
On the Robustness of (Semi)Fast Quorum-Based
Implementations of Atomic Shared Memory⋆

Chryssis Georgiou1 ⋆⋆, Nicolas C. Nicolaou2, and Alexander A. Shvartsman23

1 Department of Computer Science, University of Cyprus, Nicosia, Cyprus
2 Department of Computer Science and Engineering, University of Connecticut, Storrs, USA

3 Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA

Abstract. This paper studies a trade-off between fault-tolerance and latency in
implementations of atomic read/write objects in message-passing systems. In par-
ticular, consideringfast or semifast quorum-basedimplementations, that is, im-
plementations whereall or respectivelymostread and write operations complete
in a single communication round-trip, it is shown that such implementations are
not robustdue to the fact that they necessarily require a quorum system with a
common intersection between its quorums.
To trade speed for fault-tolerance, the notion ofweak-semifastimplementations
is introduced. Here more than a single complete slow (two round-trip) readop-
eration is allowed for each write operation (semifast implementations allow only
one such slow read). A quorum-based algorithm is given next and it is formally
shown that it constitutes a weak-semifast implementation of atomic registers. The
algorithm uses the notion ofQuorum Viewsto facilitate the characterization of all
possible object timestamp distributions that a read operation may witness during
its first communication round-trip. Noteworthy is that the algorithm allows fast
read operations even if they are concurrent with other read and write operations.
Finally, experimental results were gathered by simulating the algorithm usingthe
NS-2 network simulator. The results show that under realistic conditions, less
than13% of read operations are slow, thus the overwhelming majority of opera-
tions take a single communication round-trip.

1 Introduction

Motivation and Prior Work. Atomic (linearizable) read/write memory is one of the
fundamental abstractions in distributed computing. Fault-tolerant implementations of
atomic objects in message-passing systems allow processesto share information with
precise consistency guarantees in the presence of asynchrony and failures. A seminal
implementation of atomic memory of Attiyaet al. [1] gives a single-writer, multiple
reader (SWMR) solution where each data object is replicated at n message-passing
nodes. In that solution, memory access operations are guaranteed to terminate as long
as the number of crashed nodes is less thann/2, i.e., the solution tolerates crashes of any
minority of the nodes. The write protocol involves a single round-trip communication
stage, while the read protocol involves two round-trip stages, where the second stage

⋆ This work is supported in part by the NSF Grants 9988304, 0121277, and 0311368.
⋆⋆ The work of this author is supported in part by research funds at the University of Cyprus.

essentially performs the write of the value obtained in the first stage. Following this
development, a folklore belief developed that in messaging-passing atomic memory
implementations “atomic reads must write.”

However, recent work by Duttaet al. [3] established that if the number of readers
R is appropriately constrained with respect to the number of replicasS and the maxi-
mum number of crash-failurest in the system (R < S

t
−2), then single communication

round-trip implementations of reads are possible. Such an implementation given in [3]
is calledfast. Subsequently, Georgiouet al. [9] relaxed the constraint in [3], and pro-
posedsemifastimplementations with unbounded number of readers, where under real-
istic conditions most reads need only a single communication round-trip to complete.
Their approach groups collections of readers intovirtual nodes. Semifast behavior of
their algorithm is preserved as long as the number of virtualnodes is appropriately
restricted underS

t
− 2.

Quorum systems are well-known mathematical tools that provide means for achiev-
ing coordination between processors in distributed systems [11, 6, 22, 21]. Given that
the approach of Attiyaet al. [1] is readily generalized from majorities to quorums (e.g.,
[20]), and that the algorithms in [3] and [9] rely on intersections in specific sets of
responding servers, one may ask:Can we characterize the conditions enabling fast im-
plementations in a general quorum-based framework?

This is what we establish in this work. We consider quorum-based implementations
of atomic memory, and investigate the properties needed to achieve fast and semifast
atomic memory implementations. Interestingly, when examining unconstrained — in
terms of quorum construction and reader participation — quorum-based implemen-
tations, we discover that acommonintersection amongall quorum sets is necessary.
This renders such implementations non-fault-tolerant, since the common intersection
introduces a single point of failure. Then a natural question arises:Was a common in-
tersection implied in [3] and [9]?The answer is “no”, because (a) the constraint on the
number of readers in [3] or virtual nodes in [9], and (b) the knowledge of the number
of failurest, has the implication that the intersections of the replyingsets of servers is
guaranteed to consist of non-faulty processors. So, our newfindings introduce comple-
mentary knowledge:One cannot have fast or semifast implementations without common
intersection unless one imposes additional constraints onthe system.

Based on this new understanding, we posed the question of whether one can avoid
restrictions, such as the constraint on the number of readers or the common intersection
among quorum sets, and still obtain practical and robust implementations. We show
that this is indeed possible if some speed is traded for robustness. We introduceweak-
semifastimplementations that allow a greater proportion of slow reads, and develop a
new algorithm that uses a predicate tool, calledquorum views, also defined in this paper.
We simulate our algorithm using the NS-2 simulator and we gather experimental results
that demonstrate the practicality of our algorithm.

Related Work.Previous works extended the approach in [1] and used quorumsto pro-
vide atomicity in themultiple writer multiple reader(MWMR) model [20, 4, 13, 5]. The
work in [5] (similar to [1]) shows that the read operations must write to as many replicas
as the maximum number of failures allowed. A dynamic atomic memory implementa-
tion using reconfigurable quorums is given in [18], where thesets of object replicas

can arbitrarily change over time as processes join and leavethe system. Refinements of
the dynamic algorithm further improved its performance in practical implementations
[12, 8, 7]. When the set of replicas is not being reconfigured, the read and write proto-
cols involve two communication round-trips. Retargeting this work to ad-hoc mobile
networks, Dolevet al.[2] formulated the GeoQuorums approach where replicas are im-
plemented by stationaryfocal pointsthat in turn are implemented by mobile nodes; here
quorums are composed of focal points. Interestingly, in this work some reads involve
a single communication round-trip when it is confirmed that the corresponding write
operation has completed.

A recent work by Guerraoui and Vukolić [15] presented a powerful notion ofRe-
fined Quorum Systems(RQS), where quorum members are classified in three categories,
calledquorum classes, according to their intersection size with other quorums; the first
class contains quorums of large intersection, the second ofsmaller intersection, and
the third class corresponds to traditional quorums. The authors specify the properties
that the members of each quorum class must possess and use RQSs to develop an ef-
ficient Byzantine-resilientSWMR atomic object implementation and a solution to the
consensus problem. In synchronous failure-free runs theirimplementation allows single
communication round-trip (fast) operations. That was an improvement over a previous
result from the same authors, [14], that provided bounds andimposed system restric-
tions to achieve robustsafeand regular storage implementations in the presence of
Byzantine failures. In that work they showed thattwo communication round-trips are
necessary for each read operation in both safe and regular implementations even though
more than2t+2b+1 servers are used, wheret the maximum number of crash andb the
maximum number of byzantine failures. Our work complementsthe work in [15] by
specifying the exact properties that ageneralquorum system must possess in order to
achieve single round-trip operations undercrash failuresandasynchrony. Furthermore
we do not use quorum formation constraints such as the categories mentioned above,
rather we deal with the usual quorum systems. In our implementations we only rely on
client side prediction tools we callQuorum Views.

Malkhi and Reiter in [21] studied constructions that improve fault-tolerance of quo-
rum systems forbyzantine failures. They organized their constructions according to the
properties quorum sets satisfy and the degree of fault-tolerance they achieve. Using such
constructions they providedsafeandregular ([16]) read/write register implementations.
Regularity was also studied for the MWMR model in [23]; the authors presented reg-
ular implementations with single round trip operations. Peleg and Wool in [22], inves-
tigated different families of quorum systems and presentedtheir performance in terms
of process load, quorum availability(failure tolerance) andmessage complexity(quo-
rum size). A quorum construction was then proposed that achieves high performance in
comparison with prior constructions.

Our Contributions.In this paper we study the properties of quorum systems that enable
communication-efficient quorum-based implementations ofatomic read/write registers.
In particular, we study the efficiency ofgeneralquorum constructions deployed in im-
plementations withunconstrainednumber of readers. We say that an atomic SWMR
implementation isfast if all the read and write operations complete in a single commu-
nication round-trip. Asemifastimplementation as defined in [9] allows one complete

slow read operation for each write, while the rest of read andwrite operations are re-
quired to be fast. In this paper we say that an implementationis not robustif it has a sin-
gle point of failure. We consider implementations that use quorum systemsQ = {Qi},
where for any two quorum sets inQ we haveQi ∩Qj 6= ∅. The contributions presented
in this paper are as follows.

1. We show that fast quorum-based implementations that allow arbitrary number of
readers must use certain quorum systems that necessarily render the implementations
not robust. In particular we prove that a quorum-based fast implementation is possible
if and only ifthe following property is satisfied byQ:

⋂

Q∈Q Q 6= ∅.
In other words, there must be acommon intersectionamong all quorum sets ofQ. Since
a single failure in the common intersection disables the quorum system, we conclude
thatrobustfast quorum-based implementations areimpossible.

2. We then pose the natural question whethersemifast([9]) quorum-based implemen-
tations can be robust. We give a negative answer to this question as well: we show
that robustsemifast quorum-based implementations are alsoimpossible. In particular
we show that a certain property of the semifast definition ([9], Property 3) is violated
when using quorum systems without a common intersection. This property states that
only asingle completeread operation is required to perform a second communication
round-trip for every write operation. We prove that requiring a single complete slow
read is impossible to satisfy using quorum-based implementations without a common
intersection.

3. Consequently we seek implementations that enable fast reads, but permit multiple
slow reads per write. We call such implementationsweak-semifast. As a tool used in
our development, we introduce the notion ofQuorum Viewsthat is used to characterize
every possible timestamp distribution that a read operation may witness in a quorum
set during its first communication round-trip. A quorum viewmay provide “sufficient”
information on whether or not a write operation is complete.If so, then the read oper-
ation can be “fast.” Otherwise the reader performs a second communication round-trip
and the read operation is “slow.” We define quorum views and wepresent an algorithm,
called SLIQ (Semifast Like Implementation for Quorum systems), that makes use of
the latter idea and we prove its correctness. The algorithm departs from the classic ap-
proach that implements all reads as slow, and also from the approach that allows fast
reads after the completion of the write operation. In our algorithm fast reads are allowed
even in the case of concurrent read and write operations.

4. We simulate our algorithm using the NS-2 network simulator and we observe that
in common cases only less than13% of the read operations need to perform a second
communication round-trip, thus the overwhelming number ofoperations are fast.

Paper Organization.In Section 2 we present our model assumptions and definitions.
In Section 3 we present the quorum system properties that arenecessary to achieve fast
and semifast quorum-based implementations and we show their non-robustness. The
notion of quorum views and algorithm SLIQ are presented in Section 4 along with the
algorithm’s correctness. The results of our simulations are depicted in Section 5. We
conclude in Section 6. For full proofs and additional discussion we refer the reader
to [10].

2 Model and Definitions
We consider implementations for the single writer, multiple reader (SWMR) in the
asynchronous message-passing model. Our system consists of three distinct sets of pro-
cesses: a distinguished processw is the writer, the set ofR readers with unique ids
from the setR = {r1, . . . , rR}, and the set ofS servers (where the object replicas are
maintained) with unique ids from the setS = {s1, . . . , sS}.

A quorum systemis a collection of sets of processes, known asquorums, such that
every pair of such sets intersects. We define a quorum systemQ over the set of serversS
as follows:Q = {Qi : Qi ⊆ S} such that for any two quorumsQi, Qj ∈ Q, Qi∩Qj 6=
∅. We assume that every process in the system is aware ofQ.

Our distributed system is modeled in terms ofI/O automata[19, 17] whereAp rep-
resents the automatonA assigned to processp. Our system is composed of four kinds of
automata: the writerWriterw, serversServersi

, readersReaderri
, andChannelp,q.

AutomataChannelp,q andChannelq,p are assumed to implement a reliable commu-
nication channels between processesp ∈ {w} ∪ R and processesq ∈ S. Each I/O
automatonAp consists of a set of statesstates(Ap) that includes the initial state(s)
of Ap, and a signaturesig(Ap) that specifies input, output, and internal actions that
can be performed byAp. For an actionα, the tuple〈state, α, state′〉 represents the
transition of Ap from statestate to state′ as the result ofα. Such a tuple is also
called astep, of Ap. An execution fragmentϕ of Ap is a finite or an infinite sequence
state0, α1, state1, α2, . . . , αr, stater, . . . of alternating states and actions ofAp such
that everystatek, αk+1, statek+1 is a step ofAp. If an execution fragment begins with
an initial state ofAp then it is called anexecution. We say that an execution fragmentϕ′

of Ap, extendsa finite execution fragmentϕ of Ap if the first state ofϕ′ is equal to the
last state ofϕ. The concatenation of ofϕ andϕ′ is the result of the extension ofϕ by ϕ′

where the duplicate occurrence of the last state ofϕ is eliminated. Such concatenation
yields an execution fragment ofAp.

A processp crashesat any step〈statek, αk+1, statek+1〉 in an executionξ, if this
is the last step ofAp in ξ. A processp is faulty in an executionξ if p crashes inξ;
otherwisep is correct. A quorumQ ∈ Q is non-faulty if∀p ∈ Q, p is correct; otherwise
Q is faulty. We assume that any subset of readers, the writer, and all but one quorum in
quorum systemQ may be faulty at any execution.

2.1 Atomicity

Our goal is to implement a read/write atomic object in a message passing system by
replicating the value of the object among the servers in the system. Each replica consists
of a valuev and an associated timestampts.

The client at processp may request a read operationρ on the atomic registerx by
performing areadx,p action if p ∈ R. Similarly the client requests a write operation
ω(∗) by performingwrite(∗)x,p if processp is the writer. The step that includes the
read or write action is calledinvocationstep and the step that contains aread-ack(∗)x,p

or awrite-ackx,p action is called aresponsestep. An operationπ is incompletein an
executionξ, if ξ contains the invocation step ofπ but does not contain the associated
response step forπ; otherwise we say thatπ is complete. We assume that the requests of
a client arewell-formedmeaning that the client does not request aread or write action
on an objectx, before receiving aread-ack or write-ack from a previously invoked

action onx. From this point onward we assume a single register object. By composing
multiple single register implementations, one may obtain the complete atomic shared-
memory [17].

In an execution we say that an operation (read or write)π1 precedesanother oper-
ationπ2, or π2 succeedsπ1, if the response step forπ1 precedes the invocation step of
π2; this is denoted byπ1 → π2. Two operations areconcurrentif neither precedes the
other.

Correctness of an implementation of an atomic object is defined in terms of theter-
minationandatomicityproperties. The termination property requires that any operation
invoked by a correct process eventually completes, provided that the failures obey our
failure model. Atomicity is defined as follows [17]: Consider the setΠ of all complete
operations in any well-formed execution. Then there existsan irreflexive partial order-
ing ≺ on operations inΠ, satisfying the following: (1) For any operationπ ∈ Π, there
are finitely many operationsπ′ such thatπ′ ≺ π. (2) If operationπ1 precedes the oper-
ationπ2 in Π, then it cannot be the case thatπ2 ≺ π1. (3) If π is a write operation and
π′ is any operation inΠ, then eitherπ ≺ π′ or π′ ≺ π. (4) The value returned by a read
operation is the value written by the last preceding write operation according to≺ (or
⊥ if there is no such write).

2.2 Fast, Semifast and Weak-Semifast Implementations

We use the definition offast implementation given by Dutta et al. [3], in particular
we say that a read or write operation isfast if it completes in a single communication
round-trip (or round for short). A fast implementation contains only fast operations in
any execution. We define a communication round as follows:

Definition 1. A processp performs a communication round during operationπ if all of
the following hold:
(1) p sends read or write messages forπ to a subset of processes,
(2) any processp′ that receives a message fromp for operationπ, replies to the message
with a read or write acknowledgment respectively before receiving any other message4,
(3) when processp receives enough replies forπ it responds to the client.

The results of [3] show that in fast implementations the number of readers must
be constrained with respect to the number of servers. To relax such constraints, [9]
proposedsemifastimplementations where some read operations are allowed to perform
two communication rounds. The definition of semifast implementations is given below,
whereR(ρ) denotes the unique write operation that wrote the value returned byρ:

Definition 2. An implementationI of an atomic object issemifast if the following are
satisfied:
P1.Everywrite operation is fast.
P2.Any completereadoperation performs one or two communication rounds between
the invocation and response.
P3.For any executionξ of I, if ρ1 is a two-round read operation, then any read opera-
tion ρ2 with R(ρ1) = R(ρ2), such thatρ1 → ρ2 or ρ2 → ρ1, must be fast.

4 Intuitively this property is used to stress the fact that processes do not need to wait for other
messages before replying top.

P4. There exists an executionξ of I that contains at least one write operationω and
at least one read operationρ1 with R(ρ1) = ω, such that all read operationsρ with
R(ρ) = ω (includingρ1) are fast.

We define a new class of implementations that we callweak-semifast implemen-
tations. This class is defined in terms of propertiesP1, P2, and P4 of the semifast
implementations, and it does not include propertyP3. In other words, weak-semifast
implementations allow multiple “slow” complete read operations for every write opera-
tion in contrast with propertyP3 that allows a single such read operation. Thus the two
classes are distinct.

Given that any subset of readers and the writer may crash, then termination is guar-
anteed only if no operation waits for replies from any readeror writer processes. More-
over our failure assumptions on the quorum system imply thatno operation can wait
for more than a single quorum to reply. Finally, as shown in [3, 9], fast and semifast
implementations require that server processes cannot waitfor more messages before
replying to a read or write operation. Notice that since weak-semifast implementations
share the same communication scheme in terms of communication rounds as the semi-
fast implementations, they also follow the rules presentedin this paragraph.

2.3 Quorum-Based Algorithms

The results in the next two sections pertain to atomic register implementations that have
the following characteristics: (1) they use a quorum systemto group the object replicas,
(2) participants are aware of the quorum system construction and the operation protocol
and (3) in every execution there is at least one non-faulty quorum.

Characteristic (3) describes the failure model of the algorithms we consider. Ob-
serve that: (i) according to the pairwise intersection property of quorums it suffices to
obtain replies from a single quorum, and (ii) according to (3) only a single quorum may
be alive in any execution of the algorithm, and thus waiting for more than one quorum
before replying may affect operation termination. Thus we assume that any operation
waits for exactly one quorum to reply.

3 Quorum Properties and Fast/Semifast Impossibility

A processp, that invokes an operationπ, is said tocontacta subset of serversG ⊆ S,
denoted bycnt(G)p,π, if for every serversi ∈ G: (a) si receives the messages sent
by p within the operationπ, (b) si replies top, and (c)p receives the reply from
si. If cnt(G)p,π and additionally no other server (i.e.,si /∈ G) receives any message
from p within the operationπ then we say thatp strictly contactsG, and is denoted
by scnt(G)p,π. Let maxTS denote the maximum timestamp that a read operationρi

witnesses aftercnt(G)∗,ρi
or scnt(G)∗,ρi

, for someG ⊆ S, during its first round.
Below we discuss our results regarding quorum-based fast and semifast implemen-

tations. More detailed analysis can be found in [10].

Fast Implementations.We now state the quorum property that is both necessary and
sufficient to obtain fast quorum-based implementations.

Theorem 1. A fast quorum-based implementation I of a read/write atomicregister is
possible iff the underlying quorum systemQ satisfies:

⋂

Q∈Q

Q 6= ∅.

Proof (Sketch).We prove the two directions of the theorem separately. We first show
that if we want fast implementations it is necessary to have common intersection, and
then we show that having a common intersection it is sufficient to build fast implemen-
tations.

The first part of the proof relies on an execution construction. The construction
involves an executionξ0 that contains a complete write operation whichscnt(Qi)∗,ω

and a series of executionsξ1, . . . , ξn−2 (n = |Q|). Starting fromξ0 we extend each
executionξi with i+2 read operations such that each of them strictly contacts a different
quorum. Using an induction on the number of read operations,it can be shown that
atomicity is preserved only if the last read operation, sayρk in the executionξk−2, may
witness the maximum timestamp. Assuming thatρk scnt(Qz)∗,ρk

and the maximum
timestamp is introduced only in a quorum intersectionQinter thenρk may witness the
maximum timestamp only ifQinter ∩ Qz 6= ∅. Generalizing to the full quorum system
the common intersection follows.

The fact that the common intersection is sufficient for fast implementations follows
from a trivial implementation: each read/write operation contacts (only) the servers
in the common intersection and returns the maximum timestamp observed in the first
communication round. Notice here that according to our failure model, all the servers
of the common intersection must remain alive during the execution. Thus atomicity is
not violated since every read/write operation will gather all the servers in the common
intersection and furthermore all operations complete in a single communication round.

Theorem 1 leads to the following result.

Theorem 2. Fast quorum-based implementations are not robust.

Proof. Theorem 1 requires a common intersection between the quorumsets of the quo-
rum systemQ. If any member nodesi of the common intersection fails, then all quorum
members of the quorum system are faulty since∀Q ∈ Q, si ∈ Q. Hence it follows that
the quorum systemQ fails. Therefore the quorum system suffers from a single point of
failure and as a sequel it is not robust. As a result, any implementation that relies on
such a quorum system is also not robust.

Semifast implementations.Since fast implementations are not possible if common
intersection property is not satisfied by the quorum system,a natural question arise
whether robustsemifastimplementations can be achieved. We show that robust semifast
implementations are also impossible if the common intersection between the quorums
is not preserved. We use the properties of the semifast implementations as presented in
Definition 2.

We first prove a lemma that specifies when a read operation is necessary to perform
a second communication round. The lemma is general and algorithm-independent.

Lemma 1. A read operationρ from a readerr that scnt(Qi)r,ρ, Qi ∈ Q cannot be

fast if ∃s ∈ Qi : s.ts < maxTS and ∃Q ⊂ Q s.t. Qi ∩
(

⋂

q∈Q
q
)

6= ∅ and

∀s ∈ Qi ∩
(

⋂

q∈Q
q
)

, s.ts = maxTS.

We can then derive the following result.

Theorem 3. No quorum-based semifast implementation is possible if
⋂

Q∈Q Q = ∅.

Qi

QjQz

Fig. 1. Intersections of three quorumsQi, Qj , Qz.

Proof (Sketch).The proof is build upon execution constructions that exploit a basic
quorum system similar to the one presented in Figure 1 with nocommon intersec-
tion. Based on that figure, consider an execution that contains a write operationω
and three read operationsρ1, ρ2 and ρ3. Assume that the write is incomplete and
scnt(Qj ∩ Qi)w,ω. Moreover theρ1 operationscnt(Qi)∗,ρ1

during its first commu-
nication round. According to Lemma 1,ρ1 needs to perform a second communication
round and suppose itscnt(Qi ∩ Qj)∗,ρ1

before the first communication round ofρ2.
Thus whenρ2 is executed, andscnt(Qj)∗,ρ2

, observes thatρ1 performed a second
communication round but it cannot distinguish whetherρ1 is completed or not. Here is
where the key idea of the proof lies: ifρ2 is fast (s.t. Property 3 of the semifast definition
holds), then ifρ3 scnt(Qz)∗,ρ3

, ρ3 will not witness the maximum timestamp and thus
will return an older value violating atomicity. So to preserve atomicityρ2 has to pro-
ceed to a second communication round. Since, however,ρ2 cannot distinguish between
a complete second communication round ofρ1 that scnt(Qi)∗,ρ1

and the incomplete
second communication round ofρ1 that scnt(Qi ∩ Qj)∗,ρ1

, thenρ1 andρ2 may not
be concurrent but yet be both slow. That however violates Property 3 of the semifast
definition.

We conclude that robust quorum-based semifast implementations are not possible.

Corollary 1. Semifast quorum-based implementations are not robust.

Remark 1.Observe that the robustness of fast quorum-based implementations can be
improved by the following techniques: (i) relaxing the failure model and requiring more
than a single quorum to reply at any read/write operation, and (ii) impose restrictions
on the number of reader participants and on the constructionof the quorum system
they deploy. This however will negatively affect the performance of the quorum system
and will introduce strong assumptions for its maintenance,making eventually the use
of quorums impractical. Thus in this work we avoid making such assumptions and we
prefer to trade operation performance for higher fault-tolerance and applicability.

The following example help us visualize the application of the second tech-
nique presented in the above remark. Assume the following setting under [3]:S =
{1, 2, 3, 4, 5}, R = 2 andt = 1. Any operation may receive replies fromS − t servers
and from one of the sets:Q1 = {1, 2, 3, 4}, Q2 = {1, 3, 4, 5}, Q3 = {1, 2, 4, 5}, Q4 =
{1, 2, 3, 5}, Q5 = {2, 3, 4, 5}. Observe that the intersection of any three sets contains
two servers (t + 1). Since there are two readers and one writer then a written value may

Qz

QiQj

Qz

QiQj

Qz

QiQj

Qz

QiQj

2(a) 2(b) 2(c) 2(d)

Fig. 2. (a) qV iew(1), (b) qV iew(2), (c) qV iew(3) with incomplete write, (d)qV iew(3) with
complete write.

be disseminated by contacting at most three different sets in the worst case (a different
set per read/write operation). So restricting the number ofreaders allows the concen-
tration of the common intersection between a subset of quorum sets, which serves as a
“hot spot” to ensure consistency between the operations.

4 Weak-Semifast Implementations

In the previous section we have established that no robust fast or semifast quorum-based
implementations are possible. We therefore now consider weak-semifast implementa-
tions. In this section we introduce the notion ofQuorum Viewsthat describe certain
knowledge that a read operation may witness during its first communication round. We
then present an algorithm, called SLIQ, for atomic registers, and we reason, based on
the knowledge in quorum views, about read operations needing to perform one or two
communication rounds to complete. We deviate from the restrictive quorums properties
presented in Section 3 and we allow our implementation to usean arbitrary quorum
system construction.

4.1 Quorum Views

A quorum viewrefers to the distribution of the maximum timestamp that a read op-
erationρi witnesses after its first communication round. Consider that the read opera-
tion ρi strictly contacts quorumQi during its first communication round, denoted by
scnt(Qi)∗,ρi

. Each members ∈ Qi replies with a timestamps.ts to ρi. We define
quorum views in terms of the following three possible cases for ρi:

1. [qV iew(1)] ∀s ∈ Qi : s.ts = maxTS,

2. [qV iew(2)] ∀Qj ∈ Q, i 6= j,∃A ⊆ Qi ∩ Qj , s.t.A 6= ∅ and∀s ∈ A : s.ts <
maxTS,

3. [qV iew(3)] ∃s′ ∈ Qi : s′.ts < maxTS and∃Qj ∈ Q, i 6= j s.t. ∀s ∈ Qi ∩ Qj :
s.ts = maxTS.

Analyzing these three types of quorum views we can derive conclusions on the
state of the write operation (complete or incomplete) that tries to propagate a value with
themaxTS in the system. Figure 2 illustrates those quorum views assuming that the
read operationρ, scnt(Qi)∗,ρ. The dark nodes maintain the maximum timestamp of the
system and white nodes or “empty” quorums maintain an older timestamp. Recall that
it follows from our failure model that no operation (read or write) can wait for more
than one quorum to reply. Thus having a full quorum reportingthe samemaxTS, as

seen in Fig. 2(a), implies the possible completion of the write operation (in the case of
Figure 2(a) the complete write operation strictly contactsQi).

Observe that if a full quorum containsmaxTS then the members of any intersection
of that quorum containmaxTS. So witnessing a subset of members of each intersec-
tion of Qi (as seen in Fig. 2(b) the representation ofqV iew(2)) to maintain an older
timestamp, implies directly that the write operation whichpropagatesmaxTS is not
yet complete.

Finally, qV iew(3), provides insufficient information regarding the state of the write
operation. Observe Figures 2(c) and 2(d). In the former an incomplete write operation
propagates themaxTS in the dark nodes and in the latter it completes by receiving
replies fromQz. Notice that if a read operationρ strictly contactsQi (i.e.,scnt(Qi)∗,ρ)
in the two executions, it won’t be able to distinguish 2(c) from 2(d). So, more formally,
if an operation witnesses some intersectionQi ∩ Qz that containsmaxTS in all of its
members, then a write operation might: (i) have been completed and contactedQz or
(ii) be incomplete and contacted a subset of serversB such thatQi ∩ Qz ⊆ B and
∀Qj ∈ Q, Qj 6⊆ B.

4.2 Algorithm SLIQ

Our implementation includes, automatonWriterw that handles the write operations for
the writer processw, automatonReaderri

that handles the reading for eachri ∈ R,
and automatonServersi

that handles the read and write requests on the atomic register
for eachsi ∈ S. These automata use reliable asynchronous process-to-process channels
Channelp,q to communicate.

Algorithm Description.Due to space limitations we only provide a high level descrip-
tion of our algorithm. A more technical description and formal specification can be
found in [10].

Writer. The write protocol involves the propagation of a write message to all the
servers. Once the writer receives replies from a full quorumit increments its timestamp
and the operation completes.

Readers.The read protocol also requires that a reader propagates a read message to all
the servers. Once the reader receives replies from a full quorum it examines the maxi-
mum timestamp (maxTS) distribution within that quorum, which in turn characterizes
a quorum view. If the view is eitherqV iew(1) or qV iew(2) then the reader terminates
in the first communication round and returnsmaxTS or maxTS − 1 respectively. If
the view isqV iew(3) then the reader proceeds to the second communication round
where it propagates the maximum timestamp to a full quorum ina similar manner as
the writer. Once the reader gets replies from a full quorum, the operation completes,
returningmaxTS.

Servers.The servers maintain a passive role; they just receive messages, update their
replica value according to the message contents and reply tothose messages.

Algorithm Correctness.We prove that algorithm SLIQ follows its specifications and
preserves atomicity; specifically we show that each atomicity property of Section 2.1
holds for any execution of the algorithm. The main theorem isthe following:

Theorem 4. AlgorithmSLIQ implements a SWMR atomic read/write register.

Proof (Sketch).Let tsp(π) to denote the timestamp of the read or write operationπ
from a processp, after the completion event ofπ. Summarizing the atomicity properties
we want to show: (i) The timestamp at each process is monotonically increasing, (ii)
If a read operationρ succeeds a write operationω thents∗(ρ) ≥ tsw(ω) and, (iii) If
ρ1 andρ2 are two read operations such thatρ1 → ρ2 then ts∗(ρ2) ≥ ts∗(ρ1). The
monotonicity on the timestamps (property (i)) for every process can be easily derived
from the algorithm. For property (ii) we can observe that since the write operation
is completed thenρ will witness a timestampts greater or equal totsw(ω). If ts >
tsw(ω) thents∗(ρ) ≥ tsw(ω) sincets∗(ρ) = ts or ts∗(ρ) = ts − 1. If ts = tsw(ω)
thenρ will witness eitherqV iew(1) or qV iew(3). In either casets∗(ρ) = ts. Finally
for property (iii) we investigate all the possible quorum views. We need to show that
if ρ1 is fast thents∗(ρ2) is at least equal tots∗(ρ1). Notice thatρ1 is fast only if a
qV iew(1) or qV iew(2) is observed. IfqV iew(1) is witnessed byρ1 thenρ2 witnesses
an intersection with timestamps greater or equal tots∗(ρ1). If qV iew(2) is witnessed
by ρ1 then a timestampts = ts∗(ρ1) + 1 has already introduced in the system and thus
the write operation that wrote a timestamp equal tots∗(ρ1) is already completed. Thus,
by Property (ii)ρ2 returnsts∗(ρ2) ≥ ts∗(ρ1), and hence property (iii) follows.

Note that it is straightforward to verify that SLIQ belongs in the class of weak-semifast
implementations (that is, it satisfies propertiesP1, P2andP4of Definition 2).

5 Simulation Results

To practically evaluate our findings, we simulated our algorithm using the the NS-2
network simulator. The detailed testbed and discussion regarding the simulation appears
in [10]. According to our setting, only the messages betweenthe invoking processes and
the servers, and the replies from the servers are delivered (no messages are exchanged
between any servers or among the invoking processes).

We have evaluated our approach over multiple quorum systems(majoritiesQm,
matrix quorumsQx and crumbling wallsQc), but due to space limitations we only
present here some of the plots we obtained exploiting crumbling walls (see [22]). The
quorum system is generated apriori and is distributed to each participant node via an
external service (out of the scope of this work). No dynamic quorums are assumed,
so the configuration of the quorum system remains the same throughout the execution
of the simulation. We model server failures by choosing the non-faulty quorum and
allowing any server that is not a member of that quorum to failby crashing. Note that the
non-faulty quorum is not known to any of the participants. The positive time parameter
cInt is used, to model the failure frequency or reliability of every serversi.

We use the positive time parametersrInt andwInt (both greater than 1sec) to
model the time intervals between any two successive read operations and any two suc-
cessive write operations respectively. We considered three simulation scenarios corre-
sponding to the following parameters:(i) rInt < wInt: this models frequent reads and
infrequent writes,(ii) rInt = wInt: this models evenly spaced reads and writes,(iii)
rInt > wInt: this models infrequent reads and frequent writes.

Furthermore for each one of the above scenarios we consider two settings:

 10
 20

 30
 40

 50
 60

 70
 80 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

%-2comm

randInt data plot

"randInt.all.crumpling.data.0" using 3:4:10

#Readers

RInt

%-2comm

 10
 20

 30
 40

 50
 60

 70
 80 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

%-2comm

fixInt data plot

"fixInt.all.crumpling.data.0" using 3:4:10

#Readers

RInt

%-2comm

Setting a: Stochastic simulations Setting b: Fixed interval simulations

Fig. 3.Simple runs using Crumbling Walls

(a) Stochastic setting: the read/write intervals vary randomly within[0 . . . rInt] and
[0 . . . wInt] respectively.

(b) Fixed setting: the read/write intervals are fixed to the value ofrInt andwInt re-
spectively.

We can summarize our simulations testbed for each class of quorums and for the
settings presented above, as follows:

(1) Simple Runs: (Qc, Qx, Qm) |S| = 25 (Qc, Qx) or |S| = 10 (Qm), cInt = 0
(failure check for every reply) and|R| ∈ [10, 20, 40, 80]. Here we want to demonstrate
the performance of the algorithm under similar environments (quorum,failures) but with
different read load.

(2) Quorum Diversity Runs: (Qc, Qx) |S| ∈ [11, 25, 49] (Qc) and|S| ∈ [11, 25, 49]
(Qx), cInt = 0 and |R| ∈ [10, 20, 40, 80]. These runs demonstrate the performance
of the algorithm in different quorum systems with varying quorum membership. Each
quorum is tested in variable read load.

(3) Failure Diversity Runs: (Qc, Qx) |S| = 25, cInt ∈ [10 . . . 50] with steps of10
and|R| ∈ [10, 20, 40, 80]. These runs tested the durability of the algorithm to failures.
Notice that the smaller the crash interval the faster we diverge to the non-faulty quorum.
As the crash interval becomes bigger, less servers fail and thus more quorums “survive”
in the quorum system. For this class of runs we tested both thecases when the servers
get the crash interval randomly from[0 . . . cInt] and[10 . . . 10 + cInt].

Figure 3 illustrates the results obtained when we assumed simple runs and exploiting
crumbling walls quorum. The Z axis presents the percentage of the read operations that
performed two communication rounds, the X axis correspondsto the number of reader
participants and the Y axis represents time and in particular the rInt interval. In the
stochastic environment (Figure 3.a) we observe that the percentage of slow reads drops
as the number of readers increases, regardless of the value of rInt. This behavior can
be explained from the fact that the concurrency between the operations is minimized
and thus the maximum timestamp is propagated (by both the writer and the readers)
to enough servers that favor the fast behavior. Since the convergence point is similar

regardless the number of readers, then increasing the readers, increases the number of
fast reads and decreases the percentage of slow reads. Similar behavior is observed
in the fixed interval environment (Figure 3.b) whenever there is no strict concurrency
between the reads and the writes. The worst case is observed at the point where all
operations are invoked concurrently.

Our results (including the ones given in [10]) reveal that inrealistic cases (i.e.
stochastic settings), the percentage of two communicationround reads does not ex-
ceed13%. The only case that requires more than85% of the reads to be slow is the
worst case scenario were the read and write intervals are fixed to the same value. Notice
however that this scenario is unlikely to appear in practical settings. Comparing our
results with the ones obtained in [9] one can observe that thedifference in the random
scenarios does not exceed6%.

6 Conclusions
In this paper we have shown that no robust fast or semifast quorum-based implemen-
tations of atomic read/write objects are possible in the presence of crashes. We thus
introduced the notion of weak-semifast implementations, reasoned that this notion is
meaningful, and showed that robust weak-semifast quorum-based implementations ex-
ist. As a tool, we introduced the notion of a Quorum View that we used in the design and
analysis of our robust algorithm. We formally proved the correctness of the algorithm
and we obtained simulation results that demonstrate that under realistic conditions the
overwhelming number of read operations are fast.

The algorithm does not explicitly provide any guarantees onthe relative frequency
of slow and fast read operations. Thus it would be interesting to examine ways to re-
duce the number of slow operations either by imposing a supplemental communication
scheme or by using a special form of quorum systems. An interesting direction is to
investigate whether combining quorum views with refined quorum systems [15] can
lead to more efficient implementations. In another direction, dynamic membership of
quorum systems can also further improve the flexibility and fault tolerance of quorum-
based implementations. Given the results in [4, 18] a quorumreconfiguration requires
some communication overhead. So a natural question arises regarding the communi-
cation efficiency of such dynamic systems and their impact onthe performance of a
weak-semifast implementation.

References

1. H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message passing systems.
Journal of the ACM, 42(1):124–142, 1996.

2. S. Dolev, S. Gilbert, N. Lynch, A. Shvartsman, and J. Welch. Geoquorums: Implement-
ing atomic memory in mobile ad hoc networks. InProceedings of the 17th International
Symposium on Distributed Computing (DISC), pages 306–320, 2003.

3. P. Dutta, R. Guerraoui, R. R. Levy, and A. Chakraborty. How fastcan a distributed atomic
read be? InProceedings of the 23rd ACM Symposium on Principles of Distributed Computing
(PODC), pages 236–245, 2004.

4. B. Englert and A. A. Shvartsman. Graceful quorum reconfiguration in a robust emulation of
shared memory. InProceedings of 20th International Conference on Distributed Computing
Systems (ICDCS), pages 454–463, 2000.

5. R. Fan and N. Lynch. Efficient replication of large data objects. InProceedings of the 17th
International Symposium on Distributed Computing (DISC), pages 75–91, 2003.

6. H. Garcia-Molina and D. Barbara. How to assign votes in a distributed system. Journal of
the ACM, 32(4):841–860, 1985.

7. C. Georgiou, P. M. Musial, and A. A. Shvartsman. Developing a consistent domain-oriented
distributed object service. InProceedings of the 4th IEEE International Symposium on Net-
work Computing and Applications (NCA), pages 149–158, 2005.

8. C. Georgiou, P. M. Musial, and A. A. Shvartsman. Long-lived RAMBO: Trading knowledge
for communication.Theoretical Computer Science, 383(1):59–85, 2007.

9. C. Georgiou, N. Nicolaou, and A. Shvartsman. Fault-tolerant semifast implementations for
atomic read/write registers.Journal of Parallel and Distributed Computing, accepted, 2008.
(A preliminary version appears in SPAA 2006, pages 281–290.)

10. C. Georgiou, N. Nicolaou, and A. Shvartsman. On the robustness of (semi)fast quorum-
based implementations of atomic shared memory, 2008.http://www.cse.uconn.
edu/ ˜ ncn03001/pubs/TRs/GNS08.pdf .

11. D. K. Gifford. Weighted voting for replicated data. InProceedings of the 7th ACM Sympo-
sium on Operating Systems Principles (SOSP), pages 150–162, 1979.

12. S. Gilbert, N. Lynch, and A. Shvartsman. RAMBO II: Rapidly reconfigurable atomic mem-
ory for dynamic networks. InProceedings of the 2003 International Conference on Depend-
able Systems and Networks (DSN), pages 259–268, 2003.

13. V. Gramoli, E. Anceaume, and A. Virgillito. SQUARE: scalable quorum-based atomic mem-
ory with local reconfiguration. InProceedings of the 2007 ACM Symposium on Applied
Computing (SAC), pages 574–579, 2007.

14. R. Guerraoui and M. Vukolić. How fast can a very robust read be? InProceedings of the 25th
ACM Symposium on Principles of Distributed Computing (PODC), pages 248–257, 2006.

15. R. Guerraoui and M. Vukolić. Refined quorum systems. InProceedings of the 26th ACM
Symposium on Principles of Distributed Computing (PODC), pages 119–128, 2007.

16. L. Lamport. On interprocess communication, part I: Basic formalism. Distributed Comput-
ing, 1(2):77–85, 1986.

17. N. Lynch.Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

18. N. Lynch and A. Shvartsman. RAMBO: A reconfigurable atomic memory service for dy-
namic networks. InProceedings of the 16th International Symposium on Distributed Com-
puting (DISC), pages 173–190, 2002.

19. N. Lynch and M. Tuttle. An introduction to input/output automata.CWI-Quarterly, pages
219–246, 1989.

20. N. A. Lynch and A. A. Shvartsman. Robust emulation of shared memory using dynamic
quorum-acknowledged broadcasts. InProceedings of the 27th International Symposium on
Fault-Tolerant Computing (FTCS), pages 272–281, 1997.

21. D. Malkhi and M. Reiter. Byzantine quorum systems.Distributed Computing, 11(4):203–
213, 1998.

22. D. Peleg and A. Wool. Crumbling walls: A class of high availability quorumsystems. In
Proceedings of the 14th ACM Symposium on Principles of Distributed Computing (PODC),
pages 120–129, 1995.

23. C. Shao, E. Pierce, and J. L. Welch. Multi-writer consistency conditions for shared memory
objects. InProceedings of the 17th International Symposium on Distributed Computing
(DISC), pages 106–120, 2003.

