
Fault-Tolerant SemiFast Implementations
of Atomic Read/Write Registers∗

Chryssis Georgiou† Nicolas C. Nicolaou‡ Alexander A. Shvartsman‡ §

December 11, 2008

Abstract

This paper investigates time-efficient implementations ofatomic read-write registers in message-passing
systems where the number of readers can be unbounded. In particular we study the case of a single writer,
multiple readers, andS servers, such that the writer, any subset of the readers, andup to t servers may crash.
A recent result of Dutta et al. [3] shows how to obtainfast implementationsin which both reads and writes
complete inonecommunication round-trip, under the constraint that the number of readers is less thanS

t
− 2,

wheret < S

2
. In that same paper the authors pose a question of whether it is possible to relax the bound on

readers, and at what cost, ifsemifastimplementations are considered, i.e., implementations that have fast reads
or fast writes.

This paper provides an answer to this question. It is shown that one can obtain implementations where
all writes are fast, i.e., involving a single communicationround-trip, and where reads complete in one to two
communication round-trips under the assumption that no more thant < S

2
servers crash. Simulated scenarios

included in this paper indicate that only a small fraction ofreads require a second communication round-trip.
Interestingly the correctness of the implementation does not depend on the number of concurrent readers in the
system. The solution is obtained with the help of non-uniquevirtual ids assigned to each reader, where the
readers sharing a virtual id form avirtual node. For the proposed definition of semifast implementations itis
shown that implementations satisfying certain assumptions are semifast if and only if the number of virtual ids
in the system is less thanS

t
− 2. This result is proved to be tight in terms of the required communication. It

is shown that only asingle completetwo communication round-trip read operation may be necessary for each
write operation. It is furthermore shown that no semifast implementation exists for the multi-reader, multi-writer
model.

Keywords: Fault-tolerance, Distributed algorithms, Atomicity, Read/Write registers, Communication rounds.

Contact Author: Chryssis Georgiou,chryssis@cs.ucy.ac.cy
Tel.: +357 22892745, Fax: +357 22892701

∗This work is supported in part by the NSF Grants 9988304, 0121277, and 0311368. A preliminary version of this paper has appeared
in [5].

†Department of Computer Science, University of Cyprus, CY-1678 Nicosia, Cyprus. Email:chryssis@cs.ucy.ac.cy. The work
of this author is supported in part by research funds at the University of Cyprus.

‡Department of Computer Science and Engineering, University of Connecticut, Storrs CT 06269, USA. Email:{nicolas,
aas}@engr.uconn.edu.

§Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA.

1 Introduction

Atomic (linearizable) read/write memory is one of the fundamental abstractions in distributed computing. Fault-

tolerant implementations of atomic objects in message-passing systems allow processes to share information with

precise consistency guarantees in the presence of asynchrony and failures. A seminal implementation of atomic

memory of Attiyaet al. [1] gives a single-writer, multiple reader (SWMR) solutionwhere each data object is

replicated atn message-passing nodes. In this solution memory access operations are guaranteed to terminate

as long as the number of crashed nodes is less thann/2, i.e., the solution tolerates crashes of any minority of

the nodes. The write protocol involves a single communication round-trip, while the read protocol involves two

communication round-trips, where the second round-trip essentially performs the write of the value obtained in the

first round-trip. Following this development, a folklore belief developed that in message-passing implementations

of atomic memory “reads must write”. However, recent work byDutta et al. [3] established that if the number

of readers is appropriately constrained with respect to thenumber of object replicas, then single communication

round implementations of reads are possible. Such an implementation given in [3] is calledfast. Furthermore it

was shown that any implementation with a large, unconstrained set of readers cannot have only the single round-

trip reads. Thus when the number of readers can be large, it isinteresting to considersemifastimplementations

where the writes involve a single communication round and where the reads may involve one or two rounds with

the goal of having as many as possible single round reads. We note that a communication round-trip involves two

communication steps, and henceforth we refer to a communication round-trip as a communication round (defined

formally in Section 2.2).

1.1 Background Details

The implementation of atomic SWMR objects in [1] usesvalue-timestamppairs to impose a partial order on read

and write operations. To perform a write operation, the writer increments its local timestamp and sends a message

with the value-timestamp pair to all processes. When a majority of processes reply, the write completes. The

process performing a read operation sends out queries and waits for a majority of the processes to reply with their

value-timestamp pairs. When a majority of the processes replies, the reader finds the highest timestamp and sends

the pair consisting of this timestamp and its associated value to all processes. The read completes when the reader

receives acknowledgments from a majority of processes. Although the value of the read is established after the

first communication round, skipping the second round may lead to violations of atomicity when read operations

are concurrent with a write.

Subsequent works extended the approach in [1] to multiple writers, each involving a two round-trip communi-

cation protocol, and using quorums of replicas instead of majorities [10, 4]. A fully dynamic atomic memory im-

plementation using reconfigurable quorums is given in [9], where the sets of object replicas can arbitrarily change

2

over time as processes join and leave the system. When the setof replicas is not being reconfigured, the read and

write protocols involve two communication rounds. Retargetting this work to ad-hoc mobile networks, Dolevet

al. [2] formulated the GeoQuorums approach where replicas are implemented by stationaryfocal pointsthat in turn

are implemented by mobile nodes. Interestingly, in this work some reads involve a single communication round

when it is confirmed that the previous write of the value obtained by the read has already completed.

The implementation of atomic SWMR objects in [3] assumes asynchronous message-passing systems with

reliable channels. Here read and write operations arefast, i.e., involve a single communication round, but under

the constraint thatR < S
t
− 2, whereS is the number of servers maintaining object replicas,R is the number

of readers, such that the writer, any subset of readers, and up to t servers may crash. The general scheme of

the algorithm follows the write operation and the value-timestamp pair technique of [1]. The major departure

appears in the execution of a read operation: to decide on thelatest value of the replicated object, the read utilizes a

predicate on the number of replicas that maintain the maximum timestamp and the number of readers that witnessed

the maximum timestamp. Note that for any numbert ≥ 1 of failures the number of readers must be strictly less

than the number of servers, and the number of readers is inversely proportional to the number of server failures. A

fast implementation cannot exist in the case of multiple readers and multiple writers. For example, it is shown that

in the setting where 2 writers and 2 readers exist in the system andt = 1, atomicity can be violated.

1.2 Our Contributions

Our goal is to develop atomic memory algorithms where a largenumber of read and write operations are fast, i.e.,

involving a single communication round. In particular, we want to remove constraints on the number of readers

(with respect to the number of replicas) while preserving atomicity.

We say that an atomic SWMR implementation issemifastif write operations take a single communication

round and where read operations take one or two rounds. We show that one can obtain semifast implementations

with unbounded number of readers, where in many cases reads take a single round. Our approach is based on form-

ing groups of processes where each group is given a unique virtual identifier. The algorithm is patterned after the

general scheme of the algorithm in [3]. We show that for each write operation at most one complete read operation

returning the written value may need to perform a second communication round. Furthermore, our implementation

enables non-trivial executions where both reads and writesare fast, i.e., involve a single communication round. We

also provide simulation results for our algorithm, and we consider semifast implementations for multiple writers.

In more detail, our contributions are as follows.

1. We define the notion of asemifastimplementation of atomic objects that specifies what read operations

are required to be fast and what read operations are allowed to perform a second communication round

(Definition 2.3). In particular, a read operation must be fast if it precedesor succeedsa completeread

3

operation that performs two communication rounds, when both reads return the value written by the same

write operation. The read operations concurrent with a “slow” read operation, may or may not be fast.

2. We provide a semifast implementation of an atomic read/write object that supports arbitrarily many readers

(Implementation SF). To accommodate arbitrarily many readers, we introduce the notion ofvirtual identifiers

and allow multiple readers to share the same virtual identifier, thus forming groups of nodes that we call

virtual nodes. We base the determination of the proper return value on the cardinality of the set of virtual

nodes maintained by the servers (this is similar to the algorithm in [3] that uses the cardinality of the set of

the readers maintained by the servers to determine the return value) . We prove the correctness (atomicity) of

the new implementation (Theorem 4.11) and we show that it is indeed semifast (Theorem 5.3). We note that

our implementation is not a straightforward extension of [3]. The introduction of virtual nodes raises new

challenges such as ensuring consistency within groups so that atomicity is not violated by processes sharing

the same virtual id, and proving the resulting implementation correct.

3. We consider two families of algorithms, one that does not use reader grouping mechanisms, the other that

assumes grouping mechanisms such as our algorithm. For bothwe show that there is no semifast atomic

implementation ifS
t
−2 or more virtual identifiers (groups) exist in the system. Additionally it is shown that

any semifast algorithm must inform no less than3t + 1 server processes during a second communication

round (Theorem 6.3).

4. We show that there does not exist semifast atomic implementations for multiple writers and multiple readers,

even fort = 1 (Theorem 7.2).

5. We simulated our SWMR implementation and we present sample results demonstrating that only a small

fraction of read operations need to perform a second communication round. Specifically, under reasonable

execution conditions in our simulations no more than7.5% of the read operations required a second round.

1.3 Paper Organization

The paper is organized as follows. In Section 2 we present ourmodel and definitions (including the formal defini-

tion of semifastimplementation). In Section 3 we describe our SWMR semifastimplementation, in Section 4 we

prove that it implements atomic read/write registers, and in Section 5 we show that our implementation is indeed

semifast. In Section 6 we show the necessary properties thata semifast implementation must possess in order to

correctly implement atomic registers. In Section 7 we show that no semifast MWMR implementation is possible.

Section 8 contains simulation results. We conclude in Section 9.

4

2 Model and Definitions

We consider the single writer, multiple reader (SWMR) model. The single writer is a distinguished processw.

There areR readers that are processes with unique ids from the setR = {r1, . . . , rR}. The writer and any subset

of the readers may crash. The object is replicated atS servers with unique ids from the setS = {s1, . . . , sS}.

Any proper subset ofS of at mostt servers can crash (t < S
2). A virtual nodeis an abstract entity that consists

of a group of reader processes. Each virtual node has a uniqueidentifier from the setV = {ν1, . . . , νV }, where

V < S
t
−2. A readerri that is a member of a virtual nodeνj maintains its own identifierri and its virtual identifier

ν(ri) = νj; we identify such process by the pair〈ri, νj〉. The processes that share the same virtual identifier are

calledsiblings. We assume that some external service is used to create virtual nodes by assigning virtual ids to

reader processes. (Note that whenV = R and when each virtual node consists of a single unique reader, then

our model is essentially that of [3].) We point out that creation of virtual nodes can be accomplished by a local

computation. This is due to the fact that the reader participants are not required to have knowledge of their siblings

or the membership of other virtual nodes. Thus, a simple inexpensive assignment of virtual ids to nodes may

utilize the nodes’ own identifiers. In particular, each noderi can use the knowledge ofS, t andV = S
t
− 3, and

use modulo arithmetic to computev(ri) = ri mod V (this is what we employ in our algorithm and simulation).

Observe that a uniform distribution of the readers in the virtual nodes will be achieved using this technique.

Each processp is associated with an application. The application asks theprocess to invoke an operation and

the process responds to the application with the result. We assume a reliable channel between any two processes

and that the messages carry a source and a destination field. The state of all channels is represented by the setmset

that contains all messages sent but not yet delivered; such messages are said to bein transit.

An algorithmA is a collection of automata, whereAp is the automaton assigned to the processp with an initial

stateInitp. Computation ofA proceeds instepswhere each step denotes actions of a single process. In particular

each step is described by an ordered tuple

〈st, p,mIn, inv,mOut, res〉

wherest is the state of the system,p is the process id,mIn the messages received by the processp in that step,

inv the invocation submitted to processp by the application,mOut the output messages of processp, andres is

the response of the process to the application in that step. The statest includes the set of messagesmset and the

state of each processi in the system, denoted bysti. Wheninv = ⊥ there is no invocation at that step and when

res = ⊥ there is no response to the application. WhenmIn = ∅ or mOut = ∅ then there are no messages to be

received or to be sent out in that step respectively.

For a processp and a step〈st, p,mIn, inv,mOut, res〉, thenext statest′ is determined through the following

actions: (0)st′ is set tost, (1) st′.mset is set tost.mset − mIn, (2) processp inputsmIn, inv, and its current

5

statestp to Ap, which outputs a new state tost′p, the messagesmOut to be sent, and the responseres to the last

invoked operation, and (3)p adopts the statest′p as its new state, setsst′.mset to st′.mset ∪ mOut, and responds

with res to the application.

The step〈st, p,mIn, inv,mOut, res〉 is aninvocation stepif inv 6= ⊥, it is aresponse stepif res 6= ⊥, and a

communication stepif mOut 6= ∅ and bothinv andres are equal to⊥.

An execution fragmentϕ of an algorithmA is a finite or infinite sequence of stepsσ0, σ1, . . . , σr, . . . of A.

An execution fragment is called anexecutionof A if the state in the first step iss0, the initial state of the system,

wheres0.mset = ∅, and for each processi, s0i = Initi. We use the symbolξ to denote executions. We say that

an execution fragmentϕ′ extendssome finite execution fragmentϕ if the last step ofϕ is σ = 〈st, , , , , 〉, and

if the first step inϕ′ is σ′ = 〈st′, , , , , 〉, such thatst′ is the next state followingσ.

A process can crash during any step of an execution. Following a crash the process does not perform any steps.

A process is considered to befaulty in executionξ if it crashes inξ; otherwise the process iscorrect.

2.1 Atomicity

Our goal is to implement a read/write atomic object in a message passing system by replicating the value of

the object among the servers in the system. Each replica consists of the valuev, initially ⊥, and the associated

timestampts, initially 0. A read or a write operation at an application consists of an invocation step and a matching

response step. An operation isincompletein an execution, if the operation’s invocation step does nothave a

matching response step; otherwise the operation iscomplete. We assume that application executions arewell-

formedin that it invokes one operation at a time: it waits for a response before invoking another operation.

In an execution we say that an operation (read or write)π1 precedesanother operationπ2, or π2 succeedsπ1,

if the response step forπ1 precedes the invocation step ofπ2; this is denoted byπ1 → π2. Two operations are

concurrentif neither precedes the other.

Correctness of an implementation of an atomic object is defined in terms of theterminationand atomicity

properties. The termination property requires that any operation invoked by a correct process eventually completes,

provided that failures are constrained by the stated failure model. Atomicity is defined as follows [8]: Consider the

setΠ of all complete operations in any well-formed execution. Then for operations inΠ there exists an irreflexive

partial ordering≺ satisfying the following: (1) For any operationπ, there are finitely many operationsπ′ such that

π′ ≺ π. (2) If for operationsπ1 andπ2, π1 → π2, then it cannot be the case thatπ2 ≺ π1. (3) If π is a write

operation andπ′ is any operation, then eitherπ ≺ π′ or π′ ≺ π. (4) The value returned by a read operation is the

value written by the last preceding write operation according to≺ (or ⊥ if there is no such write).

6

2.2 Semifast Implementations

We want to define a read or write operationπ to befast if it completes in one communication round.

Definition 2.1 A processp performs acommunication round during operationπ in an execution if all of the

following hold:

(1) p sends the messagesm ∈ mOut, during the invocation step of operationπ or a communication step during

π, to a subset of processes,

(2) any processp′ that receivesm ∈ mIn from p during a stepσ, replies top with a messagem′ ∈ mOut within

the same step,1

(3) whenp receives at least one reply messagem′ ∈ mIn, it either performs a response step forπ or inserts a set

of messages inmOut and performs a communication step.

We now formally define fast operations and implementations.

Definition 2.2 Let π be an operation invoked at processp by an application. Ifp responds to the application

within the first communication round following the invocation ofπ (in (3) of the above definition), then we say that

π is fast. An implementation of an atomic object isfast if all read and write operations are fast in every execution.

A semifast atomic implementation, as suggested in [3], is the implementation that either has all reads that are

fast or all writes that are fast. Here we formalize the notion of semifast implementations. We use the reading-

functionR(ρ) [11] that specifies the (always unique) write operation thatwrites the value returned by readρ.

Definition 2.3 An implementationI of an atomic object issemifast if the following are satisfied:

(1) In any executionξ of I, everywrite operation is fast.

(2) In any executionξ of I, any completereadoperation performs one or two communication rounds betweenthe

invocation and response.

(3) For any executionξ of I, if ρ1 is a two-round read operation, then any read operationρ2 with R(ρ1) = R(ρ2),

such thatρ1 → ρ2 or ρ2 → ρ1, must be fast.

(4) There exists an executionξ of I which contains at least one write operationω, and at least one read operation

ρ1 which is concurrent withω andR(ρ1) = ω, such that all read operationsρ with R(ρ) = ω (includingρ1) are

fast.

Notice that property (4) of the above definition requires at least a single fast read operation to be concurrent

with the write operation. So trivial solutions that achievefast operations only in the absence of read and write

1Notice that processp′ replies top either at the same stepσ or during a subsequent stepσ
′, if p

′ does not receive any messages between
σ and (inclusively)σ′. Intuitively this property is used to forbid processes to wait for other messages before replying top.

7

concurrency cannot satisfy property (4). In implementations of atomic objects, we refer to the messages that

contain a value to be written to the object asWRITE messages, and we call the messages that request the value of

the object asREAD messages. The messages used to propagate information within the system are calledINFORM

messages.

Communication Scheme: We make the following observations in light of Definition 2.3. Given that any subset

of the readers and the writer may fail, in order to guarantee termination, we cannot allow any reader or the writer

process to wait for replies from any other such process during a read or a write operation. Since we require that

the writes are fast, the servers cannot wait for any messagesbefore replying to aWRITE message. Read operations

on the other hand are allowed to perform two communication rounds. Two-round reads can have one of the two

forms: (i) the reader process may contact the servers twice,(ii) the reader may send messages to the servers during

the first round, the servers perform a communication step andcontact other servers in the second round and then

reply to the reader ending the first round. If the servers are responsible for the second communication round,

then it may be the case that all read operations need two rounds to complete, violating semifast properties (3)

and (4). Worse yet, a server may fail during its second round preventing an operation from completing. Hence

both communication rounds must be performed by the reader when it decides it is necessary to do so according

to the information gathered during the first round. Thus fromnow on we assume that the servers in the semifast

implementation, upon receiving aREAD or INFORM message, cannot wait for messages from any other process

before replying. (Alternatively we can construct executions where only theREAD, WRITE and INFORM messages

from the invoking processes to the servers and the replies from the servers are delivered. All the other messages

remain in transit.)

3 Description of Implementation SF

We now present a semifast SWMR atomic object implementation, called SF, that supports arbitrarily many readers.

We assume that the numberV of unique virtual ids is such thatV < S
t
− 2. (We show in Section 6 that semifast

implementations are impossible whenV ≥ S
t
− 2.) Recall that each replica consists of a value and its associated

timestamp. For simplicity we give the algorithm that returns only the timestamps; then we describe a straight-

forward modification that returns the value along with each timestamp. The pseudocode of the implementation is

given in Figure 1; line numbers throughout this section refer to this figure. Also in the same figure, the fields that

are not required are represented by the “*” symbol in the messages.

Briefly, the write protocol involves the increment of the timestamp and its propagation to all the servers. The

operation completes once the writer receivesS− t replies from the servers. The read protocol is more complicated.

A reader sends read messages to all the servers and once it receivesS−t replies, determines the value to be returned

8

by consulting the validity of a certain predicate. The predicate considers (i) the maximum timestamp witnessed

within the replies, (ii) the number of servers that replied with that timestamp, and (iii) the number of virtual

nodes whose members witnessed that timestamp through thoseservers. The idea behind the predicate is presented

in detail later in this section. If the predicate holds then the reader returns the maximum timestamp (maxTS);

otherwise it returns the previous timestamp (maxTS − 1). Each server process maintains an object replica and

updates its object value when it receives a message that contains a timestamp greater than its local timestamp.

The server also records the virtual nodes that requested itsobject and replies with the information about the object

(timestamp,value) along with the recorded set of virtual nodes. Notice that by the read predicate this information

is essential for the determination of the value of the atomicobject.

Before proceeding to the description of the algorithm we first introduce some notation we use throughout this

section and the rest of the paper. For the writer we denote byωk the kth write operation and bySωk
the set of

servers that received messages from the writer duringωk. Each read operation is denoted byρi. We say that a read

operationρi is invoked by the reader〈rj, νk〉, whererj is the identifier andνk the virtual identifier of the reader.

For each read operationρi, let Sρi
denote the set of servers that received messages from the process〈rj , νk〉 that

invoked ρi and replied to those messages. Furthermore letMaxSρi
be the set of servers that replied with the

maximum timestamp forρi, and thereforeMaxSρi
⊆ Sρi

. The set of messages received from〈rj , νk〉 for ρi

containing the maximum timestamp and sent by the servers inMaxSρi
, is represented byMSρi

. The maximum

timestamp received by〈rj, νk〉 for the readρi is represented asTSρi
. If a read operationρi performs a second

communication round, then we denote asNSρi
to be the set of servers that received the messages from the second

communication round ofρi and replied to those messages. In this case we say thatρi informsthe servers inNSρi
.

Lastly for a processp we denote astsp the value of the timestamp ofp and aspostitp the value of the postit variable

atp.

The Writer. The writerw maintains the timestamp and it performs a write operation asfollows. It sends aWRITE

message consisting of its current timestamp to all the servers (line 8). Sincet of the servers might be faulty,w

waits for responses from anyS − t servers (line 9). Upon receipt these acknowledgments the writer increases its

timestamp and completes the operation (lines 9-10). The timestamps impose a natural order on the writes since

there is only one writer.

Servers. Each server maintains a replica of the object; this is represented by the object timestamp. The state of a

server includes the following variables: (1)ts, the greatest timestamp received by the server, (2) the setseenwhere

the server records thevirtual ids of the readers that inquired about the latest timestamp of the server, (3) the array

counterof naturals, used to distinguish fresh messages from stale messages from each process (due to asynchrony

messages may arrive out of order), and (4) the variablepostit, used by readers to inform, if necessary, other readers

9

1: at the writerw
2: Components:
3: ts ∈ N+, wCounter ∈ N+, v ∈ U

4: procedure initialization:
5: ts← 1, wCounter← 0
6: procedure write(v)
7: wCounter← wCounter + 1
8: send(WRITE, ts, wCounter,0) to all servers
9: wait until receive(WRITEACK, ts, ∗, wCounter, ∗) from S − t servers

10: ts← ts + 1 /* reserve a new timestamp * /
11: return(OK)
12:
13: at each readerri

14: Components:
15: ts ∈ N

+, maxTS ∈ N
+, maxPS ∈ N

+, rCounter ∈ N
+, v ∈ U

16: rcvMsg ⊆M, maxTSmsg ⊆M, maxPSmsg ⊆M

17: procedure initialization:
18: vid(ri)← ri mod (S

t
− 3), ts← 0, rCounter← 0, maxTS ← 0, maxPS ← 0 /* initialize the virtual ID and other params * /

19: rcvMsg ← ∅, maxTSmsg ← ∅, maxPSmsg ← ∅
20: procedure read()
21: rCounter← rCounter + 1
22: ts← maxTS

23: send(READ, ts, rCounter, vid(ri)) to all servers
24: wait until receive(READACK, ∗, ∗, Counter, ∗) from S − t servers s.t.Counter = rCounter

25: rcvMsg ← {m|ri receivedm = (READACK, ∗, ∗, rCounter, ∗)}
26: maxTS ← max{ts′|(READACK, ts′, ∗, rCounter, ∗) ∈ rcvMsg}
27: maxTSmsg ← {m|m.ts = maxTS andm ∈ rcvMsg} /* gather rcvd messages that contain maxTS * /
28: maxPS ← max{postit|(READACK, ∗, ∗, rCounter, postit) ∈ rcvMsg}
29: maxPSmsg ← {m|m.postit = maxPS andm ∈ rcvMsg}
30: for α = 1 to V + 1 do /* look for the minα that satisfies the predicate * /
31: if there isMS ⊆ maxTSmsg s.t. (|MS| ≥ S − αt) and (| ∩m∈MS m.seen| ≥ α) then /* check validity of the predicate * /
32: if | ∩m∈MS m.seen| = α and (maxPS < maxTS or |maxPSmsg| < t + 1) then
33: send(INFORM, maxTS, rCounter, vid(ri)) to 3t + 1 servers
34: wait until receive(INFORMACK, ∗, ∗, rCounter, ∗) from 2t + 1 servers
35: end if
36: return(maxTS)
37: exit procedure read() /* return maxTS and exit * /
38: end if
39: end for
40: if maxPS = maxTS then /* α not found so we check the postit * /
41: if |maxPSmsg| < t + 1 then /* proceed to a2nd comm. round if “few” postits found * /
42: send(INFORM, maxTS, rCounter, vid(ri)) to 3t + 1 servers
43: wait until receive(INFORMACK, ∗, ∗, rCounter, ∗) from 2t + 1 servers
44: end if
45: return(maxTS)
46: exit procedure read()
47: else
48: retutn(maxTS − 1)
49: exit procedure read() /* if neither α or postits = maxTS found returnmaxTS − 1 * /
50: end if
51:
52: at each serversi

53: Components:
54: ts ∈ N

+, counter[0...R] ∈ N
+, v ∈ U, postit ∈ N

+

55: msgType ∈ {WRITE,READ,INFORM}, seen ⊆ V ∪ {w}
56: procedure initialization:
57: ts← 0, seen← ∅, counter[0...R]← 0, postit← 0
58: procedure serve()
59: upon receive(msgType, ts′, rCounter′, vid) from q ∈ {w, r1, . . . , rR} and rCounter′ ≥ counter[pid(q)] do
60: if ts′ > ts then /* update local timestamp and seen sets as necessary * /
61: ts← ts′; seen← {vid};
62: else
63: seen← seen ∪ {vid}
64: end if
65: counter[pid(q)]← rCounter′ /* pid(q) returns 0 ifq = w andi if q = ri * /
66: if msgType =READ

67: send(READACK, ts, seen, rCounter′, postit) to q

68: else ifmsgType =WRITE

69: send(WRITEACK, ts, seen, rCounter′, postit) to q

70: else ifmsgType =INFORM

71: if postit < ts′ then
72: postit← ts′ /* update postit value if necessary * /
73: end if
74: send(INFORMACK, ∗, ∗, rCounter′, postit) to q

75: end if

Figure 1: Implementation SF.

10

about the timestamp they are about to return.

We now describe the operation of a serversi when it receives a message(msgType, ts′, rCounter′, vid) from

a non-server processpj (line 59). Upon receipt of this message, serversi updates its timestampts if ts′ > ts and

initializes itsseenset to{ν(pj)}, the virtual id ofpj (lines 60-61). Otherwise, ifts′ ≤ ts, si sets itsseenset to be

equal toseen∪ {ν(pj)} (line 63) declaring thatpj inquiredsi’s timestamp. This is a departure from the algorithm

in [3]: we record the virtual identifier ofpj , using its unique identifier only for message exchange. By doing so we

manage to keep|seen| < S
t
− 2 (required for correctness) without having to bound the number of readers. Server

si then sends an appropriate reply topj acknowledging the request. If aREAD, WRITE or INFORM message was

received then the reply is aREADACK, WRITEACK, or anINFORMACK, respectively (lines 66-75).

Receiving anINFORM message denotes that processpj wants to inform the rest of the reader processes about

the timestamp it is about to return. Before replying to such message,si updates itspostit value, provided the

received timestampts′ is greater thanpostit (lines 71-73). Otherwisepostit is not updated, sincets′ is an “older”

timestamp thanpostit (updatingpostitwith an older timestamp may lead to violation of atomicity).

Along with any reply,si encloses its timestampts, its seenset, itscounter, and the value ofpostit.

Reader. The actions of a reader node with idri and virtual idν(ri) = νj are as follows (lines 13-50). Each

reader maintains the following state: (1) variablemaxTS, which holds the maximum timestamp that a reader

received from the servers during the reader’s last read operation, (2) variablerCounter to count the number of

read operations performed by the reader (used to distinguish fresh messages from stale messages from the reader),

(3) variablemaxPS that holds the maximumpostit value that the reader witnessed among the responses.

The readerri performs a read operation as follows. Upon invocation, it sends messages to all servers and waits

for S − t responses (lines 23-24). Each of these responses is of the form (READACK, ts′, seen,Counter, postit).

While collecting these messages,ri checksCounter to distinguish fresh messages (withCounter = rCounter)

from stale messages, and then records the maximum timestampmaxTS = ts′ (line 26) and the maximum postit

maxPS = postit value (line 28) contained among the received messages. Based on the received information,

readerri computes the set of messagesmaxTSmsg that contained the maximum timestamp (line 27). Then a key

predicate (line 31) is used to decide the return value: the reader searches for the minimumα ∈ [1, V + 1] such that

there exists a subsetMS ⊆ maxTSmsg with cardinality|MS| ≥ S−αt, and the cardinality of the intersection of

the seen sets of the messages inMS is |∩m∈MS m.seen| ≥ α. If such anα exists then the reader returnsmaxTS.

Else it returnsmaxTS − 1. This predicate, informally, asks the following question:“have enough processes seen

maxTS timestamp that the reader received?”

In order to visualize the idea behind the predicate considera finite execution fragmentϕ1 where the writer

performs a complete write operationω that receives replies from the setSω of servers, such that|Sω | = S − t.

We extendϕ1 by a complete read operationρ1 that missest servers from those that responded inω, such that

11

|MSρ1
| = |Sω ∩ Sρ1

| = S − 2t, whereSρ1
is the set ofS − t servers that responded inρ1. Atomicity requires

ρ1 to returnTSρ1
= maxTS. Consider now another executionϕ2 where the write operationω is incomplete and

receives replies from exactly|Sω | = S − 2t servers. We extendϕ2 with a read operationρ1 at ri that receives

replies from|Sρ1
| = S − t servers, including the servers inSω . So |MSρ1

| = |Sω ∩ Sρ1
| = S − 2t and thus

ρ1 cannot distinguish executionϕ2 from ϕ1. Hence, by atomicity,ρ1 must returnTSρ1
= maxTS in ϕ2 as

well. By extendingϕ2 even further by a second read operationρ2 at rj we might get into the situation where

|MSρ2
| = |Sω1

∩ Sρ2
| = S − 3t, with |Sρ2

| = S − t the servers that responded inρ2. But in order to preserve

atomicity, the readerrj must also returnTSρ2
= maxTS. This scenario can be generalized for more than two read

operations and so the predicate in line 31 of the algorithm inFigure 1 serves to preserve atomicity of the different

read operations.

Note here that the above scenario assumes the recording of the unique ids of the readers in theseenset. Our

approach is for the servers to record the virtual ids of the readers. So it is possible that after two subsequent read

operations the cardinality of the seen set remains the same.Hence in the above scenario, if bothri andrj belong in

the same virtual nodeνk, then forρ1 andρ2 in ϕ2 it is the case that| ∩m∈MSρ1
m.seen| = | ∩m∈MSρ2

m.seen| =

|{w, νk}| = 2. In this case the predicate holds forρ1, so it returnsmaxTS, but it does not hold forρ2, and if it

returnsmaxTS − 1 it would violate atomicity.

A second communication round is necessary whenri satisfies the predicate such that| ∩m∈MS m.seen| = α.

During the second communication round,ri informs3t + 1 servers about the timestamp it is about to return. Since

t servers might be faulty,ri completes as soon as it receives2t + 1 acknowledgments and returnsmaxTS.

In the case where the predicate is false, readerri checks if there was anypostit equal tomaxTS observed,

as advertised within the received messages. If so, then somereader (previously or concurrently withri) returned

or is about to returnmaxTS. If ri receives more thant + 1 messages containing that postit, it returnsmaxTS

without performing a second communication round; otherwise a second communication round is required byri to

ensure that any subsequent reader will receive the same postit. If neither postit equalsmaxTS, thenri returns

maxTS − 1 in one communication round.

Returning values with timestamps. A slight modification needs to be applied to the algorithm to associate

returned timestamps with values. To do this the writer attaches two values to the timestamp in each write operation:

(1) the current value to be written, and (2) the value writtenby the immediately preceding write operation (for the

first write this is⊥). The reader receives the timestamp with its two attached values. If, as before, it decides to

returnmaxTS, then it returns the current value attached tomaxTS. If the reader decides to returnmaxTS − 1,

then it returns the second value (corresponding to the preceding write).

12

4 SF Implements an Atomic Read/Write Register

We now prove the correctness of algorithm SF. Generally speaking processes can fail in any stage of their execution.

We do not assume that in algorithm SF (Figure 1) the lines of code are executed atomically: processes may crash

in the middle of a line or between the lines. In particular, while sending messages to a set of processes, the sending

process may crash after sending messages to an arbitrary subset (however each message is sent in its entirety). In

the rest of the section we use the notation presented in Section 3.

Since the correctness of our implementation depends mainlyon the timestamps written and returned, we reduce

the properties of the atomicity presented in Section 2, to the following:

A1: If a read operation returns, it returns a non-negative integer,

A2: if a readρ is complete and succeeds some writeωk, thenρ returnsℓ such thatℓ ≥ k,

A3: if a readρ returnsk (k ≥ 1), thenωk either precedesρ or is concurrent withρ,

A4: if some readρ1 returnsk (k ≥ 0) and a readρ2 that succeedsρ1 returnsℓ, thenℓ ≥ k.

We will show that implementation SF preserves each and everyof the above conditions in any given execution.

We begin with a lemma that plays a significant role in the correctness of our implementation. The lemma

follows from the fact that no more thant servers might fail and that the communication channels are reliable.

Lemma 4.1 Let two readers with actual ids〈ri, νk〉 and 〈rj , νk〉 be siblings and make subsequent readsρ1 and

ρ2, respectively. Then, for any executionξ of SF,| |MaxSρ1
| − |MaxSρ2

| | ≤ t.

We now proceed to show atomicity conditionA1.

Lemma 4.2 For any executionξ of SF, if a read operation inξ returns, it returns a non negative integer.

Proof. Consider an executionξ of SF. As previously noted the servers initially inξ maintain a timestampts = 0.

Consider now a read operationρ1 in ξ that is performed by the reader〈ri, νi〉 and precedes any write operation. It

follows thatρ1 will receive≥ S − t replies withTSρ1
= 0. Before replying toρ1, each serversj ∈ Sρ1

adds the

virtual id, νi, of the reader in its seen set. Since all the servers inSρ1
will reply with the same timestampts = 0

and since the seen set of eachsi ∈ Sρ1
contains at least the elementνi, it follows thatMSρ1

≥ S − t and the

predicate will be true forα = 1. Therefore,ρ1 will return TSρ1
= 0 which is not negative.

We now consider the case where a write operation precedes theread operationρ1 in executionξ. The writer

invokes awrite(x) operation wherex ≥ 1 the timestamp to be written. Sincewrite(x) is invoked we have that

write(x − 1) is completed and so the operationρ1 will receive TSρ1
= x or TSρ1

= x − 1. If TSρ1
= x, ρ1

will return eitherts = x or ts = x − 1 and sotsri
≥ 0. If TSρ1

= x − 1, and sincewrite(x − 1) is completed,

13

then at least|MaxSρ1
| = S − 2t servers would reply tord1 with timestampts = x − 1. Moreover, every server

si ∈ MaxSρ1
, received messages from the write operationwrite(x − 1) and thus added the identifierw of the

writer in their seen set before replying to the write operation. Also everysi ∈ MaxSρ1
added the virtual id of the

reader,νi, in their seen set before replying toρ1. Since the writer does not have any sibling process we have that

w 6= νi and so the cardinality of the seen set of eachsi ∈ MSρ1
is greater or equal to2. Therefore, the predicate

will be true forα = 2 for ρ1 and so the read operation will returnts = x − 1 ≥ 0. This completes the proof. �

We now show that the timestamp of any server is monotonicallyincreasing.

Lemma 4.3 In any executionξ of SF, if a serversi sets its timestamptssi
to x at stepσ, then, given any stepσ′ of

ξ such thatσ < σ′ andtssi
= y, we have thaty ≥ x.

Proof. This can be ensured by line 44 of implementation SF (Figure 1). If we consider an executionξ of SF,

observe that a serversi only changes its timestamptssi
, if the timestamp received,tsx, is tsx > tssi

. If the

condition is true thensi upgrades its timestamp bytssi
= tsx, otherwisetssi

remains unchanged. This assures

that the timestamp on the server site increases monotonically. �

We now show the monotonicity of the postits for any server.

Lemma 4.4 In any executionξ of SF, if a serversi sets itspostitsi
to x at stepσ, then, given any stepσ′ of ξ such

thatσ < σ′ andpostitsi
= y, we have thaty ≥ x.

Proof. This is ensured by line 56 of implementation SF (Figure 1). �

Given the above lemmas we prove the second atomicity property (A2):

Lemma 4.5 For any executionξ of SF if a readρ1 is complete and succeeds some writeωk (ωk → ρ1), thenρ1

returnsℓ such thatℓ ≥ k.

Proof. Suppose that the writerω performs aωk operation and precedes the readρ1 operation by reader〈ri, νi〉

during an executionξ of SF. LetSωk
be theS − t servers that replied toωk in the same execution. The intersection

betweenSωk
andSρ1

, MaxSρ1
= Sωk

∩ Sρ1
, is obviously|MaxSρ1

| ≥ S − 2t. Sinceωk → ρ1 the timestamp

ts for each server inMaxSρ1
, per Lemma 4.3, is greater or equal tok. Soρ1 received a maximum timestamp

TSρ1
such thatTSρ1

≥ k. From the implementation we know that the reader returns eitherTSρ1
or TSρ1

− 1. We

consider two cases:

Case 1: TSρ1
> k. Sinceρ1 returns eitherTSρ1

or TSρ1
− 1, it follows that either case it returns a timestamp

greater or equal tok.

Case 2: TSρ1
= k. As we mentioned above each server inMaxSρ1

replies with ats ≥ k. SinceTSρ1
= k

14

every serversi ∈ MaxSρ1
replies with a timestampts = k to ρ1. So the setMSρ1

, which contains the messages

received byρ1 with the highest timestamp, will include the messages sent by all the servers inMaxSρ1
. So

|MSρ1
| ≥ S − 2t. But since the writer sent a message with timestampk to the servers beforeρ1, thenw is

included in theseen set of each server inMaxSρ1
. Before the servers inMaxSρ1

responded toρ1 they also

includedνi in theirseen set. So the predicate will be true forα = 2 andρ1 will return TSρ1
= k. Observe that any

read operation returnsTSρ1
, since the writerw has no sibling, and thus the predicate holds forα = 2 no matter

which reader performs the read operation. �

We say that apostit = x is introduced in the system by a read operationρ, if ρ is complete, performs

two communication rounds, and for everyINFORM message (INFORM, ts, ,) it sends during its second round,

ts = x. The following lemma ensures that if apostit = x is introduced to the system, then there exists a maximum

timestampts in the system such thatts ≥ x.

Lemma 4.6 For any executionξ of SF, if apostit = x is introduced in the system by a read operationρ1, then

any succeeding read operationρ2 will observe a maximum timestampts′ such thatts′ ≥ x.

Proof. Consider an executionξ of SF where the read operationρ1 introduced a postit equal tox to the system. It

follows thatρ1 observed as the maximum timestamp in the systemTSρ1
= x. Assume that|MSρ1

| ≥ S −αt and

|∩m∈MSρ1
m.seen| = α, and thusρ1 performs an informative operation. Sinceα ∈ [1, V +1] andS > (V +2)t, we

get that|MSρ1
| > t. So, if we denote bySρ2

the set of servers that replied to the succeeding readρ2 (|Sρ2
| = S−t),

then per Lemma 4.3 there is a server,si ∈ MaxSρ1
∩ Sρ2

that replies toρ2 with a timestampts′ ≥ x. Therefore,

ρ2 detects a maximum timestampTSρ2
≥ ts′, and henceTSρ2

≥ x. �

Lemma 4.7 For any executionξ of SF if a read operationρ1 receives apostit = x thenρ1 will return a value

y ≥ x.

Proof. Consider an executionξ of SF which contains a read operationρ1 by a reader〈ri, νi〉. It follows from

Lemma 4.6 that if readρ1 receives apostit = x, then it will detect a maximum timestampTSρ1
≥ x. Let

TSρ1
= x and so either the predicate will hold and thenρ1 will return y = TSρ1

, or the condition whether

postitri
= TSρ1

will be true and soρ1 will in this case returny = TSρ1
as well. Thusρ1 will return y = x.

If now TSρ1
> x thenρ1 will return y = TSρ1

if the predicate holds ory = TSρ1
− 1 otherwise. Note that

sincepostit = x, it is less thanTSρ1
and so the postit condition does not hold. Either caseρ1 will return a value

y ≥ x. �

We proceed to the proof of propertyA3.

Lemma 4.8 In any executionξ of SF if a read operationρ1 returnsk ≥ 1, then the write operationωk either

precedesρ1 (ωk → ρ1) or is concurrent withρ1.

15

Proof. Consider an executionξ of SF. Note that in order for a timestampts = k to be introduced in the system dur-

ing ξ a write operationωk must be invoked (since only the writer increments the timestamp). We now investigate

what happens when a reader returns a timestampts = k in ξ. LetTSρ1
be the maximum timestamp received by the

read operationρ1. Thenρ1 returns, according to the implementation, eitherk = TSρ1
or k = TSρ1

− 1. The first

case is possible if the predicate holds for the reader or if the reader observed some postit, such thatpostit = TSρ1
.

If the predicate holds thenρ1 detected timestampTSρ1
= k in |MSρ1

| ≥ S − αt messages, and sinceV < S
t
− 2

andα ≤ V + 1 then|MSρ1
| > t. So there is at least one serversi ∈ Sρ1

that received messages fromωk before

replying toρ1. If ρ1 returnsk because of a postit, then per Lemma 4.6, timestampts = k was already introduced

in the system. Thus for both casesωk is either concurrent or precedes the read operationρ1.

In the case where the reader returnsk = TSρ1
− 1 it follows that the reader detected a maximum timestamp

TSρ1
= k + 1 in the system and thus theωk+1 operation has already been initiated by the writer. Hence,ωk

operation has already been completed and precededρ1 or was concurrent and completed beforeρ1 completes. �

In order to prove the atomicity propertyA4, we first need to show that readers who belong to the same virtual

node (siblings) satisfy the property (Lemma 4.9). Then we show that the property is also true for any two non-

sibling readers in the system (Lemma 4.10). The idea behind the proofs is to investigate the possible states of the

predicate used for a read operation in SF and show that the propertyA4 is not violated by any of them. Since the

predicate is affected by the chosenα (number of replicas with the maximum timestamp) and the cardinality and

the membership of the intersection of the seen sets, we analyze each case separately.

Lemma 4.9 Let the readers〈ri, νk〉 and 〈rj , νk〉 be siblings and perform the read operationsρ1 andρ2 respec-

tively. For any executionξ of SF that containsρ1 andρ2, if ρ1 → ρ2, andρ1 returnsx thenρ2 returnsy, such that

y ≥ x.

Proof. We consider again an executionξ of SF. We first investigate the case whereri = rj. In this caseρ1 denotes

the first read operation ofri andρ2 a succeeding read operation from the same reader. Letx be the value returned

from ρ1. During the readρ2, ri sends aREAD message withtsri
= TSρ1

≥ x. This message will be received by

all servers inSρ2
which according to Lemma 4.3 will reply with a timestampts′ ≥ TSρ1

≥ x. SoTSρ2
≥ x. If

TSρ2
= x then|MSρ2

| = S − t and the predicate holds forα = 1. Thusy = TSρ2
= x. Otherwise, ifTSρ2

> x,

the return valuey will be equal toTSρ2
or TSρ2

− 1 and thusy ≥ x. By a simple induction we can show that this

is true for every read operation ofrj(includingρ2) afterρ1. For the rest of the proof we assume thatri 6= rj . We

investigate the following two possible cases: (1)ρ1 returnsx = TSρ1
− 1 and (2)ρ1 returnsx = TSρ1

. In all of

the cases we show thatx ≤ y or that the case is impossible.

Case 1:In this casex = TSρ1
− 1. Therefore, some servers replied toρ1 with TSρ1

= x + 1, and hence a write

operationωx+1 started beforeρ1 is completed. Soωx completed beforeρ1 has completed and thereforeωx → ρ2

16

sinceρ1 → ρ2. Thus by Lemma 4.5ρ2 returns a valuey ≥ x.

Case 2: In this casex = TSρ1
. Hence either there is someα ∈ [1, V + 1] such that|MSρ1

| ≥ S − αt

and | ∩m∈MSρ1
m.seen| ≥ α or ρ1 received apostit equal toTSρ1

from some server. We examine those two

possibilities separately.

Case 2(a): It follows thatx = TSρ1
, and there is someα ∈ [1, V + 1] such thatMSρ1

consist at leastS − αt

messages received byρ1 with ts = x and | ∩m∈MSρ1
m.seen| ≥ α. SinceV < S

t
− 2 anda ∈ [1, V + 1],

then|MSρ1
| = S − at > t. Following we investigate the cases where| ∩m∈MSρ1

m.seen| = α and| ∩m∈MSρ1

m.seen| > α. (1) First lets examine the case whereρ1 returnsx = TSρ1
because| ∩m∈MSρ1

m.seen| = α.

According to the implementation,ρ1 has to inform|NSρ1
| ≥ 2t + 1 servers about its return value,x. Sinceρ1

precedesρ2, at least|NSρ1
∩Sρ2

| ≥ t+1 servers, that informed byρ1, will reply to ρ2. Any serversi ∈ NSρ1
∩Sρ2

,

by Lemma 4.6 will reply with apostitsi
≥ x to ρ2 and with a timestamptssi

≥ x. Soρ2 will observe a maximum

timestampTSρ2
≥ x. According now to Lemma 4.7ρ2 will return a valuey ≥ x. (2) The second case arise when

ρ1 returnsx = TSρ1
because| ∩m∈MSρ1

m.seen| > α. We can split this case in two subcases regarding the value

returned byρ2. The two possible values thatρ2 might return isy = TSρ2
or y = TSρ2

− 1:

(i) Let first consider the case wherey = TSρ2
. Sinceρ1 returnedx = TSρ1

, as we showed in lemma 4.8 , there is

a write operationωx that precedes or is concurrent withρ1. As stated above|MSρ1
| > t and hence there is a server

si such thatsi ∈ MaxSρ1
∩ Sρ2

. By Lemma 4.3,si will send a timestampts ≥ x to ρ2, and henceTSρ2
≥ ts. So

y ≥ x.

(ii)We now get down to the case whereρ2 returnsy = TSρ2
− 1. Since|MaxSρ1

| > t, there must be a server

si ∈ MaxSρ1
∩ Sρ2

andsi replies with a timestampts ≥ x to ρ2. So the highest timestamp inSρ2
(i.e. TSρ2

=

y + 1) will be greater or equal tox. If the inequality is true, namelyy + 1 > x, then clearly the value returned by

ρ2 is y ≥ x. If the equality holds andy + 1 = x then the highest timestamp received byρ2, TSρ2
= y + 1 = x.

Hence all the servers inMaxSρ1
∩ Sρ2

replied with a timestampts = x = y + 1 to ρ2. Recall that in this

case we assumed that| ∩m∈MSρ1
m.seen| > α. Also according to Lemma 4.1,||MSρ2

| − |MSρ1
|| ≤ t and

since|MaxSρ1
| = |MSρ1

| ≥ S − αt, it follows thatρ2 will receive the maximum timestampTSρ2
= x from

|MaxSρ2
| = |MSρ2

| ≥ S − (α + 1)t servers. Let for anysi ∈ MaxSρ1
∩ Sρ2

, denote bym1 the message sent

from si to ρ1 andm2 the message sent toρ2. Obviouslym1.ts = m2.ts = x. Since the timestamp is the same

andsi sentm1 beforem2 thenm1.seen ⊆ m2.seen. As a result| ∩m∈MSρ1
m.seen| ≤ | ∩m∈MSρ2

m.seen|.

Notice that, since the two readers are siblings, if nonon-sibling reader received replies from those servers in

betweenρ1 andρ2, thenm1.seen = m2.seen and | ∩m∈MSρ1
m.seen| = | ∩m∈MSρ2

m.seen|. Either case,

| ∩m∈MSρ2
m.seen| > α and hence| ∩m∈MSρ2

m.seen| ≥ α+ 1. Observe that the predicate now is true forα+ 1

since|MSρ2
| ≥ S − (α + 1)t, and thusρ2 must returnTSρ2

= x = y + 1, contradicting the initial assumption

thatρ2 returnsy = x − 1. The same result applies in both cases whereα ≤ V andα = V + 1 since theseen set

17

remains unchanged.

Case 2(b):Hereρ1 returnsx = TSρ1
because some postits equal toTSρ1

received byρ1. We have to consider

2 cases here. Either (1)ρ1 received more thant + 1 postits, or (2)ρ1 received less thant + 1 postits. Both

cases imply that, a reader〈rm, νn〉 perform a readρ1a, and is about to return or already returned the maximum

timestamp (which is equal toTSρ1
) in the system. Furthermore implies thatρ1a initiated an informative phase

which is concurrent or precedes the read operationρ1. By analyzing the cases we obtain the following results:

(1) If ρ1 received more than or equal tot + 1 messages containing a postit with valuepostit = TSρ1
= x, then

the writerw initiated aωx operation during or beforeρ1 is completed. It follows thatNS1a ∩ Sρ1
denote the set

of servers that replied toρ1 and contained thepostit = TSρ1
. The readerρ2 receives replies from|Sρ2

| = S − t

servers. Since|NSρ1a
∩ Sρ1

| ≥ t + 1, then|Sρ2
∩ (NSρ1a

∩ Sρ1
)| ≥ 1. So the read operationρ2 will receive a

reply from at least one serversi ∈ NSρ1a
∩ Sρ1

. Hence, from Lemma 4.4,ρ2 receives apostitsi
≥ x from si and

according to Lemma 4.7 will return a valuey ≥ postitsi
and thusy ≥ x.

(2) Let now examine the case whereρ1 receives less thant + 1 messages containing postits with value equal to

TSρ1
. Let assume again that|NSρ1a

∩ Sρ1
| < t + 1 is the set of servers that replied withpostit = TSρ1

to ρ1.

However, in contrary to the previous case, the situation where |(NSρ1a
∩Sρ1

)∩S2| = 0 is possible. Soρ1 informs

|NSρ1
| ≥ 2t + 1 servers with apostit = TSρ1

before completing. So there exists a serversi ∈ Sρ2
∩ NSρ1

that replies toρ2. By Lemma 4.4,sj replies with apostitsj
≥ TSρ1

, and by Lemma 4.7,ρ2 returns a timestamp

y ≥ postitsj
. Henceρ2 returns a valuey ≥ x. �

We now show that the forth atomicity property is preserved bythe operations invoked from non-sibling readers.

Lemma 4.10 Let the readers〈ri, νi〉 and 〈rj , νj〉 be non-siblings and perform the read operationsρ1 and ρ2

respectively. For any executionξ of SF that containsρ1 andρ2, if ρ1 → ρ2, andρ1 returnsx thenρ2 returnsy,

such thaty ≥ x.

Proof. Consider an executionξ of SF. In this lemma we study the case whereri 6= rj andνi 6= νj in ξ, and hence

the two readers are not siblings. We proceed in cases and showthaty ≥ x or the case is impossible. We know that

ρ1 may return eitherTSρ1
− 1 or TSρ1

. It can be shown similarly to case (1) of Lemma 4.9 that whenρ1 returns

x = TSρ1
− 1 thenρ2 returnsy ≥ x. It remains to investigate the cases where: (1)ρ1 returnsTSρ1

because the

predicate did not hold but it received some postits, such that postit = TSρ1
, and (2)ρ1 returnsTSρ1

because it

received|MSρ1
| messages that contained the maximum timestampTSρ1

such that there isα ∈ [1 . . . V + 1] and

|MSρ1
| ≥ S − αt and| ∩m∈MSρ1

m.seen| ≥ a.

Case 1:In this caseρ1 returnsx = TSρ1
because it received some postits, s.t.postit = TSρ1

. According to the

implementation some process (sibling or not ofri), sayrk, performed a read operationρ1a and is about, or already

returned a timestamp equal toTSρ1
. There are two cases to consider based on the cardinality ofNSρ1a

∩ Sρ1
: (1)

18

|NSρ1a
∩ Sρ1

| ≥ t + 1 and (2)|NSρ1a
∩ Sρ1

| < t + 1. If (1) is true andri received|NSρ1a
∩ Sρ1

| ≥ t + 1, then

ρ1 returnsx = TSρ1
without performing a second communication round. Since theset of servers that responded

to ρ2 is |Sρ2
| = S − t, it follows that there is at least one serversi ∈ Sρ2

∩ (NSρ1a
∩ Sρ1

). According to Lemma

4.4,si will relpy to ρ2 with a postitsi
≥ x. Furthermore by Lemma 4.7,ρ2 will return a valuey ≥ postitsi

. So

obviouslyρ2 returns a valuey ≥ x. On the other hand if (2) is true andρ1 received|NSρ1a
∩ Sρ1

| < t + 1 postits,

then, before returning,ρ1 will inform |NSρ1
| ≥ 2t + 1 servers with apostit = TSρ1

. So there exists a server

si ∈ Sρ2
∩ NSρ1

that replies toρ2. By Lemma 4.4si, will reply with a postits1
≥ TSρ1

and by Lemma 4.7 it

follows thatρ2 will return a timestampy ≥ postitsi
. Hence it follows again thaty ≥ x.

Case 2:This is the case whereρ1 returnsTSρ1
because the predicate holds, namely, there isα ∈ [1 . . . V + 1] and

|MSρ1
| ≥ S − αt such that| ∩m∈MSρ1

m.seen| ≥ α. Recall again that sinceα ∈ [1 . . . V + 1] andV < S
t
− 2,

|MSρ1
| ≥ S − αt > t. So, if MaxSρ1

are the servers that replied with messages inMSρ1
, there is at least

one serversi ∈ MaxSρ1
∩ Sρ2

. Thereforesi replies toρ2, by Lemma 4.3, with a timestampts ≥ x. Hence

ρ2 will observe a maximum timestampTSρ2
≥ x. If ρ2 observesTSρ2

> x then clearly, sinceρ2 returns either

y = TSρ2
or y = TSρ2

− 1, it will return a valuey ≥ x. It remains to investigate the case where the maximum

timestamp observed byρ2 is TSρ2
= x. SinceTSρ2

= TSρ1
= x it follows that all the servers inMaxSρ1

∩ Sρ2

will reply to ρ2 with a timestampts = x. Furthermore, sinceρ2 might miss up tot servers fromMaxSρ1

and |MaxSρ1
| = |MSρ1

| ≥ S − αt, it follows thatρ2 will receive the maximum timestampTSρ2
= x from

|MaxSρ2
| = |MSρ2

| ≥ S − (α + 1)t servers. There are two possible return values forρ2. Eithery = TSρ2
= x

or y = TSρ2
− 1 ⇒ y + 1 = x. So the only case that needs further investigation is wheny + 1 = x. We consider

two possible scenarios:ρ1 satisfied the predicate with an (1)α < V + 1 and (2)α = V + 1.

Case 2(a):Hereρ1 satisfied the predicate using anα < V + 1. This implies that∩m∈MSρ1
m.seen might contain

less thanV +1 elements and thus not every virtual identifier will be included. So we have to consider two subcases:

(1) νj /∈ ∩m∈MSρ1
m.seen and (2)νj ∈ ∩m∈MS1m.seen.

(1) Let first assume thatνj /∈ ∩m∈MSρ1
m.seen. Consider the set of serversMaxSρ1

∩ Sρ2
. Since|MaxSρ1

| =

|MSρ1
| ≥ S − αt and |Sρ2

| = S − t then |MaxSρ1
∩ Sρ2

| ≥ S − (α + 1)t ≥ 1. Also since the readρ1 pre-

cedesρ2, and processes inMaxSρ1
replied withts = TSρ1

= x to ρ1, then processes inMaxSρ1
∩ Sρ2

reply

with a timestampts ≥ x to ρ2. So all the servers in the setMaxSρ1
∩ Sρ2

replied toρ2 with ts = x = y + 1.

For any serversi ∈ MaxSρ1
∩ Sρ2

, let m1 and m2 be the messages ofsi in MSρ1
and MSρ2

respectively.

We know thatm1.ts = m2.ts = x. Since m1 was sent beforem2, then m1.seen ⊆ m2.seen. Thus

∩m∈MSρ1
m.seen ⊆ ∩m∈MSρ2

m.seen. Moreover, every serversi ∈ MaxSρ2
addsνj into its seen set before

replying toρ2. Therefore clearlyνj ∈ ∩m∈MSρ2
m.seen. By assumption thoughνj /∈ ∩m∈MSρ1

m.seen, and

so it follows that| ∩m∈MSρ2
m.seen| ≥ | ∩m∈MSρ1

m.seen| + 1 ≥ α + 1. Since|MaxSρ2
| = |MSρ2

| and

MaxSρ2
≥ |MaxSρ1

∩ Sρ2
| ≥ S − (α + 1)t, then the predicate forρ2 holds withα + 1. Thusρ2 returns

19

TSρ2
= x = y + 1, which imposes a contradiction.

(2) Let now consider the case whereνj ∈ ∩m∈MSρ1
m.seen. So either (i) a sibling ofrj or (ii) rj itself per-

formed a read operation beforeρ2. Assume that (i)rj itself performed a read, sayρ2a, beforeρ2. So since

νj ∈ ∩m∈MSρ1
m.seen, rj received a maximum timestampTS2a = TSρ1

during read operationρ2a. In this case

ρ2 will represent a second read operation fromrj and so, duringρ2, rj sends aREAD message withts = TSρ1
≥ x.

This message will be received by all servers inSρ2
which according to Lemma 4.3 will reply with a timestamp

ts′ ≥ TSρ1
≥ x. If ts′ = x then the set of servers that replied with the maximum timestamp TSρ1

to ρ2

will be |MaxSρ2
| = |Sρ2

| ≥ S − t. Since every serversi ∈ Sρ2
before reply toρ2 addsνj to its seen

set, then predicate will hold forα = 1. If now ts′ > x, thenρ2 will return a valuey such thaty = ts′ or

y = ts′ − 1 and thus in any casey ≥ x. Both cases contradict with the assumption thaty + 1 = x. Let

now the case (ii) to be true andνj ∈ ∩m∈MSρ1
m.seen because a sibling ofrj initiated a read operation before

ρ2. As we discussed above,|MaxSρ2
| ≥ |MaxSρ1

∩ Sρ2
| ≥ S − (α + 1)t and furthermore all the servers in

MaxSρ1
∩ Sρ2

reply to ρ2 with a timestampts = x = y + 1. Let m1 and m2 be the messages of a server

si ∈ MaxSρ1
∩Sρ2

, in MSρ1
andMSρ2

respectively. We know thatm1.ts = m2.ts. Sincem1 is sent beforem2,

thenm1.seen ⊆ m2.seen. Thus∩m∈MSρ1
m.seen ⊆ ∩m∈MSρ2

m.seen. Every server that replies toρ2, first adds

νj into itsseen set and thusνj ∈ ∩m∈MSρ2
m.seen. Since though,νj was already in∩m∈MSρ1

m.seen, it follows

that|∩m∈MSρ2
m.seen| ≥ |∩m∈MSρ1

m.seen| ≥ α. If |∩m∈MSρ1
m.seen| > α, then|∩m∈MSρ2

m.seen| ≥ α+1.

Since|MaxSρ2
| = |MSρ2

| ≥ S−(α+1)t, the predicate holds withα+1 andρ2 returnsTSρ2
= x = y+1. If on

the other hand| ∩m∈MSρ1
m.seen| = α thenρ1 will perform an informative operation before returning, sending

thepostit = x to |NSρ1
| ≥ 2t + 1 servers. So there will be a serversi ∈ Sρ2

∩NSρ1
which will reply, by Lemma

4.4, with apostitsi
≥ x to ρ2. So according to Lemma 4.7,ρ2 will return a valuey ≥ postit ≥ x. Hence we

derive contradiction based on the initial assumption thatx = y + 1.

Case 2(b):ρ1 satisfied the predicate with anα = V +1. Since|{w, ν1, . . . , νV }| = V +1 and|∩m∈MSρ1
m.seen| ≥

α = V + 1, it follows thatνj ∈ ∩m∈MSρ1
m.seen. Observe that the set of servers that reply toρ1 with messages

in MSρ1
, |MaxSρ1

| ≥ S − at > t. So as shown in the previous case (Case 2(a))ρ2 will return a valuey ≥ x

deriving this way a contradiction. �

The main result of this section follows:

Theorem 4.11 Algorithm SF implements an atomic read/write register in the SWMR model.

Proof. Since the writer, any subset of readers and up tot servers might fail by crashing, we ensure termination in

any execution of the implementation by letting any reader orwriter to wait for messages only fromS − t servers

during any communication round. Atomicity is preserved in any executionξ by Lemmas 4.2, 4.8, 4.5, 4.10. Since

both termination and atomicity properties are preserved the result follows. �

20

5 SF is a Semifast Implementation

In this section we show that the proposed implementation SF is a semifast implementation, that is, it satisfies all

the properties of Definition 2.3. We use the same notation as in Section 3.

We first show that SF satisfies the third property of Definition2.3.

Lemma 5.1 For any executionξ of I, if ρ1 is a two-round read operation, then any read operationρ2 withR(ρ1) =

R(ρ2), such thatρ1 → ρ2 or ρ2 → ρ1, must be fast.

Proof. Sinceρ2 might precede or succeedρ1 we examine the two cases separately. We proceed by considering an

executionξ of SF that contains bothρ1 andρ2, and we show that in each caseρ2 is fast or the case is not possible.

For the rest of the proof we study the timestamps returned by the read operations since every value is associated

with a unique timestamp. Let assume that timestampts = k is associated withvalk, written by the unique write

operationR(ρ1) = R(ρ2) = ωk.

Case 1:Starting from the case whereρ1 → ρ2 there are two subcases to investigate: (1)ρ2 observes a maximum

timestamp equal tok, and (2)ρ2 observes a maximum timestampk + 1. Obviously in the second case,ρ2 is

concurrent withωk+1 butωk+1 is not yet completed.

The fast behavior ofρ2 in the first subcase case follows from the fact thatρ1 informs |NSρ1
| ≥ 2t + 1 servers

with the timestampts = k. Soρ2 witnesses|Sρ2
∩NSρ1

| ≥ t+1 postits equal tok during its first communication

round. Since the maximum timestampTSρ2
observed byρ2 is also equal tok, thenρ2, according to Lemma

4.7, returnsTSρ2
no matter the validity of the predicate. Moreover since|Sρ2

∩ NSρ1
| ≥ t + 1 any subsequent

read operation will witness at least one server inNSρ1
and thusρ2 completes without proceeding to a second

communication round.

Consider now the second subcase whereρ2 observes a maximum timestamp equal tok + 1. From the imple-

mentation we know that a read operation might return either the observed maximum timestampTSρ2
or TSρ2

− 1.

Sinceρ2 returnedk, it implies that a decision for returningTSρ2
− 1 was taken byρ2. According though to the

implementation, a reader may perform a second communication round only when it decides to returnTSρ2
. In any

other case the reader is not required to perform two communication rounds. Soρ2 will return TSρ2
− 1 in one

communication round as desired.

Case 2: Consider now the case whereρ2 → ρ1. Sinceρ1 performs two communication rounds, it returns the

maximum timestampk, thatρ1 observed during its first communication round. On the other handρ2 also returns

k, by either returningTSρ2
or TSρ2

− 1. Soρ2 might observe a maximum timestampTSρ2
= k or TSρ2

= k + 1.

Lets first investigate the case whereTSρ2
= k + 1. Recall thatρ1 receives replies from|Sρ1

| = S − t servers.

Sinceρ1 observes aTSρ1
= k, then if TSρ2

= k + 1, it means thatk + 1 was introduce to less thant servers

21

in the system. In order forρ2 to satisfy the predicate there must exist anMSρ2
which contains messages of the

servers inMaxSρ2
, such that|MSρ2

| ≥ S − αt for α ∈ {1, . . . , V + 1} andV < S
t
− 2. Therefore we require

that |MSρ2
| ≥ t. However since|MaxSρ2

| ≥ |MSρ2
| and |MaxS2| ≤ t, we have that|MSρ2

| ≤ t and thus

the predicate does not hold forρ2. Notice that for each read operationρi → ρ1 (including ρ2) and observing

a maximum timestampTSρi
= k + 1 the predicate is false and hence no read operation performeda second

communication round informing the servers with apostit = k+1. So it follows that the second condition whether

there arepostits = k + 1 will be false forρ2 as well and thusρ2 returnsTSρ2
− 1 = k. As previously stated, if a

read operation returnsTS − 1 only needs one communication round.

It is left to examine now the case whereρ2 observes aTSρ2
= k. Remember thatρ1 performs a second

communication round in two cases: (1) the predicate holds with | ∩m∈MSρ1
m.seen| = α and (2) it observed

“insufficient” postits sent by a concurrent read operation.For simplicity of our analysis we assume that no read

operation was concurrent withρ1 and thatρ1 performed a second communication round because the fist casewas

true. Sinceρ2 returnsTSρ2
= k then either (i) the predicate holds forρ2 or (ii) ρ2 observed somepostit = k. Let

examine those subcases separately and we show that in each caseρ2 is fast or the case is impossible.

Suppose that the predicate holds forρ2. So there is anα ∈ {1, . . . , V + 1} and there is|MSρ2
| ≥ S −αt such

that | ∩m∈MSρ2
m.seen| ≥ α. If | ∩m∈MSρ2

m.seen| = α thenρ2 proceeds to a second communication round

informing |NSρ2
| ≥ 2t + 1 servers about the maximum timestamp is about to return,TSρ2

= k. Sinceρ2 → ρ1,

then|Sρ1
∩NSρ2

| ≥ t+1, and thus,ρ1 would observe “enough” postists equal tok = TSρ1
and would not perform

a second communication round. This however contradicts ourinitial assumption, rendering this case impossible

for ρ2. Therefore the predicate validity is possible forρ2, only if | ∩m∈MSρ2
m.seen| > α. This is the case though

whereρ2 returns in one communication round as desired.

It remains to study the case whereρ2 returnsTSρ2
= k because of some postits equal tok. There are two

subcases to consider: (a)ρ2 does not observe more thant+1 postits so it performs a second communication round

and (b)ρ2 observes more thant + 1 postits and returns in one communication round. The first subcase will result

in ρ1 performing only one communication round as described abovecontradicting our initial assumption. In the

second subcase there is a read operationρi which is concurrent or precedesρ2 and performs two communication

rounds. Sinceρ2 receives more thant+1 postits equal toTSρ2
, it returns in one communication round. Moreover,

since we assumed that no read operation is concurrent withρ1, thenρi completes before the invocation ofρ1. So

ρi will inform at least|NSρi
| = 2t + 1 servers with a postit equal tok. Hence|Sρ1

∩ NSρi
| ≥ t + 1 and thusρ1

returns in one communication round imposing contradiction. �

We now show that SF satisfies the fourth property of Definition2.3. Notice that the proof of the lemma assumes

generalexecutions of our implementation SF which include both concurrent and non-concurrent operations. In fact

the following proof assumes that all the read operations areconcurrent with the write operation and yet are fast.

22

Lemma 5.2 There exists an executionξ of I that contains at least one write operationωk and the set of read

operationsF = {ρ : R(ρ) = ωk}, such that|F| ≥ 1, ∃ρ ∈ F , ρ is concurrent withωk and∀ρ ∈ F , ρ is fast.

Proof. As in the previous proof we consider that each read operationρ ∈ F returns the timestamp written by

R(ρ) = ωk. Also assume that the timestamp written byωk is equal tots = k. Recall that a read operationρ

returns either the maximum timestampTS or TS−1. So the timestampk is returned byρ either whenρ witnesses

TS = k or when it witnessesTS = k + 1. A read operation is fast in the following cases: (1) the predicate is

correct and|∩m∈MS m.seen > α|, or (2) more thant+1 postits equal toTS witnessed, or (3) the operation returns

TS−1. In the contrary a read operation needs to perform two communication rounds when|∩m∈MS m.seen = α|

or whenρ observed less thant + 1 postits equal toTS in the replies from the servers.

Let assume, to derive contradiction, that for any executionξ of I, that contains a write operationωk, ∃ρ ∈ F

that returnsR(ρ) = ωk and is not fast. Consider the following finite execution fragment which is a prefix ofξ,

ϕ(wr). We assume thatϕ(wr) contains the write operationωk performed by the writerw that writes timestamp

k. Moreover, assume that|Sωk
| = S − βt servers received theWRITE messages fromωk in ϕ(wr) , where

1 < β ≤ V − 1. Thus the write operation is incomplete.

We extent nowϕ(wr) by the finite execution fragmentϕ(1) which containsβ−2 read operationsρ1, . . . , ρβ−2

performed byβ − 2 readers each of them from different virtual nodes. Let〈r1, ν1〉, . . . , 〈rβ−2, νβ−2〉 be the

identifiers of the readers that invoked the read operations.Furthermore every reader〈ri, νi〉 receive replies from

all the servers that replied to the write operation. Hence each reader〈ri, νi〉 witnesses an|MSρi
| = S − βt and an

| ∩m∈MSρi
m.seen| ≤ β − 1 and thus| ∩m∈MSρi

m.seen| < β. So the predicate condition is false for any readρi

from 〈ri, νi〉, returning timestampTSρi
− 1 in one communication round.

We further extent the execution fragmentϕ(1) by execution fragmentϕ(2) which contains two read operations

performed by two sibling processes〈r1′ , νβ−1〉 and 〈r2′ , νβ−1〉. Observe that those processes are not siblings

with any of the previous readers. Let now the read operationsρ1′ andρ2′ performed by the two sibling readers

respectively, miss exactlyt servers that receivedWRITE messages fromωk. However, let them miss differentt

servers. For example, if the serverss1, . . . , s2t receivedWRITE messages, thenρ1′ skips the serversst+1, . . . , s2t

andρ2′ skips the serverss1, . . . , st. Notice now that both readers will observe an| ∩m∈MSρ
d′

m.seen| = β, ,

for d ∈ {1, 2}, since they receive messages from servers that also repliedto the read operationsρ1, . . . , ρβ−2.

However, both readsρ1′ andρ2′ , since they misst of the servers that receivedWRITE messages, they witness an

|MSρd′
| = S−(β+1)t. So the predicate is false for them as well and they returnTSρd′

−1 in one communication

round.

Finally we extendϕ(2) by ϕ(3) which contains two read operationsρ1∗ by the reader〈r1∗ , νβ〉 andρ2∗ by the

reader〈r2∗ , νβ+1〉. Both readers are not siblings to any of the previous readers. We do not make any assumption

about the relation of the two reads, that is, they may be concurrent. Let both reads receive messages from all

23

the servers that replied to the writer and thus|MSρd∗
| = S − βt, again ford ∈ {1, 2}. Recall that any server

si ∈ MaxSρd∗
contained aseen = {w, ν1, . . . , νβ−1}, and before replying toρ1∗ and ρ2∗ , they addνβ and

νβ+1 respectively in theirseen sets. Suppose that the intersection is| ∩m∈MSρ
1∗

m.seen| = β + 1 for ρ1∗ and

| ∩m∈MSρ2∗
m.seen| = β +2 for ρ2∗ , that is, the servers replied toρ1∗ before replying toρ2∗ . Hence the predicate

is correct by| ∩m∈MSρd∗
m.seen| > β for both reads and thus they returnTSρd∗

= k in one communication

round. Notice thatρ1∗ , ρ2∗ ∈ F sinceR(ρ1∗) = R(ρ2∗) = ωk.

Any subsequent read operationρℓ by a reader〈rj , νg〉 will witness an|MSρℓ
| ≥ S − (β + 1)t and| ∩m∈MSρℓ

m.seen| ≥ β+2. So ifρℓ witnessTSρℓ
= k then the predicate will hold forρℓ and moreover will returnTSρℓ

= k

in one communication round. Ifρℓ returnsk even though witnessed a maximum timestampTSρℓ
= k +1 it would

be also fast since any read operation that returnsTSρℓ
− 1 is fast. So by this construction we showed that there

exists an executionξ of I containing a write operationωk and all the read operationsρ ∈ F such thatR(ρ) = ωk

are fast, contradicting our initial assumption. That completes our proof. �

We now state the main result of this section.

Theorem 5.3 For any executionξ, the proposed implementation SF is a semifast implementation of an atomic

Read/Write Register.

Proof. The properties (1) and (2) of Definition 2.3 are trivially satisfied since all the write operations as imple-

mented by SF are fast and every read operation does not require more than two communication rounds to complete.

Properties (3) and (4) of the same definition are ensured by lemmas 5.1 and 5.2. Thus our implementation SF is

indeed a semifast implementation and that completes our proof. �

6 Impossibility of Obtaining Semifast Implementations

As it is shown in [3], no fast implementations exist if the number of readersR in the system is such thatR ≥ S
t
−2.

Our approach to semifast solutions is to trade fast implementation for increased number of readers, while enabling

some (many) reads to be fast. Here we show that semifast implementations are possible if and only if the number of

virtual identifiers (virtual nodes) in the system is less than S
t
− 2. We show that the bound on the virtual identifiers

is tight for algorithms that: (1) consider each node acting individually in the system (as in [3]), and (2) consider

weak grouping of the readers such that no reader is required to maintain knowledge of the membership of its own or

any other group. (Related discussion appears in Section 2.)Throughout the section we assume the communication

scheme presented and explained in Section 2.2.

Definitions and notation. We consider a system withV node groups (virtual nodes), such thatt ≥ S
(V +2) (to

derive contradiction). We partition the set of serversS into V + 2 subsets, calledblocks, each denoted byBi for

24

1 ≤ i ≤ V + 2, where each block contains no more thant servers.

We say that anincomplete operationπ skipsa set of blocksBS in a finite execution fragment, whereBS ⊆

{B1, . . . , BV +2}, if : (1) no server inBS receives anyREAD or WRITE message fromπ, (2) all other servers receive

messages and reply toπ, and (3) those replies are in transit. A complete operationπ that is fast is said toskipa

block Bi in a finite execution fragment, whereBi ∈ {B1, . . . , BV +2} if: (1) no server inBi receives aREAD or

WRITE messages fromπ, (2) all other servers receive the messages fromπ and reply, and (3) all replies are received

by the process performingπ. We say that an incomplete operationπ that performs a second communication round

informsa set of blocksBSI in a finite execution fragment, whereBSI ⊆ {B1, . . . , BV +2} if: (1) all servers in

BSI receive theINFORM message fromπ and reply, (2) those replies are in transit, and (3) no servers in any block

Bj /∈ BSI receive anyINFORM messages fromπ. A complete operationπ that performs a second communication

round informsa set of blocksBSI in an finite execution fragment,BSI ⊆ {B1, . . . , BV +2} if: (1) all servers in

BSI receive theINFORM messages fromπ and reply, (2) no servers in any blockBj /∈ BSI receive anyINFORM

messages fromπ, and (3) those replies received by the process performingπ. A complete operationπ is said to

beskip-freein an execution fragment if for every blockBi in the set{B1, . . . , BV +2}, all the servers inBi receive

the messages fromπ and reply to them.

Block Diagrams. To facilitate the understanding of the proofs that follow, we provide schematic representations

of block diagrams. We divide the diagram into columns each ofthem representing an operation (possibly incom-

plete)π, and at the bottom of each column we place an identifier of the invoking process in the form(r, ν), where

r the actual id andν the virtual id of the invoking process. Each column containsa set of rectangles. For an

operationπ if the ith row of the column contains a rectangle it means that the servers in blockBi received aREAD,

INFORM or WRITE messages fromπ and replied to those messages. In other words we draw a rectangle in theith

row of an operationπ if π does not skip or informs the blockBi. If a rectangle is colored white, it means that block

Bi received only aREAD or WRITE messages fromπ. A two-color rectangle (black and white) in theith row of

an operationπ declares that the servers in blockBi receivedINFORM messages fromπ. If the operation identifier

in a column is in a circle it means the operation is complete. Otherwise the operation has not yet completed. If

the operation identifier is in a rectangle means that the operation is invoking the informative phase and has not yet

received the required replies.

We now show thatV cannot be greater or equal thanS
t
−2. The idea behind the proof is to derive contradiction

by assuming that semifast implementations exist forV ≥ S
t
− 2. We construct executions that violate atomicity

and essential properties of the semifast definition. In particular we first assume an executionξ which contains a

skip-free write operation. We construct executions that can be extended toξ, that contain fast read operations. We

show that in execution extensions where the value of the write operation is propagated to less thant servers, some

fast read operations return the value written, but others return an older value (since they may skip the servers with

25

B1

B2

B3

B4

B5

w(vw)

B1

B2

B3

B4

B5

w(vw)

Complete write
operation wr

Incomplete write
operation wr4

w(vw)

B5

B4

B3

B2

B1

w(vw)

B5

B4

B3

B2

B1

Complete write
operation wr

Incomplete write
operation wr4

Figure 2: Left: Physical communication betweenw and the servers inϕ(wr) andϕ(wr4). Right: Same commu-
nication using block diagrams.

the maximum timestamp). We emphasize that the first part of the proof can use the proof of Proposition 1 in [3] as

a black box with the assumption of the skip-free write operation and the association of a distinct group id to each

reader used. However we choose to present the proof here in its entirety for completeness. In the second part of

the proof we present executions that violate atomicity evenin the presence of a slow read operation.

Lemma 6.1 No semifast implementation exists if the number of node groupsV in the system is≥ S
t
− 2.

Proof. We proceed along the lines of Proposition 1 of [3]. We construct an execution of a semifast implementation

I that violates atomicity. Namely we show that there exists anexecution forI where some read returns1 (the

defined new value) and some subsequent read returns an older value, and in particular the initial value⊥. We

consider two cases: (1)V > S
t
− 2 and (2)V = S

t
− 2. In the first case we show impossibility of the fast behavior

if V > S
t
− 2, thus violating property 4 of Definition 2.3. In case (2) we show that there exists an execution where

atomicity is violated even in the presence of a two-round read operation. This violates property 3 of Definition 2.3.

Case 1:SinceV > S
t
−2, it suffices to show that we derive contradiction in the case whereV ≥ S

t
−1. So we can

partition the set of servers intoV + 1 blocks{B1, . . . , BV +1} where each block contains≤ t servers. We provide

the constructions we use for the needs of this proof in the write and read operation paragraphs and then we present

an execution scenario based on those constructions that violates atomicity.

Write Operations. Let ϕ(wr) be an execution fragment in which operationω1 is completed byw. Let the

operation beskip-free; this is the best case for a write operation and thus our lowerbound applies to all other

possible cases. We define a series of finite execution fragments which can be extended toϕ(wr). We say that in

the finite execution fragmentϕ(wrV +2) the writerw has invoked aω1 operation, but all theWRITE messages are

in transit. Then, for1 ≤ i ≤ V +1, we say thatϕ(wri) is the finite execution fragment that contains an incomplete

write(1) operation and skips the set of blocks{Bj |1 ≤ j ≤ i− 1}. Observe that: (1) the finite execution fragments

ϕ(wri) andϕ(wri+1) differ only on blockBi, (2) since inϕ(wr1) we do not skip any block but all the replies

are in transit, thenϕ(wr) is an extension ofϕ(wr1) where all those replies are received byw and (3) onlyw can

distinguishϕ(wr) from ϕ(wr1). Figure 2 illustrates the communication between the writerw and the groups of

26

servers in the finite execution fragmentsϕ(wr) andϕ(wr3). The figure shows both physical communication and

block diagram representation.

Read Operations. We now construct finite execution fragments for read operations. We assume that only one

reader process, sayrj , owns a virtual identifierνj and denoted by the pair〈rj , νj〉. Let ϕ(1) be a finite execution

fragment that extendsϕ(wr) by containing a complete read operation by a reader with id〈r1, ν1〉 that skipsB1.

Consider nowϕ′(1) to be an extension ofϕ(wr2) that appendsϕ(wr2) by a complete read operation by the reader

〈r1, ν1〉 that skipsB1. Notice that reader〈r1, ν1〉 cannot distinguishϕ(1) from ϕ′(1) becauseϕ(wr) andϕ(wr2)

differ atw and blockB1 and read from〈r1, ν1〉 skips blockB1.

We continue in similar manner, starting fromϕ′(1), and create execution fragments for the rest of the readers

in the system. In particular we define an execution fragmentϕ(i), for 2 ≤ i ≤ V to extendϕ′(i − 1) by a

complete read operation from〈ri, νi〉 that skipsBi. We then construct finite execution fragmentϕ′(i) by deleting

from ϕ(i) all the rectangles (steps) from the servers in blockBi. In particular, as previously mentioned, execution

fragmentϕ′(i) extendsϕ(wri+1) by appending that withi reads such that for1 ≤ k ≤ i, 〈rk, νk〉 skips the blocks

{Bj | k ≤ j ≤ i}. Observe that since〈r1, ν1〉 cannot distinguishϕ(1) andϕ′(1), it returns1 in both executions.

Furthermore, sinceϕ(2) extendsϕ′(1), by atomicity〈r2, ν2〉 returns1. So〈r2, ν2〉 returns1 in ϕ′(2) since it cannot

distinguishϕ(2) andϕ′(2). By following inductive arguments we conclude that forϕ′(i), reader〈ri, νi〉 returns1.

Thus, for the execution fragmentϕ′(V), 〈rV , νV 〉 returns1. An illustration of the following execution fragments

can be seen in Figure 3.

Finite Execution fragmentϕ(A). Here we consider the execution fragmentϕ′(V). As defined above,ϕ′(V)

extendsϕ(wrV +1) by appendingV reads such that for1 ≤ k ≤ V , 〈rk, νk〉’s read skips the blocks{Bj | k ≤

j ≤ V }. Observe here that all the read operations are incomplete except for the read operation of reader〈rV , νV 〉.

Moreover only the servers in blockBV +1 receiveWRITE messages from theω1 operation ofw. Also, onlyBV +1

replies to the read operation of the reader〈r1, ν1〉, and those messages are in transit. All otherREAD messages

of 〈r1, ν1〉 are in transit and not yet received by any other server. Let execution fragmentϕ(A) extendϕ′(V) as

follows: (1) all the messages send by〈r1, ν1〉 and were in transit, are received by the servers in blocksB1, . . . , BV ,

(2) reader〈r1, ν1〉 receives the replies from serversB1, . . . , BV , and returns from the read operation. Notice that

sinceBV +1 contains less or equal tot servers, it means that reader〈r1, ν1〉 received≥ S − t replies and should

not wait for any more replies to return.

Finite Execution fragmentϕ(B). We consider as execution fragmentϕ(B) with the same communication pattern

as ϕ(A) but with the difference that theω1 operation is not invoked at all. Hence servers in blockBV +1 do

not receive anyWRITE messages. Clearly only the servers in blockBV +1, the writer and the readers〈r2, ν2〉 to

〈rV , νV 〉 are in position to distinguishϕ(A) from ϕ(B). The reader〈r1, ν1〉, since it does not receive any messages

from BV +1 cannot distinguishϕ(A) from ϕ(B). So, since there is no write (ω∗) operation,〈r1, ν1〉 returns⊥ in

27

B5

B4

B3

B2

B1

(r4, v4) (r1, v1)(r3, v3)(r2, v2)(r1, v1)w

B5

B4

B3

B2

B1

(r1, v1)(r4, v4) (r1, v1)(r3, v3)(r2, v2)(r1, v1)w

Block replied to the first
read of (r1,v1) and (r1,v1)
received those replies.

Block received the first
read from (r1, v1) and its
replies are on transit.

)(Aϕ

)(Cϕ

B5

B4

B3

B2

B1

(r4, v4) (r1, v1)(r3, v3)(r2, v2)(r1, v1)w

B5

B4

B3

B2

B1

(r1, v1)(r4, v4) (r1, v1)(r3, v3)(r2, v2)(r1, v1)w

Block replied to the second
read of (r3, v1) and (r3, v1)
received those replies.

)(Bϕ

)(Dϕ

Figure 3: Execution fragmentsϕ(A), ϕ(B), ϕ(C), ϕ(D).

ϕ(B) and therefore returns⊥ in ϕ(A) as well.

Finite Execution fragmentsϕ(C) and ϕ(D). Observe that inϕ(A), reader〈r1, ν1〉 does not violate atomicity

even though it returns⊥ and 〈rV , νV 〉 returns1 because the two operations are concurrent. We construct now

two more executions: execution fragmentϕ(C) andϕ(D) which extend the execution fragmentsϕ(A) andϕ(B)

respectively with a second complete read operation from〈r1, ν1〉 that skipsBV +1. Since the servers inBV +1 are

the only ones who can distinguishϕ(A) andϕ(B) and since〈r1, ν1〉’s second read skipsBV +1 then〈r1, ν1〉 cannot

distinguishϕ(C) from ϕ(D) either. Sinceϕ(C) is an extension ofϕ(A) means that the reader〈rV , νV 〉 returns1

in ϕ(C). Moreover〈r1, ν1〉 returns⊥ since no write (ω∗) operation is invoked inϕ(D). So since〈r1, ν1〉 cannot

distinguishϕ(C) from ϕ(D), it returns⊥ in ϕ(C) as well. However〈r1, ν1〉 succeeds〈rV , νV 〉 that returns1 in

ϕ(C) and thusviolates atomicity. This completes the proof of Case (1).

Case 2:The next case that needs investigation is the equalityV = S
t
− 2. Since we are using groups of nodes, it is

possible that all the readers will be contained in a single group. Consider this situation for the following proof. As

before, sinceV = S
t
− 2 we can divide the servers intoV + 2 blocks where each block containst servers. More

precisely, since we only assume one virtual node (V = 1) then the total number of blocks is 3. We also consider the

same construction for the write operation with the difference that theω1 is not skip-free but skips the blockBV +2.

28

In particularϕ(wri) is the execution fragment that contains an incompleteω1 operation and skips the set of blocks

{BV +2} ∪ {Bj |1 ≤ j ≤ i − 1}. As before,ϕ(wr1) is the execution where all the servers{Bj | 1 ≤ j ≤ V + 1}

replied to theω1 write operation and all those replies are in transit. Soϕ(wr) is the extension ofϕ(wr1) where all

those replies are being received by the writerw.

Let now describe a series of finite execution fragments that extendϕ(wr). We say that execution fragment

ϕ(e1) extendsϕ(wr) by a complete read operation by the reader〈r1, ν1〉 that skips blockB1. To preserve atom-

icity, 〈r1, ν1〉 returns1. Consider now another execution,ϕ′(e1), that extendsϕ(wr2) by the same read operation

from 〈r1, ν1〉 that again skipsB1. Recall that only the writerw and the servers in blockB1 can distinguishϕ(wr)

from ϕ(wr2). So since〈r1, ν1〉 skips the servers in the blockB1, it cannot distinguishϕ(e1) from ϕ′(e1) and

thus returns1 in ϕ′(e1) as well. We now extendϕ′(e1) by execution fragmentϕ(e2) as follows: (1) a complete

inform(1) operation from〈r1, ν1〉 that skips the servers in the blockBV +2, and (2) a complete read operation from

reader〈r2, ν1〉 that skips blockB1. The read from〈r2, ν1〉 returns1 to preserve atomicity. Further consider the

execution fragmentϕ(e3) which is the same withϕ(e2), but with the difference that the inform operation from

〈r1, ν1〉 is incomplete and also skips blockB1. Notice thatϕ(e2) andϕ(e3) differ at the reader〈r1, ν1〉 and the

servers in blockB1 only. Since the reader〈r2, ν1〉 does not receive any messages fromB1, it cannot distinguish

the two executions. Therefore〈r2, ν1〉 returns1 in ϕ(e3) as well.

It now remains to investigate two more execution fragments,ϕ(E) andϕ(F). Let ϕ(E) extendϕ(e3) with a

complete read operation by〈r3, ν1〉. This read operation skips blockB2. The read from〈r2, ν1〉 cannot distinguish

ϕ(E) from ϕ(e3) and so it returns1 in ϕ(E) as well. Executionϕ(F) now has the same configuration asϕ(E)

with the difference that no write (ω∗) or inform(*) operation is invoked by any process. So〈r1, ν1〉, 〈r2, ν1〉 and

〈r3, ν1〉 return⊥ in ϕ(F). However, sinceϕ(E) andϕ(F) only differ at blockB2, and since〈r3, ν1〉 skipsB2,

it cannot differentiate the two executions fragments. Hence, 〈r3, ν1〉 returns⊥ in ϕ(E) as well. Therefore,ϕ(E)

violates atomicitysince〈r2, ν1〉 that succeeds〈r3, ν1〉 returns1 and〈r3, ν1〉 returns an older value, namely⊥. This

completes the proof. �

Per Lemma 6.1 semifast implementation are possible only ifV < S
t
− 2. In addition, the following lemma

shows that the existence of a semifast implementation also depends on the number of minimum messages sent by

a process during its second communication round.

Lemma 6.2 There is no semifast implementation of an atomic register ifa read operation informs3t or fewer

servers during its second communication round.

Proof. SinceV < S
t
−2, we get thatS > t(V +2), and hence in order to maintain at least one reader in the system,

S > 3t. Suppose by contradiction that there exist a semifast implementationI which requires a complete read

operation to send equal to3t INFORM messages during its second communication round. Recall that the reader that

29

performs the informative phase, in order to preserve the termination property, should expect2t replies (since up to

t servers might fail). We proceed by showing that there existsan execution ofI where a read operation returns1

and performs a second communication round and a subsequent read operation returns1 and again needs to perform

a second communication round to complete,violating the third property of the semifast implementation.

Consider a finite execution fragmentϕ1 where writerw invokes aωk write operation and writes the value

valk on the atomic register. We extendϕ1 by a read operationρ1 which performs two communication rounds and

returnsvalk. During the second communication round,ρ1 sent messages to3t servers. Only|NSρ1
| = 2t servers

get INFORM messages fromρ1 and replied to those messages. Sincet of the servers might be faulty, in order to

preserve the termination property,ρ1 returns after the receipt of those replies. We further extend ϕ1 by a second

read operationρ2, which receives messages from|Sρ2
| = S − t servers and missest of the servers inNSρ1

such

that |Sρ2
∩ NSρ1

| = t.

We now describe a second finite execution fragmentϕ2 which is similar toϕ1 but with the difference that

ρ1 is incomplete and only|NSρ1
| = t servers received theINFORM messages fromρ1. In this execution,ρ2

receives replies from all the servers that have been informed byρ1, namely|Sρ2
∩NSρ1

| = t. Note thatρ2 cannot

distinguishϕ1 andϕ2 in terms of the number of servers informed byρ1. Sinceρ2 observed that onlyt servers

were informed byρ1 in ϕ2 and sinceρ1 might crash before completing,ρ2 must perform a second communication

round to ensure that any read operation s.t.ρ2 → ρi that receives replies from|Sρi
| = S − t servers will not

observe|Sρi
∩ NSρ1

| = 0 and thus return an older value violating atomicity. Obviously the fact thatρ2 proceeds

to a second communication round does not violate the third property of Definition 2.3 sinceρ1 andρ2 in ϕ2 are

concurrent. Sinceρ2 cannot distinguishϕ1 andϕ2, ρ2 must perform a second communication round inϕ1 as well.

However, inϕ1, ρ1 → ρ2 and thus they are not concurrent. Soϕ1 violates the third property, contradicting the

assumption that there is a semifast implementationI, where any read operation needs to inform≤ 3t servers. �

We now state the main result of this section.

Theorem 6.3 No semifast implementationI exists if the number of virtual nodes in the system is≥ S
t
− 2 and if

3t or fewer servers are informed during a second communicationround.

Proof. It follows directly from Lemmas 6.1 and 6.2. �

7 Multiple Writer, Multiple Reader (MWMR) Model

In this section we consider the MWMR model and show that no semifast implementations of atomic registers are

possible in this setting in the presence of server failures.

30

7.1 Preliminaries.

For the MWMR model we relax the definition of a semifast implementation as presented for the SWMR model,

by allowing read operations to perform more than two communication rounds (i.e., instead of two rounds we allow

multiple rounds in Definition 2.3). First we extract severalimmediate properties from the definition of atomicity

presented in Section 2. To satisfy the atomicity definition the following properties must be true for any execution

of the MWMR semifast implementation:

PROPERTY P1: if there is a write operationωk that writes valuevalk and a read operationρi such that

ωk → ρi, and all other writes precedeωk thenρi returnsvalk.

PROPERTY P2: if the response steps of all write operations precede theinvocation steps of the read opera-

tionsρi andρj , i 6= j, thenρi andρj must return the same value.

PROPERTYP3: If the response steps of all the write operations precedethe invocation step of a read operation

ρi thenρi returns a value written by some complete write.

For the reasons discussed in Section 2.2, we assume the communication scheme where a server replies to aREAD

(or WRITE or INFORM) message without waiting to receive any otherREAD (or WRITE or INFORM) messages. In

this proof we say that an operation performs aread phaseduring a communication round if it gathers information

regarding the value of the object from the system at that round. We say that an operation performs awrite phase

during a communication round if it propagates information regarding the value of the object to any subset of the

servers at that round. A read phase of an operation (read or write) does not modify the value of the atomic object.

On the other hand a write phase of an operationπ behaves as follows according to its type: (1) a new, currently

unknown value is written to the register, ifπ is a write operation (2) only previously known values are written

to the register ifπ is a read operation. We should clarify here that by“value of the atomic object”we mean all

the parameters that may reveal any information about the actual value of the object. So any operation phase that

modifies those parameters (and thus the state of the atomic object) is considered as a write phase.

We say that a complete operationπ skipsa serversi if si does not receive any messages from the processp that

invokedπ and the processp does not receive any replies fromsi. All other servers that receive theREAD, WRITE or

INFORM messages fromp reply to these, andp receives those replies. All other messages remain in transit. Since

we assume thatt = 1, any complete operation may skip at most one server. We say that an operation isskip-freeif

it does not skip any server.

Since we consider read operations that might perform multiple communication rounds to complete, we denote

by ρi(j) thejth communication round (phase) of a read operationρi. In order to distinguish between the read and

write phases ofρi, let ρω
i (j) denotes that thejth phase of the readρi is a write phase. An arbitrary delay may

occur between two phasesρi(j) andρi(j + 1) where other read (write) operations or read (write) phases might

31

be executed. So we define assri(j − 1) a set of operation phases (read or write) with the property that any phase

ρ∗(∗) ∈ sri(j − 1), ρ∗(∗) → ρi(j). A setsri(j − 1) might be equal to the empty set containing no operations.

Claim 7.1 A read operationρ that succeeds any write operationω∗ and write phaseρω
∗ (∗) from an operation

π 6= ρ, returns the value decided by the read phase that precedes its last write phase.

Proof. The claim follows from the fact that the read operation succeeds all the write operations and from atomicity

properties P1 and P2. Let assume that readerri performs the read operationρ which in turn requiresn commu-

nication rounds to complete. Furthermore let assume thatρω(j) is the lastwrite phaseof ρ and for simplicity of

analysis we also assume that this is the only write phase fromρ. The result is still valid when multiple write phases

are performed byρ.

Sinceρ succeeds all write operations then any read phaseρ(g), for 1 ≤ g ≤ n wheren the total number of

phases fromρ, will gather the same information about the value of the atomic register. So according tori’s local

policy and atomicity property P3 every read phase that precedesρω(j) will decide the same value, sayv to be the

latest value written on the register. Letρ(j − 1) be the last read phase operation that precedesρω(j). According to

the assumption, a write phase of a read operation propagatesthe value gathered, to the system. Soρω
i (j) propagates

valuev which was observed by the read phases. Sinceρω(j) performs a write operation on the register then any

read phaseρ(ℓ), j + 1 ≤ ℓ ≤ n, such thatρω(j) → ρ(ℓ) must decidev to preserve atomicity property P1. So the

last read phaseρ(n) of the read operation returnsv as well and hencev is the value returned by operationρ. That

completes the proof. �

7.2 Construction and Main Result.

We now present the construction we use to prove the main result. We show execution constructions assuming that

two writers (w1 andw2), and two readers (r1 andr2) participate in the system. We assume skip-free operations

since they comprise the best case scenario and thus a lower bound for these is sufficient. Note here that the con-

structions of executions with fast read operations are similar to constructions presented in [3]. We use this approach

and we present a generalization that contains read operations with single or multiple communication rounds suit-

able for our exposition. The main idea of the proof exploits executions with certain ordering assumptions which

may violate atomicity. In particular we assume executions where the two write operations are concurrent and inter-

leaved, are succeeded by the readρ1, and in turnρ1 is succeeded byρ2. We analyze all the different cases in terms

of communication rounds forρ1 andρ2. We show that in each case, a single server failure may cause violations of

atomicity.

Let us first consider the finite execution fragmentϕ1, constructed from the following skip-free, complete

operations: (a) operationwrite(2) by w2, (b) operationwrite(1) by w1, and (c) operationρ1 by r1. These

32

operations are not concurrent and they are executed in the order write(2) → write(1) → ρ1. By property P2,

operationρ1 returns1.

We now invert the write operations of the above execution andwe obtain executionϕ2, consisting of the

following skip-free, complete operations in the followingorder: (a) operationwrite(1) by w1, (b) operation

write(2) by w2, and (c) operationρ1 by r1. As before, these operations are not concurrent. So in this case,

by property P2, operationρ1 returns2.

The generalizationϕ1g of ϕ1, for 1 ≤ i ≤ n, when the readerr1 performsn communication rounds is the

following: (a) a write(2) operation fromw2, (b) a write(1) operation fromw1, (c) a set of read operations

sr1(i − 1) from readersrj , j 6= 1, and (d) a read or a write phaseρ1(i) of theρ1 operation from readerr1. Notice

that forn = 1 and forsr1(0) = ∅ no process can distinguishϕ1g from ϕ1. Clearly at the end of phaseρ1(n), by

property P2, the operationρ1 from r1 returns1.

Similarly we define theϕ2g to be the generalization ofϕ2, where the write operations are inversed: (a) a

write(1) operation fromw1, (b) awrite(2) operation fromw2, (c) a set of read operationssr1(i−1) from readers

rj , j 6= 1, and (d) a read or a write phaseρ1(i) of theρ1 operation from readerr1. In this case by the end of phase

ρ1(n), and by property P2, theρ1 operation returns2.

If we assume now, without loss of generality, that the last communication roundρ1(n) of r1 in ϕ1g is a write

phase, thusρω
1 (n), thenr1 should not be able to differentiateϕ1g from the following execution, for1 ≤ i ≤ n− 1:

(a) a write(2) operation fromw2, (b) a write(1) operation fromw1, (c) a set of read operationssr1(i − 1)

from readersrj, j 6= 1, (d) a read phaseρ1(i) of the ρ1 operation from readerr1, (e) a set of read operations

sr1(n − 1) from readersrj , j 6= 1, and (f) awrite(1) operation fromρω
1 (n). By operationwrite(1), the reader

r1 tries to disseminate the information gathered from the previous rounds regarding the value of the atomic object.

Similarly we can defineϕ2g with the difference that readerr1 will perform awrite(2) operations during its last

communication round.

Obviously we have the same setting as in Claim 7.1 and so by thesame claim the decision for the return value

must be made inρ1(n− 1). Notice that the decision ofr1 taken inρ1(n− 1) is not affected from the operations in

sr1(n− 1). So we can assume thatϕ1g andϕ2g contain only read phases byr1. According now to property P2,r1

will decide1 by the end ofρ1(n − 1) in ϕ1g and2 by the end ofρ1(n − 1) in ϕ2g. Since we assume that we only

have2 readers in the systemr1 andr2, and sincer2 does not perform any read operation in eitherϕ1g or ϕ2g, we

have that all the setssr1(i − 1) = ∅ for 1 ≤ i ≤ n in both executionsϕ1g andϕ2g.

Theorem 7.2 If the number of writers in the system isW ≥ 2, the number of readers isR ≥ 2, andt ≥ 1 servers

may fail, then there is no semifast atomic register implementation.

Proof. It suffices to show that the theorem holds for the basic case whereW = 2, R = 2, andt = 1. We assume

that there exists a semifast implementation and we derive a contradiction. Letw1 andw2 be the writers,r1 andr2

33

the readers, ands1, . . . , sS the servers participating in the system. We show a series of executions and analyze the

different cases of a semifast implementation where writersare fast and readers performn communication rounds.

We show that in all of these cases atomicity can be violated.

We now define a series of finite execution fragmentsϕ(i), where1 ≤ i ≤ S + 1. We assume that the two write

operations fromw1 andw2 are concurrent. After the completion of both write operations aρ1 read operation, which

may involve multiple communication rounds (phases), is invoked byr1. For everyϕ(i) the set of read operations

sr1(0) = ∅ and so theρ1 from r1 is the first read after the completion of the write operations. Defineϕ(1) to be

similar toϕ1g. Then we iteratively defineϕ(i + 1) to be similar toϕ(i) except that serversi receives the message

from w1 before the message fromw2. In other words the arrival order of the write messages are interchanged in

si. Since the operations fromw1, w2 and each communication round byr1 are skip-free, they can differentiate

betweenϕ(i) andϕ(i + 1). Also si is the only server that can distinguish the two executions since we assume

no communication between the servers. Obviously, by our construction, no server can distinguishϕ(S + 1) from

ϕ2g since every server received theWRITE messages in the opposite order than inϕ1g. Thus,r1 cannot distinguish

the two executions either, and so it returns2 in ϕ(S + 1) after the completion of its last communication round.

Therefore, executionsϕ(S + 1) andϕ2g differ only atw1 andw2. It follows that sincer1 returns1 in ϕ(1), 2 in

ϕ(S + 1) and1 or 2 in ϕ(i) (2 ≤ i ≤ S), there are two executionsϕ(m) andϕ(m + 1), such that1 ≤ m ≤ S and

the read byr1 returns1 in ϕ(m) and2 in ϕ(m + 1) at the end of the same communication round.

Consider now an execution fragmentϕ′ and an execution fragmentϕ′′ that extendϕ(m) andϕ(m + 1) re-

spectively by a read operationρ2 from r2 that skipssm during all its required communication rounds. On the

constructed executions we analyze the cases of semifast implementation. Recall that we investigate the case of the

semifast implementation where we allow the readers to perform n communication rounds and write operations are

fast (only one communication round). We examine the different possible scenarios during executionsϕ′ andϕ′′:

(1) bothρ1 andρ2 are fast in both executions, (2)ρ2 performsk communication rounds inϕ′ andϕ′′ andρ1 is fast,

(3) ρ1 performsn communication rounds in both executions andρ2 is fast, and (4) bothρ1 andρ2 performn and

k communication rounds respectively. We assume that the processes decide to perform a second communication

round according to their local policy.

Case 1:In this case both reads are fast and thus requiring only one communication round to complete. As shown

in Proposition 2 in [3] the read operationρ2 cannot distinguish the two executionsϕ′ andϕ′′ since it skips the only

server (sm) that can differentiate them. So the readρ2 returns, according to property P2,1 in ϕ′ and so it returns

1 in ϕ′′ as well. However,ρ1 cannot distinguish the executionsϕ(m + 1) andϕ′′, and so, since it returns2 in

ϕ(m + 1), it returns2 in ϕ′′ as well. Hence,ϕ′′ violates property P2.

Case 2: In this caseρ2 performsk phases in executionsϕ′ andϕ′′. Since all read phases byρ2 skip the server

sm, then none of them is able to distinguish executionϕ′ from ϕ′′ sincesm is the only server who can differentiate

34

them. Thusρ2 retuns the same value in both executions. Since according again to P2ρ2 returns1 in ϕ′ then it

returns1 in ϕ′′ as well. Againρ1 cannot distinguishϕ(m + 1) from ϕ′′ so it returns2 in ϕ′′ as well. Thus property

P2 is again violated.

Case 3: This is the case whereρ1 performsn phases to complete andρ2 is fast. Since all the phases byρ1 are

read phases, skip-free and precedeρ2, thenρ1 cannot distinguish executionϕ′ from ϕ(m) andϕ′′ from ϕ(m + 1).

Thereforeρ1 returns1 in ϕ′ and2 in ϕ′′. On the other hand,ρ2 returns according to property P21 duringϕ′. Since

all n phases ofr1 are read phases in both executionsϕ′ andϕ′′ , then no server, writer orr2 can distinguish each

phase and they only differ atr1. So onlysm differentiatesϕ′ from ϕ′′. Since thoughρ2 skipssm then it cannot

distinguishϕ′ from ϕ′′ returning 1 inϕ′′ as well violating property P2.

Case 4:Similarly to case 3,ρ1 returns1 duringϕ′ and2 duringϕ′′. With the same reasoning as in case 3 and since

all phases ofρ2 skip the serversm, no communication round ofρ2 can distinguishϕ′ from ϕ′′. So in this caseρ2

returns1 in both executions violating property P2. This completes the proof. �

8 Simulation Results

To evaluate our implementation, we simulated algorithmSF using the NS-2 network simulator and measured the

percentage of two-round read operations as a function of thenumber of readers and the number of faulty servers.

Our simulations include 20 servers (S = 20). To guarantee liveness we need to constrain the maximum number

of server failurest so thatV < S
t
− 2 or V ≤ S

t
− 3. Thust ≤ S

V +3 . In order to maintain at least one group

(V = 1), t must not exceedS4 , or 5 failures. Thus in our simulations we allow up to5 servers to fail at arbitrary

times. We vary the number of reader processes between 10 and 80.

We use the positive time parametersrInt and wInt (both greater than 1sec) to model the time intervals

between any two successive read operations and any two successive write operations respectively.

We considered three simulation scenarios corresponding tothe following parameters:

(i) rInt < wInt: this models frequent reads and infrequent writes,

(ii) rInt = wInt: this models evenly spaced reads and writes,

(iii) rInt > wInt: this models infrequent reads and frequent writes.

In our simulation setting the nodes are connected with duplex links at 1MB bandwidth, a latency of10ms, and

a DropTail queue. To model asynchrony, the processes send messages after a random delay between 0 and 0.3sec

(smaller thanrInt andwInt). According to our setting, only the messages between the invoking processes and the

servers, and the replies from the servers are delivered (no messages are exchanged between any servers or among

the invoking processes).

35

0

2

4

6

0

50

100

1

2

3

4

5

6

7

8

t# R

P
er

ce
nt

ag
e

of
 2

co
m

m

1

2

3

4

5

0

20

40

60

80

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

t# R

P
er

ce
nt

ag
e

of
 2

co
m

m

1

2

3

4

5

0

20

40

60

80

1

2

3

4

5

6

7

8

t# R
P

er
ce

nt
ag

e
of

 2
co

m
m

1

2

3

4

5

0

20

40

60

80

0

10

20

30

40

50

60

t# R

P
er

ce
nt

ag
e

of
 2

co
m

m

1

2

3

4

5

0

20

40

60

80

1

2

3

4

5

6

7

8

t# R

P
er

ce
nt

ag
e

of
 2

co
m

m

1

2

3

4

5

0

20

40

60

80

−1

−0.5

0

0.5

1

t# R

P
er

ce
nt

ag
e

of
 2

co
m

m

4.a(i) 4.b(i) 4.a(ii) 4.b(ii) 4.a(iii) 4.b(iii)
Setting a: Stochastic simulations Setting b: Fixed interval simulations

Figure 4: Stochastic and fixed interval simulations. The vertical axes show the percentage of two-round reads as a
function of the number of readers and the number of faulty servers.

Each of the simulation scenarios(i), (ii), and(iii) was considered in two settings:

a. Stochastic simulations, where the intervals between tworead or two write operations vary randomly within

certain bounds.

b. Fixed interval simulations, where the intervals are fixed.

We now describe the simulation results for each of the two settings.

Setting a: Stochastic simulations. Here we consider a class of executions where each read (resp.write) oper-

ation from an invoking process is scheduled at random time between 1sec andrInt (resp.wInt) after the last

read (resp. write) operation. Introducing randomness in the operation invocation intervals renders a more realistic

scenario where processes are interacting with the atomic object independently. Note that under this setting, for the

three scenarios(i), (ii), and(iii), the comparisons betweenrInt andwInt are satisfied stochastically.

We present the results for a single value ofwInt = 4.3 sec for write operations. For scenario(i) we use

rInt = 2.3 sec, for scenario(ii) we userInt = 4.3 sec, and for scenario(iii) we userInt = 6.3 sec. The results

are given in Figure 4, setting a.

We observe that the results in this setting are similar, withthe percentage of two-round reads is mainly affected

by the number of faulty servers. In all cases the percentage of two-round reads is under7.5%.

Setting b: Fixed interval simulations. In this setting the intervals between two read (or two write)operations

are fixed at the beginning of the simulation. All readers use the same intervalrInt, and the writer the interval

wInt. This family of simulations represent conditions where operations can be frequent and bursty.

Figure 4, case b(i) illustrates the case ofrInt < wInt, whererInt = 2.3 sec. Here a read (write) operation

is invoked by every reader (resp. writer) in the system everyrInt = 2.3 sec (resp.wInt = 4.3 sec). Because of

36

asynchrony not every read operation completes before the invocation of the write operation and thus we observe

that only 4.5% of the reads perform two communication rounds.

Figure 4, case b(ii) illustrates the scenario whererInt = wInt. This is the most bursty scenario since all

operations, read or write, are invoked at the same time, specifically the operations are invoked everyrInt =

wInt = 4.3 sec. Although the conditions in this case are highly bursty (andunlikely to occur in practice), we

observe that only about half of the read operations perform two communication rounds.

Figure 4, case b(iii) illustrates the scenario wherewInt < rInt. In particular a read operation is invoked every

rInt = 6.3 sec by each reader and a write operation everywInt = 4.3 sec. Given the modeled channel latency

and delays, notice that there is no concurrency between the read and write operations in this scenario. So all the

servers reply to any read operation with the latest timestamp and thus no read operation needs to perform a second

communication round.

Finally, note the common trend that increasing the number ofreaders and the number of faulty servers nega-

tively impacts the performance of the algorithm in the scenarios (i) and (ii) for both case a and case b.

9 Conclusions and Future Work

In this paper we investigated the existence of semifast implementations of a read/write atomic register. It is shown

in [3] that there are no fast SWMR implementations—where both readers and the writer perform one communi-

cation round—if there areS
t
− 2 or more readers. Furthermore a question was posed whether there exist semifast

implementations where reads or writes are fast.

The goal of this paper is to relax the bound on the readers in the system at the cost of allowing some reads

to perform two communication rounds. We formalized the notion of semifast implementations and we presented

an implementation that meets our goal and satisfies the required properties. For our implementation we show that

for any write operation only one complete read operation (and maybe some read operations concurrent with that)

needs to perform two communication rounds. We also showed that there is no semifast implementation if the

number of differentvirtual nodesin the system isS
t
− 2 or greater. Moreover we showed that there cannot exist

semifast implementations for the MWMR model. Finally, we simulated our algorithm and presented the results

that demonstrate that most read operations are fast in our simulated executions.

Our paper made progress in identifying the tradeoffs between the concurency in the system and the number of

communication rounds required to implement atomic registers. The next step is to better understand the tradeoffs

in the MWMR model. One direction is to consider hybrid semifast implementations where writers and readers per-

form a mixture of fast and semifast operations. Another direction is to consider dynamic settings such as [9] where

nodes might join, leave, and arbitrarily fail. Lastly, morevirulent adversarial behaviors, such as Byzantine failures,

can be be studied and analyzed. Initial progress in this direction is reported in [6, 7], where certain quorums are

37

employed to trade operation latency and Byzantine-resilience in SWMR implementations. The broader question

we intend to investigate is—given a particular distributedsystem model—how fast can a distributed atomic read

be?

References

[1] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message passing systems.J. of the ACM,

42(1):124–142, 1996.

[2] S. Dolev, S. Gilbert, N. Lynch, A. Shvartsman, and J. Welch. Geoquorums: Implementing atomic memory in

mobile ad hoc networks.Distributed Computing, 18(2):125–155, 2005.

[3] P. Dutta, R. Guerraoui, R. R. Levy, and A. Chakraborty. How fast can a distributed atomic read be? In

Proceedings of the 23rd ACM symposium on Principles of distributed computing, pages 236–245, 2004.

[4] B. Englert and A. A. Shvartsman. Graceful quorum reconfiguration in a robust emulation of shared memory.

In Proceedings of the 20th International Conference on Distributed Computing Systems, pages 454–463, 2000.

[5] C. Georgiou, N. Nicolaou, and A. Shvartsman. Fault-tolerant semifast implementations for atomic read/write

registers. InProceedings of the 18th ACM Symposium on Parallelism in Algorithms and Architectures, pages

281–290, 2006.

[6] R. Guerraoui and M. Vukolić. How fast can a very robust read be? InProceedings of the twenty-fifth annual

ACM symposium on Principles of distributed computing, pages 248–257, New York, NY, USA, 2006. ACM.

[7] R. Guerraoui and M. Vukolić. Refined quorum systems. InProceedings of the twenty-sixth annual ACM

symposium on Principles of distributed computing, pages 119–128, New York, NY, USA, 2007. ACM.

[8] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[9] N. Lynch and A. Shvartsman. RAMBO: A reconfigurable atomic memory service for dynamic networks. In

Proceedings of the 16th International Symposium on Distributed Computing, pages 173–190, 2002.

[10] N. A. Lynch and A. A. Shvartsman. Robust emulation of shared memory using dynamic quorum-

acknowledged broadcasts. InProceedings of the 27th International Symposium on Fault-Tolerant Computing,

pages 272–281, 1997.

[11] P. Vitanyi and B. Awerbuch. Atomic shared register access by asynchronous hardware. InProceedings of the

27th IEEE Symposium on Foundations of Computer Science, pages 233–243, 1986.

38

