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ABSTRACT
This paper investigates time-efficient implementations of atomic
read-write registers in message-passing systems where the number
of readers can be unbounded. In particular we study the case of a
single writer, multiple readers, andS servers, such that the writer,
any subset of the readers, and up tot servers may crash. A recent
result of Dutta et al. [3] shows how to obtainfast implementations
in which both reads and writes complete inone communication
round-trip, under the constraint that the number of readers is less
than S

t
− 2, wheret < S

2
. In that same paper the authors pose

a question of whether it is possible to relax the bound on readers,
and at what cost, ifsemifastimplementations are considered, i.e.,
implementations that have fast reads or fast writes.

This paper provides an answer to this question. It is shown that
one can obtain implementations where all writes are fast, i.e., in-
volving a single round-trip communication, and where reads com-
plete in one to two communication rounds under the assumption
that no more thant < S

2
servers crash. Simulated scenarios in-

cluded in this paper indicate that only a small fraction of reads re-
quire a second communication round. Interestingly the correctness
of the implementation does not depend on the number of concur-
rent readers in the system. The solution is obtained with the help of
non-uniquevirtual ids assigned to each reader, where the readers
sharing a virtual id form avirtual node. For the proposed definition
of semifast implementations it is shown that implementations sat-
isfying certain assumptions are semifast if and only if the number
of virtual ids in the system is less thanS

t
− 2. This result is proved

to be tight in terms of the required communication. It is shown that
only asingle completetwo-round read operation may be necessary
for each write operation. It is furthermore shown that no semifast
implementation exists for the multi-reader, multi-writer model.
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1. INTRODUCTION
Atomic (linearizable) read/write memory is one of the funda-

mental abstractions in distributed computing. Fault-tolerant im-
plementations of atomic objects in message-passing systems allow
processes to share information with precise consistency guarantees
in the presence of asynchrony and failures. A seminal implemen-
tation of atomic memory of Attiyaet al. [1] gives a single-writer,
multiple reader (SWMR) solution where each data object is repli-
cated atn message-passing nodes. In this solution memory access
operations are guaranteed to terminate as long as the number of
crashed nodes is less thann/2, i.e., the solution tolerates crashes
of any minority of the nodes. The write protocol involves a single
round-trip communication stage, while the read protocol involves
two round-trip stages, where the second stage essentially performs
the write of the value obtained in the first stage. Following this de-
velopment, a folklore belief developed that in messaging-passing
atomic memory implementations “atomic reads must write”. How-
ever, recent work by Duttaet al. [3] established that if the number
of readers is appropriately constrained with respect to the number
of replicas, then single communication round implementations of
reads are possible. Such an implementation given in [3] is called
fast. Furthermore it was shown that any implementation with a
larger set of readers cannot have only the single round-trip reads.
Thus when the number of readers can be large, it is interesting to
considersemifastimplementations where the writes involve a sin-
gle communication round and where the reads may involve one or
two rounds with the goal of having as many as possible single round
reads.

Background Details.The implementation of atomic SWMR
objects in [1] usesvalue-timestamppairs to impose a partial or-
der on read and write operations. To perform a write operation,
the writer increments its local timestamp and sends a message with
the value-timestamp pair to all processes. When a majority of pro-



cesses reply, the write completes. The process performing a read
operation sends out queries and waits for a majority of the pro-
cesses to reply with their value-timestamp pairs. When a majority
of the processes replies, the reader finds the highest timestamp and
sends the pair consisting of this timestamp and its associated value
to all processes. The read completes when the reader receives re-
sponses from a majority of processes. Although the value of the
read is established after the first communication round, skipping
the second round may lead to violations of atomicity when reads
are concurrent with a write.

Subsequent works extended the approach in [1] to multiple writ-
ers, each involving a two round-trip communication protocol, and
using quorums of replicas instead of majorities [8, 4]. A fully dy-
namic atomic memory implementation using reconfigurable quo-
rums is given in [7], where the sets of object replicas can arbitrarily
change over time as processes join and leave the system. When the
set of replicas is not being reconfigured, the read and write pro-
tocols involve two communication rounds. Retargetting this work
to ad-hoc mobile networks, Dolevet al. [2] formulated the Geo-
Quorums approach where replicas are implemented by stationary
focal pointsthat in turn are implemented by mobile nodes. Inter-
estingly, in this work some reads involve a single communication
round when it is confirmed that the previous write of the value ob-
tained by the read has already completed.

The implementation of atomic SWMR objects in [3] assumes
asynchronous message-passing systems with reliable channels.
Here read and write operations arefast, i.e., involve a single com-
munication round, but under the constraint thatR < S

t
− 2, where

S is the number of servers maintaining object replicas,R is the
number of readers, such that the writer, any subset of readers, and
up tot servers may crash. Note that for any numbert ≥ 1 of fail-
ures the number of readers must be strictly less than the number of
servers, and the number of readers is inversely proportional to the
number of server failures. A fast implementation cannot exist in
the case of multiple readers and multiple writers. For example, it is
shown that in the setting where 2 writers and 2 readers exist in the
system andt = 1, atomicity can be violated.

Our Contributions.Our goal is to develop atomic memory al-
gorithms where a large number of read and write operations are
fast, i.e., involving a single communication round. In particular,
we want to remove constraints on the number of readers while pre-
serving atomicity. We say that an atomic SWMR implementation
is semifastif write operations take a single communication round
and where read operations take one or two rounds. We show that
one can obtain semifast implementations with unbounded number
of readers, where in many cases reads take a single round. Our ap-
proach is based on forming groups of processes where each group
is given a unique virtual identifier. The algorithm is patterned af-
ter the general scheme of the algorithm in [3]. We show that for
each write operation at most one complete read operation returning
the written value may need to perform a second communication
round. Furthermore, our implementation enables non-trivial exe-
cutions where both reads and writes are fast, i.e., involve a single
communication round. We also provide simulation results for our
algorithm, and we consider semifast implementations for multiple
writers. More broadly, our contributions are as follows.

1. We define the notion of asemifastimplementation which
specifies which atomic reads are required to perform a sec-
ond communication round. In particular, for each write oper-
ation, onlyone completeread operation is allowed to perform
two communication rounds.

2. We provide a semifast implementation of an atomic

read/write object that supports arbitrarily many readers. To
accommodate arbitrarily many readers, we introduce the no-
tion of virtual identifiersand allow multiple readers to share
the same virtual identifier, thus forming groups of nodes that
we call virtual nodes. We base the determination of the
proper return value on the cardinality of the set of virtual
nodes maintained by the servers (this is similar to the algo-
rithm in [3] that uses the cardinality of the set of the readers
maintained by the servers to determine the return value) .
We prove the correctness (atomicity) of the new implemen-
tation. We note that our implementation is not a straight-
forward extension of [3]. The introduction of virtual nodes
raises new challenges such as ensuring consistency within
groups so that atomicity is not violated by processes sharing
the same virtual id, and proving the resulting implementation
correct.

3. We consider two families of algorithms, one that does not use
reader grouping mechanisms, the other that assumes group-
ing mechanisms such as our algorithm. For both we show
that there is no semifast atomic implementation ifS

t
− 2 or

more virtual identifiers (groups) exist in the system. Addi-
tionally it is shown that any semifast algorithm must inform
no less than3t+1 server processes during a second commu-
nication round.

4. We show that there does not exist semifast atomic imple-
mentations for multiple writers and multiple readers, even
for t = 1.

5. We simulated our SWMR implementation and we present
preliminary results demonstrating that only a small fraction
of read operations need to perform a second communication
round. Specifically, under reasonable execution conditions
in our simulations no more than10% of the read operations
required a second round.

Paper Organization.In Section 2 we present our model and
definitions. In Section 3 we describe our implementation and prove
its correctness. In Section 5 we show the necessary properties that
an implementation of an atomic register must possess in order to
be semifast. In Section 6 we show that no semifast MWMR imple-
mentation is possible. Section 7 contains simulation results. Due to
space limitations, some proofs are omitted, and they can be found
in [5].

2. MODEL AND DEFINITIONS
We consider the single writer, multiple reader (SWMR) model,

where a distinguished processw is the writer, the set ofR read-
ers are processes with unique ids from the setR = {r1, . . . , rR},
and where the object replicas are maintained by the set ofS servers
with unique ids from the setS = {s1, . . . , sS} such that at mostt
servers can crash. Avirtual nodeis an abstract entity that consists
of a group of reader processes. Each virtual node has a unique iden-
tifier from the setV = {ν1, . . . , νV }, whereV < S

t
− 2. A reader

ri that is a member of a virtual nodeνj maintains its own identifier
ri and its virtual identifierν(ri) = νj ; we identify such process by
the pair〈ri, νj〉. The processes that share the same virtual identifier
are calledsiblings. We assume that some external service is used
to create virtual nodes by assigning virtual ids to reader processes.
(Note that whenV = R and when each virtual node consists of a
single unique reader, then our model is essentially that of [3].)

Each processp is associated with an application. The application
asks the process to invoke an operation and the process responds to
the application with the result. We assume a reliable channel be-



tween any two processes and that the messages carry a source and
a destination field. The state of all channels is represented by the
setmset that contains all messages sent but not yet delivered, such
messages are said to bein transit. We refer to the messages that
intend to write a new value to the atomic register asWRITE mes-
sages, and we call the messages that request the value of the register
as READ messages. The messages used to propagate information
within the system are calledINFORM messages.

An algorithmA is a collection of automata, whereAp is the au-
tomaton assigned to the processp with an initial stateInit. Com-
putation ofA proceeds instepswhere each step denotes actions
of a single process. In particular each step is described by an or-
dered tuple〈st, p, mIn, inv, mOut, res〉 wherest is the state of
the system (withstp denoting the state component of processp)
and includes the set of messagesmset and the state of each pro-
cess in the system;p is the process id,mIn the messages received
by the processp in that step,inv the invocation submitted to pro-
cessp by the application,mOut the output messages of process
p, andres is the response of the process to the application in that
step. Wheninv = ⊥ there is no invocation at that step and when
res = ⊥ there is no response to the application. WhenmIn = ∅
or mOut = ∅ then there are no messages to be received or to be
sent out in that step respectively. In every step a processp acts as
follows, wherest′ is the resulting state (the state components of
all other processes are unchanged inst′): (1) it setsst′.mset to
st.mset − mIn, (2) inputsmIn, inv, and its current statestp to
Ap, which outputs a new statest′p, the messagesmOut to be sent,
and the responseres to the last invoked operation, and (3) adopts
the statest′p as its new state, setsst′.mset to st.mset ∪ mOut,
and responds withres to the application. A processp performs
an invocation stepif the invocationinv 6= ⊥, a response step
whenres 6= ⊥, and acommunication stepif mOut 6= ∅ and both
inv = ⊥ andres = ⊥.

An execution fragmentϕ of an algorithmA is a finite or in-
finite sequence of stepsσ0, σ1, . . . , σr, . . . of A. An execution
fragment is called anexecutionof A if it begins with the step
σ0 = 〈s0, ∗, ∗, ∗, ∗, ∗〉 wheres0 is the initial state of the system
and s0.mset = ∅, and for each processp, s0p = Init. Ex-
ecutions are denoted by the symbolξ. A finite execution frag-
mentϕ is a finite prefix of some execution. We say that an ex-
ecution fragmentϕ extendssome finite execution fragmentϕ′ if
the first step inϕ is σf = 〈st′, ∗, ∗, ∗, ∗, ∗〉, the last step ofϕ′ is
σℓ = 〈st, ∗, ∗, ∗, ∗, ∗〉, such thatst′ is the state that immediately
results fromσℓ.

A process cancrashduring any step of an execution. Following
a crash the process does not perform any steps. A process is con-
sidered to befaulty in executionξ if it crashes inξ; otherwise the
process iscorrect.

Atomicity. Our goal is to implement a read/write atomic object
in a message passing system by replicating the value of the object
among the servers in the system. Each replica consists of a value
v, initially ⊥, and an associated timestampts, initially 0. A read
or a write operation consists of an invocation step and a match-
ing response step. An operation isincompletein an execution, if
the operation’s invocation step does not have a matching response
step; otherwise the operation iscomplete. We assume that applica-
tion executions arewell-formedin that it invokes one operation at a
time: it waits for a response before invoking another operation.

In an execution we say that a (read or write) operationπ1 pre-
cedes another operationπ2 (or π2 succeedsπ1), if the response
step forπ1 precedes the invocation step ofπ2. Two operations are
concurrentif neither precedes the other.

Correctness of an implementation of an atomic object is defined
in terms of theterminationandatomicityproperties. The termi-
nation property requires that any operation invoked by a correct
process eventually completes. Atomicity is defined as follows [6]:
Consider the setΠ of all complete operations in any well-formed
execution. Then there exists an irreflexive partial ordering≺ on
operations inΠ, satisfying the following: (1) For any operation
π ∈ Π, there are finitely many operationsπ′ such thatπ′ ≺ π. (2)
If operationπ1 precedes the operationπ2 in Π, then it cannot be
the case thatπ2 ≺ π1. (3) If π is a write operation andπ′ is any
operation inΠ, then eitherπ ≺ π′ or π′ ≺ π. (4) The value re-
turned by a read operation is the value written by the last preceding
write operation according to≺ (or⊥ if there is no such write).

Semifast implementations.We say that a read or write op-
erationπ is fast if it completes in one communication round. Let
denote byinv(π) the invocation of operationπ requested at pro-
cessp and letret(π) denote the response of processp for operation
π. We then define a communication round as follows:

DEFINITION 2.1. A process p performs a communication
round during operationπ in an execution if all of the following
hold:
(1) p sends the messagesm ∈ mOut, during an invocation step
whereinv = inv(π) or a communication step duringπ, to a sub-
set of processes,
(2) any processp′ that receivesm ∈ mIn during a stepσ, replies
to p with a messagem′ ∈ mOut within the same step,1

(3) whenp receives at least one messagesm′ ∈ mIn, it either
performs a response step withres = ret(π) or inserts a set of
messages inmOut and performs a communication step.

When processp decides to respond to the application withinπ in
(3) above during the first communication round inπ, then we say
that operationπ is fast. An implementation isfast if both reads and
writes are fast in every execution.

A semifast atomic implementation, as suggested in [3], is the im-
plementation that either has all reads that are fastor all writes that
are fast. Here we formalize the notion of semifast implementations.
Let wk be thekth (k ≥ 1) write operation by the sole writer and
let valk be the value written to the register. Let≺ be the partial
order defined on any (atomic) execution as given earlier. We use
the reading-functionR(ρ) as defined in [9] to specify the (always
unique) write operation that wrote the value returned by readρ.

DEFINITION 2.2. An SWMR implementationI is semifastif the
following are satisfied:
(1) In any executionξ of I, everywrite operationwk, k ≥ 1, is
fast.
(2) In any executionξ of I, any completereadoperation performs
one or two communication rounds between the invocation and re-
sponse.
(3) For any executionξ of I, if a two-round read operationρ1 re-
turns the valueret(ρ1) = valk andR(ρ1) = wk, then any read
operationρ2, whereρ1 ≺ ρ2 or ρ2 ≺ ρ1, andret(ρ2) = valk and
R(ρ2) = wk, must be fast.
(4) There exists an executionξof I containing a write operation
wk and a set of read operationsF such that∀ρ ∈ F , R(ρ) = wk

andρ is fast.

1Notice that processp′ replies tom either at the same stepσ or
during a subsequent stepσ′, if p′ does not receive any messages
betweenσ and (inclusively)σ′. Intuitively this property is used to
forbid processes to wait for other messages before replying tom.



We make the following observations having the above definition
in mind. Given that any subset of the readers and the writer may
fail, in order to guarantee termination, no operation can wait for
replies from any reader or writer processes. Since we require that
the writes are fast, the servers cannot wait for any messages before
replying to aWRITE message. Read operations on the other hand
are allowed to perform two communication rounds. Two-round
reads can have one of the two forms: (i) the reader process may
contact the servers twice, (ii) the reader may send messages to the
servers during the first round, the servers perform a communication
step and contact other servers in the second round and then reply
to the reader ending the first round. If the servers are responsible
for the second communication round, then it may be the case that
all read operations need two rounds to complete, violating semifast
properties (3) and (4). Worse yet, a server may fail during its sec-
ond round preventing an operation from completing. Hence both
communication rounds must be performed by the reader when it
decides it is necessary to do so according to the information gath-
ered during the first round. Thus in the sequel we assume that the
servers in the semifast implementation, upon receiving aREAD or
INFORM message, cannot wait for messages from any other pro-
cess before replying. (Alternatively we can construct executions
of a semifast implementation, where only theREAD, WRITE and
INFORM messages from the invoking processes to the servers and
the replies from the servers are delivered. All the other messages
remain in transit.)

3. IMPLEMENTATION SF
We now present a semifast implementation, called SF, in which

there is one writer and arbitrarily many readers. We assume that
the numberV of unique virtual ids is such thatV < S

t
− 2 (we

show in Section 5 that semifast implementations are possible iff
V < S

t
− 2). We now describe our implementation presented

in pseudocode in Figure 1. Recall that each replica consists of a
value and its timestamp. For simplicity we give the algorithm that
returns only the timestamps; then we describe a straightforward
modification that returns a value along with each timestamp.

Writer. During a write operation, the writerw sends a write mes-
sage consisting of the current timestamp and the value to be written
to all servers. Sincet of the servers might be faulty,w waits for re-
sponses from onlyS − t servers. Upon receipt of all the expected
acknowledgments the writer increases its timestamp and completes
the operation. The timestamps impose a natural order on the writes
since there is only one writer.

Server.The servers maintain the replicas of the object. The state
of a server includes the following: (1)ts the greatest timestamp re-
ceived any server, (2) the setseenwhere the server records thevir-
tual idsof the readers that read the latest timestamp of the server,
(3) the counterarray in order to distinguish new from old mes-
sages from each process (needed because of asynchrony), and(4)
the variablepostit used by readers to inform, if necessary, other
readers about the timestamp they are about to return.

We now describe the operation of a serversi when it receives a
message(msgType, ts′, rCounter′, vid) from a non-server pro-
cesspj . Upon receipt of this message, serversi updates its times-
tampts if ts′ > ts and initializes itsseenset to{ν(pj)}, the virtual
id of pj . Otherwise, ifts′ < ts, si sets itsseenset to be equal to
seen ∪ {ν(pj)} declaring thatpj perceivedsi’s timestamp. This
is a departure from the algorithm in [3]: we record the virtual iden-
tifier of pj , using its unique identifier only for message exchange.
By doing so we manage to keep|seen| < S

t
− 2 (required for cor-

rectness) without having to bound the number of readers. Server
si then sends a reply topj acknowledging the transaction. If a
READ, WRITE or INFORM message is received then the reply is a
READACK, WRITEACK, or an INFORMACK, respectively. AnIN-
FORM message denotes that the processpj wants to inform the rest
of the reader processes about the timestamp it is about to return.
Accordingly, before replying to anINFORM message,si updates
its postit value. To ensure that the value enclosed in theINFORM

message is not an already-returned timestamp,si compares the re-
ceived timestamp with itspostit. If the postit value is greater, it
must be the case that another reader already returned a newer times-
tamp than the one in the message and so updating thepostitwith an
older timestamp may violate atomicity; otherwisepostitis updated.
Along with any reply,si encloses its timestampts, its seenset, its
counter, and the value ofpostit.

Reader.The actions of a reader node with idri and virtual
id ν(ri) = νj are as follows. Whenri invokes a read oper-
ation, it sends messages to all servers and waits forS − t re-
sponses. Each of these responses is of the form (READACK,
ts′, seen, rCounter, postit). Upon collecting these messages,ri

checksrCounter to distinguish new messages from the stale mes-
sages (due to asynchrony), and then records the maximum times-
tampmaxTS = ts′ and the maximum postitmaxPS = postit
value contained among the received messages. Based on the re-
ceived information, readerri computes the set of messages that
contained the maximum timestamp (maxTSmsg). Then the fol-
lowing predicate is used to decide the return value: we check if
there is a subsetMS ⊆ maxTSmsg such that its cardinality
|MS| ≥ S−αt, for someα ∈ [1, V +1] and the cardinality of the
intersection of the messages inMS is |∩m∈MSm.seen| ≥ α, then
we returnmaxTS. The predicate can be interpreted as “enough
processes have seen themaxTS that we received”.

In order to visualize the idea behind the predicate consider an
finite execution fragmentϕ1 where the writerw performs a com-
plete write operationω1 which receives replies from|Sw(1)| =
S − t servers. We extendϕ1 by a complete read operationρ1

which missest servers from those that responded toω1, such that
|MS1| = |Sw(1) ∩ S1| = S − 2t whereS1 is the set ofS − t
servers that responded toρ1 . According to atomicity, the read
operationρ1 returnsTS1 = maxTS. Consider now another ex-
ecution ϕ2 where the write operationω1 is incomplete and re-
ceives replies from exactly|Sw(1)| = S − 2t servers. We ex-
tendϕ2 with a read operationρ1 from ri which receives replies
from |S1| = S − t servers including the servers inSw(1). So
|MS1| = |Sw(1) ∩ S1| = S − 2t and thus the readρ1 cannot
distinguish executionϕ2 from ϕ1. Hence, by atomicity,ρ1 returns
TS1 = maxTS in ϕ2 as well. By extendingϕ2 even further by
a second read operationρ2 from rj we might get into the situation
where|MS2| = |Sw(1) ∩ S2| = S − 3t, where|S2| = S − t
the servers that responded toρ2. But in order to preserve atomicity
the readerrj must also returnTS2 = maxTS. This scenario can
be easily generalized for more than two read operations and so the
predicate in line 23 of the algorithm in Figure 1 arise to preserve
atomicity between the different read operations.

Note here that the above result is true if the unique ids of the
readers are recorded in theseenset. If we record the virtual ids of
ri andrj (as it is done in our implementation) we only get the same
result if the two readers are not siblings. In different case, namely
whereν(ri) = ν(rj) = νk, theseenset witnessed by bothρ1 and
ρ2 in ξ2 could be| ∩m∈MS1

m.seen| = | ∩m∈MS2
m.seen| =

|{w, νk}| = 2. If so the predicate would not hold forρ2, returning
maxTS − 1 and violating atomicity.



at the writerw
procedure initialization:

ts ← 1, rCounter ← 0
procedure write(v)

rCounter ← rCounter + 1
send(WRITE, ts, rCounter, 0) to all servers
wait until receive(WRITEACK, ts, ∗, rCounter, ∗) from S − t servers
ts ← ts + 1
return(OK)

at each readerri

procedure initialization:
vid(ri) ← (i mod ( S

t
− 2) + 1), ts ← 0, rCounter ← 0, maxTS ← 0, maxPS ← 0

procedure read()
rCounter ← rCounter + 1
ts ← maxTS
send(READ, ts, rCounter, vid(ri)) to all servers
wait until receive(READACK, ∗, ∗, rCounter, ∗) from S − t servers
rcvMsg ← {m|ri receivedm = (READACK, ∗, ∗, rCounter, ∗)}
maxTS ← Maximum{ts′|(READACK, ts′, ∗, rCounter, ∗) ∈ rcvMsg}
maxTSmsg ← {m|m.ts = maxTS andm ∈ rcvMsg}
maxPS ← Maximum{postit|(READACK, ∗, ∗, rCounter, postit) ∈ rcvMsg}
maxPSmsg ← {m|m.postit = maxPS andm ∈ rcvMsg}

if there isα ∈ [1, V + 1] and there isMS ⊆ maxTSmsg s.t. (|MS| ≥ S − αt) and (| ∩m∈MS m.seen| ≥ α) then
if | ∩m∈MS m.seen| = α and (maxPS < maxTS or |maxPSmsg| < t + 1) then

send(INFORM, maxTS, rCounter, vid(ri)) to 3t + 1 servers
wait until receive(INFORMACK, ∗, ∗, rCounter, ∗) from 2t + 1 servers

end if
return(maxTS)

elseif maxPS = maxTS then
if |maxPSmsg| < t + 1 then

send(INFORM, maxTS, rCounter, vid(ri)) to 3t + 1 servers
wait until receive(INFORMACK, ∗, ∗, rCounter, ∗) from 2t + 1 servers

end if
return(maxTS)

else
retutn(maxTS − 1)

end if

at each serversi

procedure initialization:
ts ← 0, seen ← ∅, counter[0...R] ← 0, postit ← 0

procedure serve()
upon receive(msgType, ts′, rCounter′, vid) from q ∈ {w, r1, . . . , rR} and rCounter′ ≥ counter[pid(q)] do
if ts′ > ts then

ts ← ts′; seen ← {vid};
else

seen ← seen ∪ {vid}
end if
counter[pid(q)] ← rCounter′ /* pid(q) returns 0 ifq = w andi if q = ri * /

if msgType =READ
send(READACK, ts, seen, rCounter′, postit) to q

else if msgType =WRITE
send(WRITEACK, ts, seen, rCounter′, postit) to q

else if msgType =INFORM
if postit < ts′ then

postit ← ts′

end if
send(INFORMACK, ∗, ∗, rCounter′, postit) to q

end if

Figure 1: Implementation SF



A second communication round is necessary whenri satisfies
the predicate such that| ∩m∈MS m.seen| = α. During the second
communication round,ri informs3t + 1 servers about the times-
tamp it is about to return. Sincet servers might be faulty,ri com-
pletes as soon as it receives2t + 1 acknowledgments and returns
maxTS.

In the case where the predicate is false, readerri checks if there
was anypostitequal tomaxTS observed, as advertised within the
received messages. If so, then some reader (previously or concur-
rently withri) returned or is about to returnmaxTS. If ri receives
more thant+1 messages containing that postit, it returnsmaxTS
without performing a second communication round; otherwise a
second communication round is required byri to ensure that any
subsequent reader will receive the same postit. If neitherpostit
equalsmaxTS, thenri returnsmaxTS − 1 in one communica-
tion round.
Remark:By the above implementation, if all readers form one vir-
tual node (V = 1), then a read operationρ will returnmaxTS only
when it receives at leastS−2t replies which containmaxTS. But
this implies that the write operation which wrotemaxTS must be
either completed or requires at mostt more replies to complete.
Consequently in order to achieve efficiency, it is important to study
the division of the reader processes among the virtual nodes. This
is left as an open question.

Returning values with timestamps.A slight modification
needs to be applied to the algorithm to associate returned times-
tamps with values. To do this the writer attaches two values to the
timestamp in each write operation: (1) the current value to be writ-
ten, and (2) the value written by the immediately preceding write
operation (for the first write this is⊥). The reader receives the
timestamp with its two associated values and if it decides (as be-
fore) to returnmaxTS, then it returns the current value attached
to maxTS. If the reader decides to returnmaxTS − 1, then it
returns the second value (that of the preceding write).

We now give the correctness of algorithm SF.

THEOREM 3.1. Algorithm SF implements a semifast atomic
SWMR read/write register.

PROOF. (Sketch.) The proof is done in two parts. We first show
that SF implements an atomic read/write register in the SWMR
model by showing that in any execution the atomicity properties
are not violated (see Section 4). Then we show that SF is a semifast
implementation by showing that the requirements of Definition 2.2
are met.

4. CORRECTNESS OF SF
Since the correctness of our implementation depends mainly on

the timestamps written and returned, we reduce the properties of
the atomicity presented in Section 2, to the following: (1) If a read
operation returns, it returns a non-negative integer, (2) if a read
ρ is complete and succeeds some write(k), thenρ returnsℓ such
that ℓ ≥ k, (3) if a readρ returnsk(k ≥ 1), then write(k) ei-
ther precedesρ or is concurrent withρ, (4) if some readρ1 returns
k(k ≥ 0) and a readρ2 that succeedsρ1 returnsℓ, thenℓ ≥ k. We
will show that implementation SF preserves each and every of the
above conditions in any given execution.

Before proceeding to the proof we first introduce some notation
we use throughout this section. Each read operation is denoted by
ρi. For each read operationρi, let Si denote the set of servers that
received messages fromρi and replied to those messages. For the
writer we denote the set of servers that received messages from
thekth write operation asSw(k). Furthermore letMaxSi be the

set of servers that replied with the maximum timestamp toρi, and
thereforeMaxSi ⊆ Si. The set of messages received fromρi con-
taining the maximum timestamp and sent by the servers inMaxSi,
is represented byMSi. The maximum timestamp received by the
readρi is represented asTSi. If a read operationρi performs a
second communication round, then we denote asNSi to be the set
of servers that received the messages from the second communica-
tion round ofρi and replied to those messages. We say that a read
operationρi is invoked by the reader〈rj , νk〉, whererj is the iden-
tifier andνk the virtual identifier of the reader. Lastly for a process
p we denote astsp the value of the timestamp ofp and aspostitp

the value of the postit variable atp.
We begin with a lemma that plays a significant role in the cor-

rectness of our implementation. The lemma follows from the fact
that no more thant servers might fail and that the communication
channels are reliable.

LEMMA 4.1. Let two readers〈ri, ν∗〉 and 〈rj , ν∗〉 perform
subsequent readsρ1 andρ2, respectively. Then, for any execution
ξ of SF,| |MaxS1| − |MaxS2| | ≤ t.

The proofs of the first and third atomicity conditions (as given
above) are omitted because of their triviality.

LEMMA 4.2. In any executionξ of SF, if a serversi sets its
timestamptssi to x at stepσ, then, given any stepσ′ of ξsuch that
σ < σ′ andtssi = y, we have thaty > x.

PROOF. This can be ensured by line 44 of Figure 1.

We now show the monotonicity of the postits for any server.

LEMMA 4.3. In any executionξof SF, if a serversi sets its
postitsi to x at a stepσ, then, given any stepσ′ of ξsuch that
σ < σ′ andpostitsi = y, we have thaty > x.

PROOF. This can be ensured by line 55 of Figure 1.

The following lemma ensures that if apostit = x is introduced
to the system, then there exists a maximum timestampts in the
system such thatts ≥ x.

LEMMA 4.4. For any executionξof SF, if apostit = x is in-
troduced in the system by a read operationρ1, then any subsequent
read operation will observe a maximum timestampts′ such that
ts′ ≥ x.

PROOF. Consider an executionξof SF where the read operation
ρ1 introduced a postit equal toy to the system. It follows thatρ1

observed as the maximum timestamp in the systemTS1 = x. As
|MS1| ≥ S − αt and | ∩m∈MS1

m.seen| = α, ρ1 performs
an informative operation. Sinceα ∈ [1, V + 1] andS > (V +
2)t, we get that|MS1| > t. So, if we denote byS2 the set of
servers that replied to a subsequent readρ2 (|S2| = S − t), then
per Lemma 4.2 there is a server,si ∈ MaxS1 ∩ S2 that replies to
ρ2 with a timestampts′ ≥ x. Therefore,ρ2 will detect a maximum
timestampTS2 ≥ ts′, and henceTS2 ≥ x.

LEMMA 4.5. For any executionξof SF if a read operationρ1

receives apostit = x thenρ1 will return a valuey ≥ x.

PROOF. Consider an executionξof SFwhich contains a read op-
erationρ1 by a reader〈ri, νi〉. It follows from Lemma 4.4 that
if read ρ1 receives apostit = x, then it will detect a maximum
timestampTS1 ≥ x. Let TS1 = x and so either the predicate will
hold and thenρ1 will return y = TS1, or the condition whether
postitri = TS1 will be true and soρ1 will in this case return



y = TS1 as well. Thusρ1 will return y = x. If now TS1 > x
thenρ1 will return y = TS1 if the predicate holds ory = TS1 − 1
otherwise. Note that sincepostit = x, it is less thanTS1 and so
the postit condition does not hold. Either caseρ1 will return a value
y ≥ x.

The following lemma ensures the second atomicity property.

LEMMA 4.6. For any executionξ of SF, if a readρ1 is complete
and succeeds some write(k), thenρ1 returnsℓ such thatℓ ≥ k.

PROOF. Suppose that the writerw performs awrite(k) oper-
ation and precedes the readρ1 operation by readerri with virtual
id νi during an executionξof SF. LetSw be theS − t servers that
replied tow in the same execution. The intersection betweenSw

andS1, MaxS1 = Sw ∩ S1, is obviously|MaxS1| ≥ S − 2t.
Sincewr precededρ1 the timestampts for each server inMaxS1,
per Lemma 4.2 it is greater or equal tok. Soρ1 received a maxi-
mum timestampTS1 such thatTS1 ≥ k. From the implementa-
tion we know that the reader returns eitherTS1 or TS1 − 1. We
consider two cases:
Case 1: TS1 > k. Sinceρ1 returns eitherTS1 or TS1 − 1, it
follows that either case it returns a timestamp greater or equal tok.
Case 2: TS1 = k. As we mentioned above each server inMaxS1

replies with ats ≥ k. SinceTS1 = k every serversi ∈ MaxS1

replies with a timestampts = k to ρ1. So the setMS1, which
contains the messages received byρ1 with the highest timestamp,
will include the messages sent by all the servers inMaxS1. So
|MS| ≥ S − 2t. But since the writer sent a message with times-
tampk to the servers beforeρ1, thenw is included in theseen set
of each server inMaxS1. Before the servers inMaxS1 responded
to ρ1 they also includedνi in their seen set. So the predicate will
be true forα = 2 andρ1 will return TS1 = k. Observe that no
reader will returnTS1 because of a postit in the system because the
predicate will hold for every process in the system forα = 2, since
the writerw has no sibling processes.

In order to prove the forth atomicity property, we first need to
show that readers who belong to the same virtual node (siblings)
satisfy that property. Then we show that the property is also true
for any two non-sibling readers in the system.

LEMMA 4.7. Let the readers〈rj , νk〉 and 〈ri, νk〉 be siblings
and perform the read operationsρ1 andρ2 respectively. For any
executionξof SF that containsρ1 andρ2, if ρ1 precedesρ2, andρ1

returnsx thenρ2 returnsy, such thaty ≥ x.

PROOF. Consider an executionξof SF. Let first investigate the
case whererj = ri. In this caseρ1 denotes the first read operation
of rj and ρ2 a succeeding read operation from the same reader.
Let x be the value returned fromρ1. During the readρ2, rj sends
a READ message withtsrj = TS1 ≥ x. This message will be
received by all servers inS2 which according to Lemma 4.2 will
reply with a timestampts′ ≥ TS1 ≥ x. SoTS2 ≥ x. If TS2 = x
then |MS2| = S − t and the predicate holds forα = 1. Thus
y = TS2 = x. Otherwise, ifTS2 > x, the return valuey will be
equal toTS2 or TS2−1 and thusy ≥ x. By a simple induction we
can show that this is true for every read operation ofrj(including
ρ2) afterρ1. For the rest of the proof we assume thatrj 6= ri. We
investigate the following two possible cases: (1)ρ1 returnsx =
TS1 − 1 and (2)ρ1 returnsx = TS1. In all of the cases we show
thatx ≤ y or that the case is impossible.

Case 1:In this casex = TS1 − 1. Therefore, some servers
replied toρ1 with TS1 = x + 1, and hence a write(x + 1) oper-
ation had started beforeρ1 is completed. So write(x) completed

beforeρ1 has completed and moreover beforeρ2 is executed since
ρ1 precedesρ2. Thus by Lemma 4.6ρ2 returns a valuey ≥ x.

Case 2:In this casex = TS1. Hence either there is
some α ∈ [1, V + 1] such that |MS1| ≥ S − αt and
| ∩m∈MS1

m.seen| ≥ α or ρ1 received apostit equal to
TS1 from some server. We examine those two possibilities
separately.

Case 2(a): It follows that x = TS1, and there is some
α ∈ [1, V + 1] such thatMS1 consist at leastS − αt messages
received byρ1 with ts = x and| ∩m∈MS1

m.seen| ≥ α. Since
V < S

t
− 2 anda ∈ [1, V + 1], then|MS1| = S − at > t. We

have two cases to consider forρ1: (1) First let examine the case
whereρ1 returnsx = TS1 because| ∩m∈MS1

m.seen| = α.
According to the implementation,ρ1 has to inform|NS1| ≥ 2t+1
servers about its return value,x. Sinceρ1 precedesρ2, at least
|NS1 ∩ S2| ≥ 2t + 1 servers, that informed byρ1, will reply to
ρ2. Any serversi ∈ NS1 ∩ S2, by Lemma 4.4 will reply with a
postit ≥ x to ρ2 and with a timestampts ≥ x. Soρ2 will observe
a maximum timestampTS2 ≥ x. According now to Lemma 4.5
ρ2 will return a valuey ≥ x. (2) The second case arise when
ρ1 returnsx = TS1 because| ∩m∈MS1

m.seen| > α. We can
split this case in two subcases regarding the value returned by
ρ2. The two possible values thatρ2 might return isy = TS2 or
y = TS2 − 1:
(i) Let first consider the case wherey = TS2. Sinceρ1 returned
x = TS1, as we mentioned in (1) , there is a write(x) operation that
preceded or was concurrent withρ1. As stated above|MS1| > t
and hence there is a serversi such thatsi ∈ MaxS1 ∩ S2. By
Lemma 4.2,si will send a timestampts ≥ x to ρ2, and hence
TS2 ≥ ts. Soy ≥ x.
(ii)We now get down to the case whereρ2 returnsy = TS2 − 1.
Since|MaxS1| > t, there must be a serversi ∈ MaxS1 ∩S2 and
si replies with a timestampts ≥ x to ρ2. So the highest timestamp
in S2(i.e. TS2 = y + 1) will be greater or equal tox. If the
inequality is true, namelyy+1 > x, then clearly the value returned
by ρ2 is y ≥ x. If the equality holds andy+1 = x then the highest
timestamp received byρ2, TS2 = y+1 = x. Hence all the servers
in MaxS1 ∩ S2 replied with a timestampts = x = y + 1 to ρ2.
Recall that this case arise only when| ∩m∈MS1

m.seen| > α.
Also according to Lemma 4.1,||MS2| − |MS1|| ≤ t and hence
|MS2| ≥ S − (α + 1)t. For anysi ∈ MaxS1 ∩ S2, we denote
as m1 the message sent bysi to ρ1 and m2 the message sent
to ρ2. Obviouslym1.ts = m2.ts = x. Since the timestamp
is the same andm1 sent beforem2 thenm1.seen ⊆ m2.seen.
As a result | ∩m∈MS1

m.seen| ≤ | ∩m∈MS2
m.seen|.

Notice that, since the two readers are siblings, if no
non-sibling reader received replies from those servers
in between ρ1 and ρ2, then m1.seen = m2.seen and
| ∩m∈MS1

m.seen| = | ∩m∈MS2
m.seen|. Either case,

| ∩m∈MS2
m.seen| > α and hence| ∩m∈MS2

m.seen| ≥ α + 1.
Observe that the predicate now is true forα + 1 since
|MS2| ≥ S−(α+1)t, and thusρ2 must returnTS2 = x = y+1,
contradicting the initial assumption thaty = x + 1. The same
result applies in both cases whereα ≤ V andα = V + 1 since the
seen set remains unchanged.

Case 2(b):Here ρ1 returns x = TS1 because there was not
α ∈ [1, . . . , V + 1], such that| ∩m∈MS1

m.seen| ≥ α, but some
postits equal toTS1 received byρ1. We have to consider 2 cases
here. Either (1)ρ1 received more thant + 1 postits, or (2)ρ1

received less thant + 1 postits. Both cases imply that, a reader
〈rm, νn〉 perform a readρ1a, and is about to return or already



returned the maximum timestamp(which is equal toTS1) in the
system. Furthermore implies thatρ1a initiated an informative
phase which is concurrent or precedes the read operationρ1. By
analyzing the cases we obtain the following results:
(1) If ρ1 received more than or equal tot + 1 messages containing
a postit with valuepostit = TS1 = x, then the writerw initiated
a write(x) operation during or beforeρ1 completed. It follows
that NS1a ∩ S1 denote the set of servers that replied toρ1 and
contained thepostit = TS1. The readerρ2 receives replies
from |S2| = S − t servers. Since|NS1a ∩ S1| ≥ t + 1, then
|S2 ∩ (NS1a ∩ S1)| ≥ 1. So the read operationρ2 will receive
a reply from at least one serversi ∈ NS1a ∩ S1. Hence, from
Lemma 4.3,ρ2 receives apostit ≥ x from si and according to
Lemma 4.5 will return a valuey ≥ postit and thusy ≥ x.
(2) Let now examine ifρ1 received less thant + 1 messages
containing postits with value equal toTS1. Let assume again
that |NS1a ∩ S1| < t + 1 is the set of servers that replied with
postit = TS1 to ρ1. However, in contrary to the previous case,
the situation where|(NS1a ∩ S1) ∩ S2| = 0 might arise. So
ri gets into the information process in order to inform sufficient
servers about its potential return timestamp. So at the time where
ρ1 is completed,|NS1| ≥ 2t + 1 servers contain apostit ≥ TS1.
Whenρ2 is performed,TS2 is greater than or equal tox, since
there is a serversi ∈ MS1 ∩ S2 and, according to Lemma 4.4,
si returns a timestampts ≥ x. Furthermore there is a server
sj ∈ NS1 ∩ S2, and so according to Lemma 4.3,sj replies with a
postit ≥ x. So, by Lemma 4.5,ρ2 returns a valuey ≥ x.

Similarly we proof that the fourth atomicity properties is also
satisfied for any two non-sibling reader processes in the system.

LEMMA 4.8. Let the readers〈rj , νj〉 and 〈ri, νi〉 be non-
siblings and perform the read operationsρ1 and ρ2 respectively.
For any executionξof SF that containsρ1 and ρ2, if ρ1 precedes
ρ2, andρ1 returnsx thenρ2 returnsy, such thaty ≥ x.

THEOREM 4.9. Algorithm SF implements an atomic read/write
register in the SWMR model.

PROOF. It follows from the fact that every process guarantees
termination by waiting for onlyS−t replies and the lemmas proved
above.

5. IMPOSSIBILITY
As it is shown in [3], no fast implementations exist if the number

of readersR in the system is such thatR ≥ S
t
− 2. Our approach

to semifast solutions is to trade fast implementation for increased
number of readers, while enabling some (many) reads to be fast.
Here we show that semifast implementations are possible if and
only if the number of virtual identifiers (virtual nodes) in the sys-
tem is less thanS

t
− 2. We show that the bound on the virtual

identifiers is tight for algorithms that: (1) do not use any group-
ing assumptions and thus consider each node acting individually in
the system, and (2) consider grouping mechanisms such as in algo-
rithm SF. In our context by “grouping mechanism” we only mean
the grouping of the reader processes in any arbitrary fashion. In
other words we omit the grouping techniques that involve grouping
of non-reader processes in the system. Additionally, Lemma 5.2,
shows that informing at least3t + 1 servers during a second com-
munication round is a tight bound for any semifast implementation.

In algorithms where there is no grouping mechanisms assumed
we can consider each reader to form an individual group. So the
number of virtual nodesV is equal to the number of readersR. As
showed in [3] in such systems there is no fast implementation of the

read/write register ifR ≥ S
t
− 2. However this violates the fourth

property of the semifast definition and thus no such systems can be
semifast. Hence our bound applies in these kind of systems. We
now show the following considering algorithms using a grouping
mechanism similar to SF:

LEMMA 5.1. No semifast implementation exists if the number
of node groupsV in the system is≥ S

t
− 2.

The following lemma shows that the existence of a semifast im-
plementation also depends on the number of minimum messages
sent by a process during its second communication round.

LEMMA 5.2. There is no semifast implementation of an atomic
register if a read operation informs3t or fewer servers during its
second communication round.

We now state the main result of this section.

THEOREM 5.3. No semifast implementationI exists if the num-
ber of virtual nodes in the system is≥ S

t
− 2 and if 3t or fewer

servers are informed during a second communication round.

PROOF. It follows directly from Lemmas 5.1 and 5.2.

6. MWMR MODEL
In this section we consider the multiple writer - multiple reader

(MWMR) model and show that no semifast implementations of
atomic registers are possible in this setting in the presence of server
failures.

Preliminaries. For the MWMR model we relax the definition
of a semifast implementation as presented for the SWMR model,
by allowing read operations to perform more than two communica-
tion rounds (i.e., instead of two rounds we allow multiple rounds in
Definition 2.2). First we extract several immediate properties from
the definition of atomicity presented in Section 2. If for given oper-
ationsπ1 andπ2 in an execution, the response step ofπ1 precedes
the invocation step ofπ2, we denote this byπ1 → π2. To sat-
isfy the atomicity definition the following properties must be true
for any execution of the MWMR semifast implementation. PROP-
ERTY P1: if there is a write operationwr that writes valuev and a
read operationρi such thatwr → ρi, and all other writes precede
wr thenρi returnsv. PROPERTY P2: if the response steps of all
write operations precede the invocation steps of the read operations
ρi andρj , i 6= j, thenρi andρj must return the same value. PROP-
ERTY P3: If the response steps of all the write operations precede
the invocation step of a read operationρi thenρi returns a value
written by some complete write.

For the reasons discussed in Section 2, we assume the commu-
nication scheme where a server replies to aREAD (or WRITE or
INFORM) message without waiting to receive any otherREAD (or
WRITE or INFORM) messages. In this proof we say that an oper-
ation performs aread phaseduring a communication round if it
gathers information from the system at that round. We say that an
operation performs awrite phaseduring a communication round if
it propagates information to other participants at that round. A read
phase of an operation (read or write) does not modify the value of
the atomic object. On the other hand a write phase of an operation
π behaves as follows according to its type: (1) a new, currently un-
known value is written to the register, ifπ is a write operation (2)
only previously known values are written to the register ifπ is a
read operation.

We say that a complete operationπ skipsa serversi if si does
not receive any messages from the processp that invokedπ and and



the processp does not receive any replies fromsi. All other servers
that receive theREAD, WRITE or INFORM messages fromp reply
to these, andp receives these replies. All other messages remain in
transit. Since we assume thatt = 1, any complete operation may
skip at most one server. We say that an operation isskip-freeif it
does not skip any server.

Since we consider read operations that might perform multiple
communication rounds to complete, we denote byri(j) the jth

communication round of a read operation from readerri. An
arbitrary delay may occur between two communication rounds
ri(j) and ri(j + 1) where other read (write) operations or read
(write) phases might be executed. So we define assri(j − 1) a
set of operation phases (read or write) with the property that any
π ∈ sri(j − 1), π → ri(j). A setsri(j − 1) might be equal to the
empty set containing no operations.

CLAIM 6.1. A read operationρ that succeeds any write opera-
tion ω or write phaseωp of an operationπ 6= ρ, returns the value
decided by the read phase preceding its last write phase.

Construction and Main Result.We now present the con-
struction we use to prove the main result. We show execution con-
structions assuming that two writers (w1 andw2), and two read-
ers (r1 and r2) participate in the system. We assume skip-free
operations since they comprise the best case scenario and thus a
lower bound for these is sufficient. Let us first consider the fi-
nite execution fragmentϕ1, constructed from the following skip-
free, complete operations: (a) operationwrite(2) by w2, (b) op-
erationwrite(1) by w1, and (c) operationread1() by r1. These
operations are not concurrent and they are executed in the order
write(2) → write(1) → read1(). By property P2, operation
read1() returns1.

We now invert the write operations of the above execution and
we obtain executionϕ2, consisting of the following skip-free, com-
plete operations in the following order: (a) operationwrite(1) by
w1, (b) operationwrite(2) by w2, and (c) operationread1() by
r1. As before, these operations are not concurrent. So in this case,
by property P2, operationread1() returns2.

The generalizationϕ1g of ϕ1, for 1 ≤ i ≤ n, when the readerr1

performsn communication rounds is the following: (a) awrite(2)
operation fromw2, (b) awrite(1) operation fromw1, (c) a set of
read operationssr1(i−1) from readersrj , j 6= 1, and (d) a read or
a write phaser1(i) of theread1() operation from readerr1. Notice
that forn = 1 and forsr1(0) = ∅ no process can distinguishϕ1g

from ϕ1. Clearly at the end of thenth communication round, by
property P2, the operationread1() from r1 returns1.

Similarly we define theϕ2g to be the generalization ofϕ2, where
the write operations are inversed: (a) awrite(1) operation from
w1, (b) awrite(2) operation fromw2, (c) a set of read operations
sr1(i − 1) from readersrj , j 6= 1, and (d) a read or a write phase
r1(i) of theread1() operation from readerr1. In this case by the
end of thenth communication round ofr1, and by property P2, the
read1() operation returns2.

If we assume now, without loss of generality, that the last com-
munication roundr1(n) of r1 in ϕ1g is a write phase, thenr1

should not be able to differentiateϕ1g from the following execu-
tion, for 1 ≤ i ≤ n − 1: (a) awrite(2) operation fromw2, (b) a
write(1) operation fromw1, (c) a set of read operationssr1(i−1)
from readersrj , j 6= 1, (d) a read phaser1(i) of theread1() oper-
ation from readerr1, (e) a set of read operationssr1(n − 1) from
readersrj , j 6= 1, and (f) awrite(1) operation fromr1(n). By
operationwrite(1), the readerr1 tries to disseminate the informa-
tion gathered from the previous rounds regarding the value of the
atomic object. Similarly we can defineϕ2g with the difference that

readerr1 will perform awrite(2) operations during its last com-
munication round.

Obviously we have the same setting as in Claim 6.1 and so by
the same claim the decision for the return value must be made in
r1(n − 1). Notice that the decision ofr1 taken inr1(n − 1) is not
affected from the operations insr(n − 1). So we can assume that
ϕ1g andϕ2g contain only read phases byr1. According now to
property P2,r1 will return 1 by the end ofr1(n − 1) in ϕ1g and2
by the end ofr1(n−1) in ϕ2g. Since we assume that we only have
2 readers in the systemr1 andr2 and sincer2 does not perform
any read operation in eitherϕ1g or ϕ2g, we have that all the sets
sr1(i − 1) = ∅ for 1 ≤ i ≤ n in both executionsϕ1g andϕ2g.

THEOREM 6.2. If the number of writers in the system isW ≥
2, the number of readers isR ≥ 2, andt ≥ 1 servers may fail, then
there is no semifast atomic register implementation.

PROOF. The proof follows by reasoning on the construction pre-
sented above. See [5] for full details.

7. SIMULATION RESULTS
To evaluate the effectiveness of our implementation, we simu-

lated algortihmSF using the NS2 network simulator and measured
the percentage of two-round read operations as a function of the
number of readers and the number of faulty servers. The testbed
of our simulations included 20 servers out of which 5 may fail at
arbitrary times. Since we require thatV < S

t
− 2, in order to

maintain at least one group we can tolerate up toS
4

faulty servers.
The number of reader processes varies between 10 and 80. We use
rInt andwInt to stand for the time intervals between each read
and write operations respectively. Several scenarios were tested:
(i) frequent reads and infrequent writes, whererInt < wInt, (ii)
concurrent reads and writes, such thatrInt = wInt, and(iii) in-
frequent reads and frequent writes, such thatrInt > wInt. The
processes send their messages after a random delay to model asyn-
chrony. According to our setting only the messages between the
invoking processes and the servers, and the replies from the servers
are delivered (no messages are exchanged between any servers or
among the invoking processes).

Stochastic simulations.This is the class of executions where
each read (resp. write) operation from an invoking process is sched-
uled at random time between 1sec andrInt (resp.wInt) after the
last read (resp. write) operation. Introducing randomness in the
operation invocations renders a more realistic scenario where pro-
cesses are interacting with the atomic object independently. Under
this setting, for the three scenarios(i), (ii), and (iii), the com-
parisons betweenrInt andwInt may be satisfied only stochasti-
cally. A single value ofwInt = 4.3 sec was chosen for the upper
limit of any write operation. For the read operations the values of
rInt = 2.3 sec, rInt = 4.3 sec, andrInt = 6.3 sec were cho-
sen, with the results presented in Figure 2, set a. The results for
this family of executions are similar where the percentage of two-
round reads is mainly affected by the number of faulty servers. In
all cases the percentage of two-round reads is under7.5%.

Fixed interval simulations.Here the intervals for each read
(or write) operation are fixed at the beginning of the simulation.
All readers use the same intervalrInt, and the writer the interval
wInt. This family of simulations represent conditions where op-
erations can be frequent and bursty. The intervalsrInt andwInt
whenrInt 6= wInt are chosen to avoid having read operations in-
voked at the same time with write operations. In Figure 2, b(i) illus-
trates the case ofrInt < wInt. A read (write) operation is invoked
by every reader (resp. writer) in the system everyrInt = 2.3 sec



0

2

4

6

0

50

100

1

2

3

4

5

6

7

8

# t# R

P
er

ce
nt

ag
e 

of
 2

co
m

m

1

2

3

4

5

0

20

40

60

80

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

# t# R

P
er

ce
nt

ag
e 

of
 2

co
m

m

1

2

3

4

5

0

20

40

60

80

1

2

3

4

5

6

7

8

# t# R

P
er

ce
nt

ag
e 

of
 2

co
m

m

1

2

3

4

5

0

20

40

60

80

0

10

20

30

40

50

60

# t# R

P
er

ce
nt

ag
e 

of
 2

co
m

m

1

2

3

4

5

0

20

40

60

80

1

2

3

4

5

6

7

8

# t# R

P
er

ce
nt

ag
e 

of
 2

co
m

m

1

2

3

4

5

0

20

40

60

80

−1

−0.5

0

0.5

1

# t# R

P
er

ce
nt

ag
e 

of
 2

co
m

m

3.a(i) 3.b(i) 3.a(ii) 3.b(ii) 3.a(iii) 3.b(iii)

Figure 2: Stochastic simulation 3.a; Fixed interval simulation 3.b. The vertical axes show the percentage of two-round reads as a
function of the number of readers and the number of faulty servers.

(resp.wInt = 4.3 sec). Because of asynchrony not every read op-
eration completes before the invocation of the write operation and
thus we observe a small percentage of reads that perform two com-
munication rounds. In b(ii) the condition whererInt = wInt is
illustrated. This is the worst case scenario since all operations, read
or write, are invoked at the same time, that is they are invoked ev-
ery rInt = wInt = 4.3 sec. Although the conditions in this case
are highly adversarial, we observe that only about half of the read
operations perform two communication rounds. Lastly, in b(iii) we
study the case wherewInt < rInt. In particular a read opera-
tion is invoked everyrInt = 6.3 sec by each reader and a write
operation everywInt = 4.3 sec. In this case all write operations
complete before any invocation step of a read operation. So all the
servers reply to any read operation with the latest timestamp and
thus no read operation needs to perform a second communication
round. Finally, note the common trend that increasing the number
of readers and the number of faulty servers negatively impacts the
performance of the algorithm in the first two scenarios.

8. CONCLUSIONS AND FUTURE WORK
In this paper we investigated the existence of semifast imple-

mentations of a read/write atomic register. It is shown in [3] that
there are no fast SWMR implementations—where both readers and
the writer perform one communication round—if there areS

t
− 2

or more readers. Furthermore a question was posed whether there
exist semifast implementations where reads or writes are fast.

The goal of this paper is to relax the bound on the readers in the
system at the cost of allowing some reads to perform two commu-
nication rounds. We formalized the notion of semifast implemen-
tations and we presented an implementation that meets our goal
and satisfies the required properties. For our implementation we
show that between two write operations only one complete read
operation needs to perform two communication rounds. We also
showed that there is no semifast implementation if the number of
differentvirtual nodesin the system isS

t
− 2 or greater. Moreover

we showed that there cannot exist semifast implementations for the
MWMR model. Finally, we simulated our algorithm and presented
the results that demonstrate that most read operations are fast in our
simulated executions.

Our paper made progress in identifying the tradeoffs between
the concurency in the system and the number of communication
rounds required to implement atomic registers. The next step is to
better understand the tradeoffs in the MWMR model. One direc-
tion is to consider hybrid semifast implementations where writers

and readers perform a mixture of fast and semifast operations. An-
other direction is to consider dynamic settings such as [7] where
nodes might join, leave and arbitrarily fail. The broader question
we intend to investigate is—given a particular distributed system
model—how fast can a distributed atomic read be?
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