Adaptive mutation operator for each subproblemi

Input: A solutionO.

Output: A mutated solutionY .

Step 0: Setrm;

Step 1: Order solutionO by using Algorithm 2;

If λi > 0.5 then

Step 2: For j = 1 to N do

Step 2.1: Generate a uniform random numberrand ∈ [0, 1];

Step 2.2: If rand ≤ rm then

Calculate(x′

j , y
′

j) using Equation (7). Replace(xj, yj) ∈ O with (x′

j , y
′

j);

Else

Step 3: For j = 1 to N do

Step 3.1: Generate a uniform random numberrand ∈ [0, 1];

Step 3.2: If rand ≤ rm then

CalculateA′ and(x′

j , y
′

j) using Equation (8). Replace(xj , yj) ∈ O with (x′

j , y
′

j);

End if

Step 4: OutputY = O;

• In Step 3, ifλi favors the coverage objective (i.e. the end of areab and areac) then a location(xj , yj) is

modified “globally”, i.e. a new location(x′

j , y
′

j) is generated in a sub-areaA′ ⊆ A which is defined as follows:

xmin = (xH − |xH − xj |) − Rmax, ymin = (yH − |yH − yj|) − Rmax;

xmax = (xH + |xH − xj |) + Rmax, ymax = (yH + |yH − yj |) + Rmax;

x′ = xmax − xmin, y′ = xmax − xmin;

A′ ⊆ A is a 2-D area with lengthx′ and widthy′.

Uniformly randomly generate(x′

j , y
′

j) ∈ A′;

(8)

wherex′ andy′ are the width and height ofA′, respectively. Note that whenλ → 0 then it should be that

A′ → A.

The modified offspring is then forwarded to the repair operator.

3.5. Repair Operator

In Step 2.2 of MOEA/D (Algorithm 3), a local heuristic checksa solutionY if:

Case #1: there is a location(xj , yj) ∈ Y at the same location asH (i.e. (xH , yH));

Case #2: a location(xj , yj) ∈ Y is the same as another location(xk, yk) ∈ Y ;

In both cases, the local heuristic repairs the solutionY by uniformly randomly generating a new location(x′

j , y
′

j) ∈ A,

such that(x′

j , y
′

j) does not fall in either Case #1 or Case #2. The repair heuristic increases the sensors’ individual
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utilization. Since, in both Cases #1 or #2 the sensors cannotbenefit either the lifetime objective by acting, for example,

as relays to increase the load balancing and/or increase themultiple short hops towardsH , or the coverage objective

by covering any uncovered regions in the topology. SolutionZ is then used to update the populations of MOEA/D.

3.6. Update of populations

In Step 2.3, the populations (defined in Subsection 3.2) of MOEA/D are updated for each solutionZi as follows:

1 The (IPgen) update phase. Ifgi(Zi|λi) > gi(X i|λi) thenIPgen ∪ {Zi} andIPgen/{X i}, otherwiseX i

remains inIPgen.

2 The neighborhood (defined in Subsection 3.2) update phase.The new solutionZi is compared with itsT closest

Xj ∈ IPgen neighbor solutions. Ifgj(Zi|λj) > gj(Xj |λj) then,IPgen ∪ {Zi} andIPgen/{Xj}, otherwise,

Xj remains inIPgen, wherej = 1, . . . , T .

3 The(EP ) update phase.EP = EP ∪ {Zi} if Zi is not dominated by any solutionXj ∈ EP , andEP =

EP/{Xj} if Zi ≻ Xj , for all Xj ∈ EP .

3.7. Termination criterion

At the end of each generation the termination criterion (themaximum number of generations,genmax) is checked

to decide whether the search should stop.

4. Experimental setup

In this paper, we study four network test instances (Table 1), which represent a broad class of the large-scale and

spread DPAP WSN topologies. The network test instances are designed following our analysis in Subsection 2.3.

Table 1: Network Instances
Network Instances Area size, A (m2) # of sensors, N Density (N/A)

NIn1 1 × 106 13 0.13 × 10−4

NIn2 4 × 106 52 0.13 × 10−4

NIn3 1 × 106 50 0.5 × 10−4

NIn4 4 × 106 200 0.5 × 10−4

In DPAP, there are too many possible parameter settings to try them all. Hence, in our studies we have adopted the

widely used Factorial design [40]. Factorial design investigates all possible combinations of the levels of some factors

in a complete replication of an experiment. Factorsk are the parameters that affect the experiment and levels (e.g. 2,

a High and a Low level) are the factors’ values. In cases wherethe experimenter can reasonably assume that certain

interactions between the factors are negligible then, information on the main effects may be obtained by running only

a fraction of the complete factorial experiment. This is known as the 2-level Fractional Factorial Design, denoted as

2k−ρ, whereρ are the factors which are not considered as a main effect on the experiment and their value is decided

based on the interactions of the remainingk−ρ factors. All algorithm factors and their levels are presented in Table 2.
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Table 2: Parameter settings: algorithm factors with low\high levels
Algorithm Factors Low High

Crossover rate,rc (subsection 3.4.2) 0.1 1
Mutation rate,rm (subsection 3.4.3) 0.1 0.5

Max # of generations,genmax(subsection 3.7) 100 250
Pop. size & # of subproblems,m (subsection 3.2) 120 200

Tournament size,M (subsection 3.4.1) 5 10
Neighborhood size,T (subsection 3.2) 2 10

In all simulation studies, the following network parameters are set [41], [42]:Rs/Rmax = 100/200, E = 5J ,

dmin = 100m, a = 2, amp = 100pJ/bit/m2 and square-grids of side length10m. Moreover, the network lifetime

and the network coverage are evaluated as in Subsection 2.1 and the lifetime objective is normalized by theL(XA)

defined in Subsection 2.3. All algorithms were coded in Java programming language and run on an Intel/circledR

Pentium 4 3.2 GHz Windows XP server with 1.5 GB RAM.

5. Performance Metrics

This section briefly describes the performance metrics usedfor comparing sets of solutions. In MOO, practitioners

are usually interested in the quality of the approximation to the Pareto set that an algorithm is able to generate. In

addition, a fast and efficient approach is also desirable. A single metric, however, cannot provide adequate results for

the strength of an MOEA in all tasks. Therefore, a set of performance metrics are adopted as follows.

The∆-metric, proposed by Deb et al. [29], measures the extent of spread achieved among the obtained solutions,

as follows:

∆ =
df + dl +

∑K
j=i |dj − d|

df + dl + (K − 1)d
,

wheredf anddl are the distances between the extreme solutionsX1 andXm and the optimal solutionXA andXB,

respectively. A low∆(A) implies a uniform spread of the non-dominated network designs in the objective space by

algorithm A, giving a variety of network design choices to the WSN decision maker.

A straightforward comparison metric between two sets of non-dominated solutions is the C-metric [29]. The

C(A, B) metric, which is usually considered as a MOEA’s quality metric, evaluates the ratio of the non-dominated

solutions in an algorithmA’s Pareto Front dominated by the non-dominated solutions inan algorithmB’s PF, divided

by the total number of nondominated solutions obtained by algorithm A, i.e.NDS(A). Hence, letEPA be the external

population of an algorithm A andEPB be the external population of an algorithm B. Then,

C(A, B) =
|EPA − {∈ EPA|∃y ∈ EPB : y ≻ x}|

NDS(A)
.

The smaller theC(A, B) is, the better A is. Note thatC(A, B) 6= C(B, A).

A common metric, usually considered in cases of real-life discrete optimization problems [30],[34], such as DPAP,
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is the number of Non-Dominated Solutions (NDS) obtained by an algorithm A, i.e.

NDS(A) = |EPA|.

In DPAP, it is very difficult to obtain many different NDSs. Hence, the higher the NDS(A) is, the better A is, in order

to provide an adequate number of choices. However, NDS should be considered in combination with other metrics,

(e.g.∆ andC metrics), since it is usually desirable to have a high numberof NDS, when the set of solutions is of high

quality and spread in the objective space. In contrast, and usually in cases of continuous optimization [35], when the

number of NDS is too high, the decision making procedure becomes more complicated and more time consuming.

Besides, an efficient algorithm should obtain high quality solutions within an acceptable CPU time. Thus, the

combination of NDS with the C and∆ metrics and the CPU time should be an adequate set of metrics to judge

the effectiveness and efficiency of the concerned algorithms. In the following experimental study, statistical tests

are carried out to check the significant difference between the average results obtained by each algorithm for each

performance metric with a 95% confidence. A one-way ANOVA test is carried out when a group of algorithms is

compared and the two-sample t-test when two algorithms are compared. Each test returns anh on the null hypothesis

that the average results are not significantly different against the alternative that the average results are significantly

different. Theh = + indicates a rejection on the null hypothesis andh = − indicates a failure to reject the null

hypothesis. Note that, each algorithm is executed around 20times in each study.

6. Experimental results and discussion

The goals of this section are: 1) to study the effect of the proposed problem-specific evolutionary operators on the

MOEA/D, with respect to several widely used operators, under various parameter settings. 2) To test the strength of

the problem-specific MOEA/D against the NSGA-II in several network instances.

6.1. The effect of the evolutionary operators

Table 3: Evolutionary components combinations
Algorithm Representation/Ordering Selection Crossover Mutation

Alg1 rOr tourS 1X rM
Alg2 xyOr tourS 1X rM
Alg3 rOr tourS 2X rM
Alg4 xyOr tourS 2X rM
Alg5 dtsOr tourS aX rM
Alg6 xyOr M -tourS 2X rM
Alg7 dtsOr T -randomS aX rM
Alg8 dtsOr M -tourS aX rM
Alg9 dtsOr M -tourS aX aM

In this subsection, we study the effect of the proposed evolutionary operators (i.e. dtsOr,M -tourS, aX and aM)

and evaluate their impact on MOEA/D. To do so, the following standard operators were used for comparison purposes:
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Ordering: Two techniques were designed and compared with the proposeddense-to-spread ordering (dtsOr) defined

in Subsection 2.4:

(I) Random ordering (rOr): the solution remains in a random structure during the search.

(II) x-y axis ordering (xyOr): each solution is ordered in anincreasing order of the locationsx-coordinates. In cases

where thex-coordinates are the same then they-coordinates are considered.

Selection: The standard tournament selection [25] (denoted as tourS) and theT -random selection (denoted asT -

randomS) proposed by [35] were compared with the proposedM -tournament selection operator (M -tourS) defined

in Subsubsection 3.4.1:

(I) Standard tournament selection (tourS): initiate a tournament by uniformly randomly selectingM solutions from

the population. The two best solutions (in terms of Pareto dominance [17]), are selected for parenthood [25].

(II) The T -random selection (T -randomS) proposed by [35]: for each subproblemi, two solutions are randomly

selected from its neighborhood of sizeT (the neighborhood is defined in Subsection 3.2).

Crossover Operators:Two standard crossover operators [25] were compared with the proposed adaptive crossover

operator (aX) defined in Subsubsection 3.4.2:

(I) One-point crossover (1X): suppose two parent solutions(e.g. Pr1, P r2) of sizeN . A crossover point is ran-

domly selected from 1 to N-1. The pieces of the parents are exchanged to produce two offspring, e.g.O1, O2.

(II) Two-point crossover operator (2X): two crossover points are randomly selected from numbers 1 to N-1. The

pieces of the parents are exchanged to produce two offspring, e.g. O1, O2. The two-point crossover was

originally proposed for MOEA/D in [35].

Note that, the1X and2X usually produce two offspring in each recombination. In this paper, one offspringO is

uniformly randomly chosen from{O1, O2} to keep the number of function evaluations the same, for fairness.

Mutation Operators: A standard (random) mutation operator was compared with theproposed adaptive Mutation

operator (aM), defined in Subsubsection 3.4.3:

(I) Random Mutation (rM): a location(xi, yi) is modified by uniformly randomly generating a new location

(x′

i, y
′

i) ∈ A. A standard (random) mutation is originally proposed for MOEA/D in [35].

This subsection involves nine representative MOEA/D versions, as summarized in Table 3. Each algorithm is

composed of different evolutionary operators. The algorithms are studied in three tests in NIn1. In each test, a26−3

fractional factorial design of the parameter settings (Table 2) is adopted.
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Test 1 - The effect of the adaptive crossover (aX) with the dense to spread ordering (dtsOr)

Test 1 studies the effect of the adaptive crossover (aX) defined in Subsubsection 3.4.2, with the dense to spread

ordering (dtsOr) defined in Subsection 2.4. Thus, the crossover raterc, genmax andm (wheregenmax× m is the

total number of function evaluations performed by each algorithm in each run) are considered in the basic design as

the main effects of test 1 (Table 4). Then, Algorithms 1 to 5 ofTable 3 are compared on NIn1.

Table 4: Algorithm parameter settings of test 1, ParSetting1-8
Algorithms: Alg1-5

Basic Design
Settings rc genmax m rm M T

ParSetting1 0.1 100 120 0.5 10 10
ParSetting2 1 100 120 0.1 5 10
ParSetting3 0.1 250 120 0.1 10 2
ParSetting4 1 250 120 0.5 5 2
ParSetting5 0.1 100 200 0.5 5 2
ParSetting6 1 100 200 0.1 10 2
ParSetting7 0.1 250 200 0.1 5 10
ParSetting8 1 250 200 0.5 10 10

Table 5: The statistical results of test 1 for ParSetting1-8
Metric Alg1 Alg2 Alg3 Alg4 Alg5 ANOVA

∆: 0.9383 1.0131 0.9069 0.9208 0.9081 +
CPU time: 0.9100 1.4366 0.8787 1.4241 0.7645 -

#NDS: 9.5000 8.7500 9.2500 7.7500 12.3750 -

C-metric: Alg(1,2) Alg(2,1) Alg(3,4) Alg(4,3) Alg(2,4) Alg(4,2) Alg(4,5) Alg(5,4)
Average: 0.6749 0.0235 0.6158 0.0000 0.4750 0.2556 0.2899 0.4996

t-test: + + + +

From the results of test 1, summarized in Table 5, the following conclusions are drawn:

• Alg3 obtains the best∆ = 0.9069 performance with Alg5 being slightly worse with∆ = 0.9081. There is

a significant difference between the results in terms of∆-metric. Alg5 is the fastest method, with respect to

Alg1-4, since it requires 0.7645hrs in average, to obtain the highest number ofNDS = 12.3750. Both the

CPU time andNDS are not significantly different from the results obtained bythe other MOEA/Ds.

• the comparison in terms of theC-metric shows that the xyOr encoding favors the 1X crossoverin Alg2, which

outperforms Alg1. In contrast, the rOr is more effective forthe 2X crossover, since Alg4 outperforms Alg3.

Thereinafter, the comparison between Alg2 and Alg4 shows the superiority of 2X crossover with rOr, which

also outperforms Alg5. In all cases, the quality differencebetween the MOEA/Ds is significant.

The reason that Alg5 (composed of the proposed aX and dtsOr encoding) performs poorly in test 1 is mentioned

in Subsubsection 3.4.1, Remark 1. That is, the generic tournament selection operatortourS, used in test 1, does not
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provide adequate selection pressure (i.e. does not select the best parents in the population). This has a negative impact

on the proposed aX with dtsOr, resulting in poor offspring reproduction. Therefore, in the next test, the proposed

M -tourS operator is adopted to improve Alg5’s performance.

Test 2 - The effect of theM -tournament selection operator (M -tourS):

Table 6: Algorithm parameter settings of test 2, ParSetting9-16
Algorithms: Alg4-8

Basic Design
Settings M genmax m rm rc T

ParSetting9 5 100 120 0.5 1 10
ParSetting10 10 100 120 0.1 0.1 10
ParSetting11 5 250 120 0.1 1 2
ParSetting12 10 250 120 0.5 0.1 2
ParSetting13 5 100 200 0.5 0.1 2
ParSetting14 10 100 200 0.1 1 2
ParSetting15 5 250 200 0.1 0.1 10
ParSetting16 10 250 200 0.5 1 10

Table 7: The statistical results of test 2 for ParSetting9-16
Metric Alg4 Alg5 Alg6 Alg7 Alg8 ANOVA

∆: 0.9507 0.9209 0.9762 0.9088 0.9309 -
CPUtime: 0.7244 0.4161 0.7700 0.3705 0.7542 -

NDS: 9.1250 11.2500 12.8750 15.8750 13.5000 -

C-metric: Alg(4,6) Alg(6,4) Alg(5,7) Alg(7,5) Alg(4,7) Alg(7,4) Alg(4,8) Alg(8,4)
Average: 0.2125 0.6274 0.6734 0.2135 0.2798 0.3543 0.3820 0.3645

t-test: + + - -

In this test, we study the effect of the proposed selection operator (i.e.M -tourS), defined in Subsubsection 3.4.1.

The experimental design of test 2 is presented in Table 6, in which M replacesrc sinceM is a selection operator

parameter. Alg7 extends Alg5 by replacing the standard selection tourS with the selection operator proposed by [35],

i.e. T -randomS. Alg8 extends Alg5 by replacing thetourS with the proposed selection operator (M -tourS) to add

network knowledge in this particular operator of MOEA/D andincrease the selection pressure. Alg6 extends Alg4

(which is currently the algorithm with the highest quality on the PF according to test 1) by also replacingtourS with

the proposedM -tourS. Table 7 summarizes the results of test 2. The following conclusions are drawn:

• by increasing the selection pressure of Alg4, i.e. Alg6, thealgorithm becomes slightly slower, obtaining lower

diversity and significantly lower quality solutions in the PF. The solutions obtained by Alg4 dominate 62% of

those obtained by Alg6. A slight increase is shown in the number of NDS.

• In contrast, Alg5 is outperformed by its extended version Alg7, giving a significant difference in quality. The

performance of Alg7 increases with respect to Alg4 as well, in terms of∆, number of NDS and CPU time, at
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the cost of a lower quality of solutions in the PF (i.e. 35% of its solutions are dominated by Alg4). When the

selection pressure is increased in Alg8, the MOEA/D becomesslower and slightly worse than its predecessor

Alg5, in terms of diversity. However, it provides a higher number of NDS and the highest quality solutions

obtained so far, with respect to Alg1-7.

Hence, the increase in the selection pressure provided byM -tourS, improves the performance of MOEA/D in terms

of the NDS and the quality of solutions in the PF, at the cost ofa slightly lower diversity (see section 3.4.1, Remark

2). To avoid the loss of diversity, the proposed adaptive mutation operator is further adopted in Test 3.

Test 3 - The effect of the adaptive mutation operator (aM):

Table 8: Algorithm parameter settings of test 3, ParSetting17-24
Algorithms: Alg7-9

Basic Design
Settings rm genmax m M rc T

ParSetting17 0.1 100 120 10 1 10
ParSetting18 0.5 100 120 5 0.1 10
ParSetting19 0.1 250 120 5 1 2
ParSetting20 0.5 250 120 10 0.1 2
ParSetting21 0.1 100 200 10 0.1 2
ParSetting22 0.5 100 200 5 1 2
ParSetting23 0.1 250 200 5 0.1 10
ParSetting24 0.5 250 200 10 1 10

Table 9: The statistical results of test 3 for ParSetting17-24
Metric Alg7 Alg8 Alg9 ANOVA

∆: 0.9135 0.9362 0.9010 -
CPU time: 0.3179 0.4975 0.4940 -

NDS: 15.8750 14.0000 14.6250 -

C metric: Alg(7,9) Alg(9,7) Alg(8,9) Alg(9,8)
Average: 0.5289 0.2736 0.7061 0.2187

t-test: + +

Test 3 studies the effect of the proposed adaptive mutation operator (aM), defined in Subsubsection 3.4.3. The

experimental design of test 3 is presented in Table 4, where the mutation raterm replacesM . In this test, Alg9

extends Alg8 by introducing the proposed aM to add network knowledge in this particular evolutionary component

of MOEA/D and increase the diversity of the PF. The statistical results of test 3, summarized in Table 9, show the

effectiveness of the proposed mutation operator, as follows:

• Alg9 performs better in terms of diversity and quality of solutions in the PF, with respect to both its predecessors

Alg7 and Alg8. Besides, Alg9 is faster than Alg8 with a higheraverage number of NDS. However, only the

difference in quality (i.e.C-metric) is significant.
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In conclusion, the proposed evolutionary operators compose an efficient problem-specific MOEA/D, providing a

large, diverse set of high quality network designs within anacceptable CPU time. The superiority of the proposed

MOEA/D (i.e. Alg9) with respect to the two conventional MOEA/Ds (i.e. Alg1 and Alg3) is illustrated in Figure 4.

Note that in all cases the lines between the points are just for better visualization and do not necessarily imply the

presence of Pareto optimal solutions.
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Figure 4: The DPAP-specific MOEA/D (i.e. Alg9) vs. general purpose MOEA/Ds (i.e. Alg1 and Alg3), NIn1

6.2. Further discussion on the adaptive crossover operator

In this subsection, we verify the effectiveness of the proposed adaptive crossover operator. This is empirically

shown by comparing the MOEA/D with the two crossover strategies individually and probabilistically (i.e. adaptive

crossover operator) for the parameter settings of Table 4 inNIn1. The results in Figure 5 clearly show the preference

of each problem-specific crossover strategy on different subproblems. The window crossover is more flexible and

generates non-dominated solutions across, almost, the whole range of the PF. However, the drawback mentioned in

Subsubsection 3.4.2 (Remark 1) is clearly demonstrated in all cases. That is, the window crossover produces poor

offspring when theλ parameter is low and consequently, when the subproblems desire a high coverage quality. In

other words, the window crossover lacks obtaining high quality solution(s) in areac and to approximate solutionXB.

On the other hand, the clustering crossover is dedicated to providing solutions in the aforementioned areas of the

PF, giving non-dominated solutions of higher coverage quality in almost all test instances, approximating the optimal

solutionXB (Subsubsection 3.4.2, Remark 2). However, it lacks obtaining high quality solutions for the rest of

the PF. This is due to the high transmission distances and consequently the high transmit power levels assigned to

the sensors through the clustering crossover (Subsubsection 3.4.2, Remark 3). Thereinafter, the adaptability of the
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Figure 5: MOEA/D with the window, the clustering and the adaptive (aX) crossovers in ParSetting1-8, NIn1

proposed crossover operator is demonstrated. The aX takes advantage of both the window and the clustering crossover

strategies and provides a diverse set of high quality solutions across the whole range of the objective space.

6.3. Comparison of MOEAs

In this subsection, we study the efficiency and effectiveness of the proposed problem-specific MOEA/D on DPAP.

To do so, we have compared the proposed method with a state of the art in MOEAs based on Pareto dominance.

Namely, the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [29]. NSGA-II maintains a populationIPgen

of sizem at each generationgen, for genmaxgenerations. NSGA-II adopts the evolutionary operators (i.e. selection,

crossover and mutation) for offspring reproduction as MOEA/D. The key characteristic of NSGA-II is that it uses a

fast non-dominated sorting and a crowded distance estimation for comparing the quality of different solutions during

selection and to update theIPgen and theEP . We refer interested readers to [29] for details. In this paper, NSGA-

II adopts the following non-decompositional operators that have shown promising performance in Subsection 6.1:

the x-y axis ordering (xyOr) (Ordering-II), the standard tournament selection (tourS) (Selection-I), the two-point

crossover (2X) (Crossover-II) and the random mutation (rM)(Mutation-I). For comparing the two MOEAs we have

adopted both visual and statistical comparison, through the performance metrics introduced in Section 5, in all network

test instances of Table 1. The parameter settings were fixed,following the experience we gained from the latter

experimental study:genmax = 250, m = 120, rc = 0.9, rm = 0.5 andM = 10. For MOEA/D, the number of

subproblems ism andT = 2. Note that it is difficult to select optimal parameter valuesand a set of experiments

cannot yield an insight that can be claimed in generality.

Figure 6 and Table 10 show the superiority of the proposed MOEA/D against the NSGA-II. MOEA/D performs
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Figure 6: MOEA/D vs. NSGA-II on NIn1-4, NIn1

Table 10: MOEA/D (MD) vs. NSGA-II (NG), NIn1-4
Metric: ∆(MD) ∆(NG) CPU(MD) CPU(NG) NDS(MD) NDS(NG) C(MD,NG) C(NG,MD)
NIn1: 0.9842 0.7417 0.2588 2.7466 10 8 0.1000 0.7500
NIn2: 0.9780 0.6535 2.2655 2.7451 21 10 0.1905 0.2000
NIn3: 0.6515 0.6852 1.3784 1.3300 23 17 0.0000 1.0000
NIn4: 0.7597 0.8235 37.5989 9.0934 21 21 0.0000 0.8571

t-test: - - - +

better than NSGA-II in terms of quality and number of NDS in all network instances and in terms of diversity in

dense network topologies. In network topologies with low density, NSGA-II provides a more uniform spread of

solutions. The PF obtained by MOEA/D, however, is much widerthan the one obtained by NSGA-II in all cases,

giving solutions in almost the whole area of the objective space. In contrast, NSGA-II lacks obtaining non-dominated

network designs in areac and obtains few designs in areab.The difference between the two algorithms in terms of

quality is significant. Note that, the CPU time required by the two approaches is not significantly different. Table 11

summarizes the lifetime and coverage of the extreme networkdesignsXA andXB, which are analytically measured

according to Subsection 2.3 for each network instance, and their approximation by the solutionsX1 andXm obtained

by each MOEA. The results show that MOEA/D approximates the extreme network designs more efficiently than

NSGA-II. Another conclusion that can be empirically drawn is that, MOEA/D is not sensitive on the WSN’s area size

or density giving similar results in each case. That is, MOEA/D obtains a similar approximation towards the extreme

solutionsXA andXB in terms of lifetime and coverage quality, for the same 10000m2 and 40000m2 area sizes with

different densities and for the same 0.0013 and 0.005 densities in different area sizes.

7. Conclusions and Future Research

In this paper, the DPAP in WSNs is formulated as a MOP and is decomposed into a set of scalar subproblems.

The subproblems are classified based on their objective preferences and tackled by MOEA/D using problem-specific

knowledge, simultaneously. A solution representation dedicated to DPAP and several DPAP-specific, MOEA/D-based

evolutionary operators are proposed. Namely, theM -tournament selection, the adaptive crossover and the adaptive

mutation operators, which are highly interrelated with each other and adapt to the needs and objective preferences of
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Table 11: Analytical extreme solutionsXA andXB and their approximation by the solutionsX1 andXm obtained by MOEA/D and NSGA-II
NIn Method L(XA\X1) Cv(XA\X1) L(XB\Xm) Cv(XB\Xm)

Analytical 1 0.16 0.00003 0.408
1 MOEA/D 1 0.1511 0.065 0.3956

NSGA-II 1 0.0974 0.25 0.1793

Analytical 1 0.04 7.69×10−5 0.3926
2 MOEA/D 1 0.027475 0.01 0.341525

NSGA-II 1 0.0272 0.125 0.05

Analytical 1 0.16 8 × 10−5 1
3 MOEA/D 1 0.1431 0.04 0.944

NSGA-II 1 0.1118 0.045 0.4221

Analytical 1 0.04 2×10−5 1
4 MOEA/D 1 0.0342 0.01 0.949575

NSGA-II 1 0.0262 0.04 0.131

each subproblem dynamically, during the evolution. Simulation results have shown the effectiveness of the proposed

EA operators on improving the performance of MOEA/D. The problem-specific MOEA/D has finally demonstrated

its superiority against NSGA-II on several network test instances. MOEA/D obtains a diverse set of high quality WSN

designs, without any prior knowledge on the objective preferences to facilitate the decision maker’s choice.

There is a number of avenues for further research. For example, it will be interesting to test the performance of

the proposed operators against more sophisticated EA operators, such as [43]. Moreover, the DPAPs in WSNs include

many features (e.g. small, massively dense topologies) andissues (e.g. connectivity), which are also important as

those in the proposed DPAP. Thus, various multiobjective DPAPs can be defined and tackled by problem-specific

MOEA/Ds, similarly to this work. In principle, MOEA/D can easily adopt local search techniques. Hence, designing

low-level problem-specific local heuristics, for further improving the performance of MOEA/D is also a future study.
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