On the Robustness of (Semi)Fast Quorum-Based
Implementations of Atomic Shared Memory*

Chryssis Georgiou**, Nicolas C. Nicolao#, and Alexander A. Shvartsméh

! Department of Computer Science, University of Cyprus, Nicosiay@yp
2 Department of Computer Science and Engineering, University of €ximut, Storrs, USA
3 Computer Science and Atrtificial Intelligence Laboratory, MIT, CamtejdgA 02139, USA

Abstract. This paper studies a trade-off between fault-tolerance and latency in
implementations of atomic read/write objects in message-passing systqras. |
ticular, considerindast or semifast quorum-baseathplementations, that is, im-
plementations wherall or respectivelymostread and write operations complete

in a single communication round-trip, it is shown that such implementatiens ar
not robustdue to the fact that they necessarily require a quorum system with a
common intersection between its quorums.

To trade speed for fault-tolerance, the notionnefak-semifasimplementations

is introduced. Here more than a single complete slow (two round-trip) spad
eration is allowed for each write operation (semifast implementations allbyv on
one such slow read). A quorum-based algorithm is given next andatnsaily
shown that it constitutes a weak-semifast implementation of atomic regiSters
algorithm uses the notion @uorum Viewso facilitate the characterization of all
possible object timestamp distributions that a read operation may witnesg dur
its first communication round-trip. Noteworthy is that the algorithm allows fas
read operations even if they are concurrent with other read and wetatims.
Finally, experimental results were gathered by simulating the algorithm tigéng
NS-2 network simulator. The results show that under realistic conditioss, le
than13% of read operations are slow, thus the overwhelming majority of opera-
tions take a single communication round-trip.

1 Introduction

Motivation and Prior Work. Atomic (linearizable) read/write memory is one of the
fundamental abstractions in distributed computing. Felérant implementations of
atomic objects in message-passing systems allow processbare information with
precise consistency guarantees in the presence of asyiychna failures. A seminal
implementation of atomic memory of Attiyat al. [1] gives a single-writer, multiple
reader (SWMR) solution where each data object is replicated message-passing
nodes. In that solution, memory access operations are ifeahto terminate as long
as the number of crashed nodes is less thani.e., the solution tolerates crashes of any
minority of the nodes. The write protocol involves a singlemd-trip communication
stage, while the read protocol involves two round-trip essEagvhere the second stage

* This work is supported in part by the NSF Grants 9988304, 01212 d02h1368.
** The work of this author is supported in part by research funds at thestgity of Cyprus.

essentially performs the write of the value obtained in th&t fitage. Following this
development, a folklore belief developed that in messagagsing atomic memory
implementations “atomic reads must write.”

However, recent work by Duttet al. [3] established that if the number of readers
R is appropriately constrained with respect to the numbeeplicasS and the maxi-
mum number of crash-failuresn the systemRg < % —2), then single communication
round-trip implementations of reads are possible. Suchgeimentation given in [3]
is calledfast Subsequently, Georgicet al. [9] relaxed the constraint in [3], and pro-
posedsemifasimplementations with unbounded number of readers, whederural-
istic conditions most reads need only a single communicatoind-trip to complete.
Their approach groups collections of readers wittual nodes Semifast behavior of
their algorithm is preserved as long as the number of virales is appropriately
restricted undef’ — 2.

Quorum systems are well-known mathematical tools thatigeomeans for achiev-
ing coordination between processors in distributed systgrh, 6, 22, 21]. Given that
the approach of Attiyat al.[1] is readily generalized from majorities to quorums (g.g.
[20]), and that the algorithms in [3] and [9] rely on interSens in specific sets of
responding servers, one may a€lan we characterize the conditions enabling fast im-
plementations in a general quorum-based framework?

This is what we establish in this work. We consider quorurselddmplementations
of atomic memory, and investigate the properties neededli®ee fast and semifast
atomic memory implementations. Interestingly, when exang unconstrained — in
terms of quorum construction and reader participation —rgimebased implemen-
tations, we discover that @emmonintersection amon@ll quorum sets is necessary.
This renders such implementations non-fault-toleramigesithe common intersection
introduces a single point of failure. Then a natural questinsesWas a common in-
tersection implied in [3] and [9]7The answer is “no”, because (a) the constraint on the
number of readers in [3] or virtual nodes in [9], and (b) thewfedge of the number
of failurest, has the implication that the intersections of the replysats of servers is
guaranteed to consist of non-faulty processors. So, ouffineéimgs introduce comple-
mentary knowledgedne cannot have fast or semifast implementations withaahoon
intersection unless one imposes additional constrainthersystem

Based on this new understanding, we posed the question dhamhene can avoid
restrictions, such as the constraint on the number of reaéhe common intersection
among quorum sets, and still obtain practical and robusteémentations. We show
that this is indeed possible if some speed is traded for tobas. We introduceeak-
semifasimplementations that allow a greater proportion of slondsgand develop a
new algorithm that uses a predicate tool, catiedrum viewsalso defined in this paper.
We simulate our algorithm using the NS-2 simulator and waegaexperimental results
that demonstrate the practicality of our algorithm.

Related Work.Previous works extended the approach in [1] and used quapr®-

vide atomicity in themultiple writer multiple reade(MWMR) model [20, 4, 13, 5]. The
work in [5] (similar to [1]) shows that the read operationsstwrite to as many replicas
as the maximum number of failures allowed. A dynamic atomémary implementa-
tion using reconfigurable quorums is given in [18], where $bts of object replicas

can arbitrarily change over time as processes join and kb&system. Refinements of
the dynamic algorithm further improved its performance iagtical implementations
[12, 8, 7]. When the set of replicas is not being reconfigurieelréad and write proto-
cols involve two communication round-trips. Retargetihgs twork to ad-hoc mobile
networks, Doleet al.[2] formulated the GeoQuorums approach where replicasware i
plemented by stationafgcal pointsthat in turn are implemented by mobile nodes; here
quorums are composed of focal points. Interestingly, is tidrk some reads involve
a single communication round-trip when it is confirmed theg torresponding write
operation has completed.

A recent work by Guerraoui and Vukeél{15] presented a powerful notion &fe-
fined Quorum SysteniRQS), where quorum members are classified in three cagsgori
calledquorum classesaccording to their intersection size with other quorures;first
class contains quorums of large intersection, the secorminafler intersection, and
the third class corresponds to traditional quorums. Thbaatspecify the properties
that the members of each quorum class must possess and uset®@elop an ef-
ficient Byzantine-resilienSWMR atomic object implementation and a solution to the
consensus problem. In synchronous failure-free runsitingilementation allows single
communication round-trip (fast) operations. That was aprowement over a previous
result from the same authors, [14], that provided boundsimpdsed system restric-
tions to achieve robustafe and regular storage implementations in the presence of
Byzantine failures. In that work they showed tfttb communication round-trips are
necessary for each read operation in both safe and regytéarimentations even though
more tharkt + 2b+ 1 servers are used, wheréhe maximum number of crash ahthe
maximum number of byzantine failures. Our work compleméhéswork in [15] by
specifying the exact properties thaganeralquorum system must possess in order to
achieve single round-trip operations undeash failuresandasynchronyFurthermore
we do not use quorum formation constraints such as the a@&sgoentioned above,
rather we deal with the usual quorum systems. In our implé¢atioms we only rely on
client side prediction tools we cauorum Views

Malkhi and Reiter in [21] studied constructions that imprdault-tolerance of quo-
rum systems fobyzantine failuresThey organized their constructions according to the
properties quorum sets satisfy and the degree of faultaiote they achieve. Using such
constructions they providezhfeandregular ([16]) read/write register implementations.
Regularity was also studied for the MWMR model in [23]; thehaus presented reg-
ular implementations with single round trip operationdeBend Wool in [22], inves-
tigated different families of quorum systems and presetitett performance in terms
of process loadquorum availability(failure tolerance) anthessage complexitguo-
rum size). A quorum construction was then proposed thaesebkihigh performance in
comparison with prior constructions.

Our Contributions.In this paper we study the properties of quorum systems tiedile
communication-efficient quorum-based implementatioreg@fic read/write registers.
In particular, we study the efficiency generalquorum constructions deployed in im-
plementations witlunconstrainechumber of readers. We say that an atomic SWMR
implementation igastif all the read and write operations complete in a single comm
nication round-trip. Asemifasimplementation as defined in [9] allows one complete

slow read operation for each write, while the rest of read\arite operations are re-
quired to be fast. In this paper we say that an implementé&tioat robustf it has a sin-
gle point of failure. We consider implementations that usergm system& = {Q;},
where for any two quorum sets @we haveQ); N @, # (. The contributions presented
in this paper are as follows.

1. We show that fast quorum-based implementations that aliditrary number of
readers must use certain quorum systems that necessadgrréne implementations
not robust. In particular we prove that a quorum-based faptémentation is possible
if and only ifthe following property is satisfied b@: (o @ # 0.

In other words, there must becammon intersectioamong all quorum sets @J. Since
a single failure in the common intersection disables thewmosystem, we conclude
thatrobustfast quorum-based implementations em@ossible

2. We then pose the natural question whetbemifast([9]) quorum-based implemen-
tations can be robust. We give a negative answer to this igneas well: we show
that robust semifast quorum-based implementations are agmssible In particular
we show that a certain property of the semifast definitiof, F®operty 3) is violated
when using quorum systems without a common intersectiois. fitoperty states that
only asingle completeead operation is required to perform a second communitatio
round-trip for every write operation. We prove that requiria single complete slow
read is impossible to satisfy using quorum-based impleatigms without a common
intersection.

3. Consequently we seek implementations that enable fass réat permit multiple
slow reads per write. We call such implementatioreak-semifastAs a tool used in
our development, we introduce the notion@ifiorum Viewshat is used to characterize
every possible timestamp distribution that a read operatiay witness in a quorum
set during its first communication round-trip. A quorum vievay provide “sufficient”
information on whether or not a write operation is compléteo, then the read oper-
ation can be “fast.” Otherwise the reader performs a seconthwnication round-trip
and the read operation is “slow.” We define quorum views angresent an algorithm,
called S.1Q (Semifast Like Implementation for Quorum systems), thakesause of
the latter idea and we prove its correctness. The algoritepads from the classic ap-
proach that implements all reads as slow, and also from theaph that allows fast
reads after the completion of the write operation. In ouoatgm fast reads are allowed
even in the case of concurrent read and write operations.

4. We simulate our algorithm using the NS-2 network simulatod e observe that
in common cases only less thaB’% of the read operations need to perform a second
communication round-trip, thus the overwhelming numbespdrations are fast.

Paper Organization.In Section 2 we present our model assumptions and definitions
In Section 3 we present the quorum system properties thatesessary to achieve fast
and semifast quorum-based implementations and we showrtbeirobustness. The
notion of quorum views and algorithm_&) are presented in Section 4 along with the
algorithm’s correctness. The results of our simulatioresdgpicted in Section 5. We
conclude in Section 6. For full proofs and additional distos we refer the reader
to [10].

2 Model and Definitions

We consider implementations for the single writer, mudtipeader (SWMR) in the
asynchronous message-passing model. Our system corishatsendistinct sets of pro-
cesses: a distinguished processs the writer, the set o readers with unique ids
from the setR = {r1,...,rg}, and the set ob servers (where the object replicas are
maintained) with unique ids from the s8t= {s1,...,ss5}.

A quorum systeris a collection of sets of processes, knowrgasrums such that
every pair of such sets intersects. We define a quorum sy@tever the set of servets
as follows:Q = {Q; : @; C S} such that for any two quorun@;, @, € Q,Q;NQ; #

(). We assume that every process in the system is awdpe of

Our distributed system is modeled in termd/@f automatg[19, 17] whereA,, rep-
resents the automatohassigned to procegs Our system is composed of four kinds of
automata: the writeW riter,,, serversServers,, readerskeader,,, andChannel), 4.
AutomataChannel, , andChannel, , are assumed to implement a reliable commu-
nication channels between procespes {w} U R and processeg € S. Each I/O
automatond,, consists of a set of statesates(A,) that includes the initial state(s)
of A,, and a signatureig(A,) that specifies input, output, and internal actions that
can be performed byl,,. For an actior, the tuple(state, a, state’) represents the
transition of A, from statestate to state’ as the result otv. Such a tuple is also
called astep of A,. An execution fragmenp of A4, is a finite or an infinite sequence
stateg, a1, stater, aa, . .., o, state,, ... Of alternating states and actions.4f such
that everystatey,, a1, state,1 1 is a step ofd,,. If an execution fragment begins with
an initial state of4,, then it is called arxecutionWe say that an execution fragmeit
of 4,, extendsa finite execution fragment of A, if the first state ofy’ is equal to the
last state ofp. The concatenation of @f andy’ is the result of the extension gfby ¢’
where the duplicate occurrence of the last state of eliminated. Such concatenation
yields an execution fragment ef,.

A process crashesat any stefstatey, a1, statey1) in an executiorg, if this
is the last step of4, in £. A processp is faulty in an executior¢ if p crashes irg;
otherwisep is correct A quorum@ € Q is non-faulty ifvp € @, p is correct; otherwise
Q is faulty. We assume that any subset of readers, the writdrath but one quorum in
quorum systend) may be faulty at any execution.

2.1 Atomicity

Our goal is to implement a read/write atomic object in a mgsgaassing system by
replicating the value of the object among the servers inyhgesm. Each replica consists
of a valuev and an associated timestap

The client at procesg may request a read operatipron the atomic register by
performing aread, , action if p € R. Similarly the client requests a write operation
w(x*) by performingwrite(x), ,, if processp is the writer. The step that includes the
read or write action is calleithvocationstep and the step that containgad-ack(x), ,
or awrite-ack, , action is called aesponsestep. An operationr is incompletein an
executiong, if £ contains the invocation step efbut does not contain the associated
response step for; otherwise we say thatis complete\We assume that the requests of
a client arevell-formedmeaning that the client does not requestad or write action
on an objectr, before receiving aead-ack or write-ack from a previously invoked

action onz. From this point onward we assume a single register objgctadBnposing
multiple single register implementations, one may obthgdomplete atomic shared-
memory [17].

In an execution we say that an operation (read or writeprecedesanother oper-
ationm,, or mo succeeds, if the response step far; precedes the invocation step of
mo; this is denoted byr; — . Two operations areoncurrentif neither precedes the
other.

Correctness of an implementation of an atomic object is ddfin terms of theer-
minationandatomicityproperties. The termination property requires that anyatjmn
invoked by a correct process eventually completes, pravidat the failures obey our
failure model. Atomicity is defined as follows [17]: Considke set/T of all complete
operations in any well-formed execution. Then there exstgreflexive partial order-
ing < on operations if1, satisfying the following: (1) For any operatiane II, there
are finitely many operations’ such thatr’ < 7. (2) If operationr; precedes the oper-
ationmy in I1, then it cannot be the case that < ;. (3) If 7 is a write operation and
7' is any operation i, then eitherr < 7’/ or ' < 7. (4) The value returned by a read
operation is the value written by the last preceding writerafion according te< (or
L if there is no such write).

2.2 Fast, Semifast and Weak-Semifast Implementations

We use the definition ofastimplementation given by Dutta et al. [3], in particular
we say that a read or write operationfést if it completes in a single communication
round-trip (or round for short). A fast implementation cains only fast operations in

any execution. We define a communication round as follows:

Definition 1. A proces® performs a communication round during operatioif all of
the following hold:

(1) p sends read or write messages foto a subset of processes,

(2) any proces®’ that receives a message frgrfor operationr, replies to the message
with a read or write acknowledgment respectively beforeindng any other messatie
(3) when procesg receives enough replies farit responds to the client.

The results of [3] show that in fast implementations the nemiif readers must
be constrained with respect to the number of servers. Ta ®iah constraints, [9]
proposedemifasimplementations where some read operations are alloweertorm
two communication rounds. The definition of semifast impdaations is given below,
wherefi(p) denotes the unique write operation that wrote the valuemetubyp:

Definition 2. An implementatiod of an atomic object isemifast if the following are
satisfied:

P1.Everywrite operation is fast.

P2. Any completeeadoperation performs one or two communication rounds between
the invocation and response.

P3.For any executiorg of I, if p; is a two-round read operation, then any read opera-
tion po with R(p1) = R(p2), such thatp; — ps Or po — p1, Must be fast.

4 Intuitively this property is used to stress the fact that processes dcerdtto wait for other
messages before replyingjto

P4. There exists an executignof I that contains at least one write operationand
at least one read operatiop, with R(p;) = w, such that all read operationg with
R(p) = w (including p,) are fast.

We define a new class of implementations that we walk-semifast implemen-
tations. This class is defined in terms of properfds P2, and P4 of the semifast
implementations, and it does not include propé?®/ In other words, weak-semifast
implementations allow multiple “slow” complete read og@as for every write opera-
tion in contrast with properti?3 that allows a single such read operation. Thus the two
classes are distinct.

Given that any subset of readers and the writer may crash {énmination is guar-
anteed only if no operation waits for replies from any reawesriter processes. More-
over our failure assumptions on the quorum system imply loabperation can wait
for more than a single quorum to reply. Finally, as shown irB[3fast and semifast
implementations require that server processes cannotfaaihore messages before
replying to a read or write operation. Notice that since wsaknifast implementations
share the same communication scheme in terms of commuoricatinds as the semi-
fast implementations, they also follow the rules preseirtetis paragraph.

2.3 Quorum-Based Algorithms

The results in the next two sections pertain to atomic registplementations that have
the following characteristics: (1) they use a quorum sygtegroup the object replicas,
(2) participants are aware of the quorum system constnueiid the operation protocol
and (3) in every execution there is at least one non-faulorum.

Characteristic (3) describes the failure model of the dtlyors we consider. Ob-
serve that: (i) according to the pairwise intersection prgpof quorums it suffices to
obtain replies from a single quorum, and (ii) according foof@y a single quorum may
be alive in any execution of the algorithm, and thus waitimgrhore than one quorum
before replying may affect operation termination. Thus wsume that any operation
waits for exactly one quorum to reply.

3 Quorum Properties and Fast/Semifast Impossibility

A processp, that invokes an operation, is said tocontacta subset of serveis C S,
denoted byent(G), -, if for every servers; € G: (a) s; receives the messages sent
by p within the operationr, (b) s; replies top, and (c)p receives the reply from
s;. If ent(G), » and additionally no other server (i.e,, ¢ G) receives any message
from p within the operationr then we say thap strictly contactsg, and is denoted
by scnt(G), . Let mazT'S denote the maximum timestamp that a read operatjon
witnesses aftefnt(G). ,, or scnt(G).,,,, for someg C S, during its first round.

Below we discuss our results regarding quorum-based fassemifast implemen-
tations. More detailed analysis can be found in [10].

Fast ImplementationsWe now state the quorum property that is both necessary and
sufficient to obtain fast quorum-based implementations.

Theorem 1. A fast quorum-based implementation | of a read/write atoredggster is
possible iff the underlying quorum systé&nrsatisfies: ﬂ Q #0.
QeQ

Proof (Sketch)We prove the two directions of the theorem separately. Wedirew
that if we want fast implementations it is necessary to hararoon intersection, and
then we show that having a common intersection it is sufftdieibuild fast implemen-
tations.

The first part of the proof relies on an execution constructibhe construction
involves an executiol, that contains a complete write operation whiemt(Q;). .
and a series of executiods, . ..,&,—2 (n = |Q|). Starting from¢, we extend each
executiorg; with i+2 read operations such that each of them strictly contactfeaetit
quorum. Using an induction on the number of read operatibrean be shown that
atomicity is preserved only if the last read operation, gain the executiorg;_», may
witness the maximum timestamp. Assuming thatscnt(Q.)« ,, and the maximum
timestamp is introduced only in a quorum intersectids,... thenp, may witness the
maximum timestamp only i©;,,:..- N Q. # (. Generalizing to the full quorum system
the common intersection follows.

The fact that the common intersection is sufficient for fagilementations follows
from a trivial implementation: each read/write operatiamntacts (only) the servers
in the common intersection and returns the maximum timgstabserved in the first
communication round. Notice here that according to ouufaimodel, all the servers
of the common intersection must remain alive during the etten. Thus atomicity is
not violated since every read/write operation will gathiéthee servers in the common
intersection and furthermore all operations complete iimgls communication round.

Theorem 1 leads to the following result.

Theorem 2. Fast quorum-based implementations are not robust.

Proof. Theorem 1 requires a common intersection between the qusetsof the quo-
rum systenq. If any member node; of the common intersection fails, then all quorum
members of the quorum system are faulty siiéee Q, s; € Q. Hence it follows that
the quorum systerf) fails. Therefore the quorum system suffers from a singletpaifi
failure and as a sequel it is not robust. As a result, any implgation that relies on
such a quorum system is also not robust.

Semifast implementationsSince fast implementations are not possible if common
intersection property is not satisfied by the quorum syst&matural question arise
whether robussemifastimplementations can be achieved. We show that robust s&imifa
implementations are also impossible if the common intéizedetween the quorums
is not preserved. We use the properties of the semifast mgsléations as presented in
Definition 2.

We first prove a lemma that specifies when a read operatiorceseary to perform
a second communication round. The lemma is general andithligeindependent.

Lemma 1. A read operatiorp from a readerr that scnt(Q;).,,, Q; € Q cannot be
fastifds € Q; : sits < mazTS and3dQ C Q s.t. @Q; N (ﬂqegq) # () and

Vs € Qi N (quQ q), s.ts = maxTS§S.

We can then derive the following result.
Theorem 3. No quorum-based semifast implementation is possib[’age@ Q= 0.

Q

Qz Qj
Fig. 1. Intersections of three quorunig, Q;, Q..

Proof (Sketch)The proof is build upon execution constructions that expdobasic
quorum system similar to the one presented in Figure 1 witltaramon intersec-
tion. Based on that figure, consider an execution that costaiwrite operationw
and three read operations, p, and p3. Assume that the write is incomplete and
sent(Q; N Qi)w,w- Moreover thep; operationsent(Q;)«,,, during its first commu-
nication round. According to Lemma p; needs to perform a second communication
round and suppose #ent(Q; N Q)+ ,, before the first communication round pf.
Thus whenp, is executed, an@dcnt(Q;).,,,, observes thap, performed a second
communication round but it cannot distinguish whethgeis completed or not. Here is
where the key idea of the proof liesyf is fast (s.t. Property 3 of the semifast definition
holds), then ifps scnt(Q)« p5, p3 Will NOt witness the maximum timestamp and thus
will return an older value violating atomicity. So to pregemltomicityp, has to pro-
ceed to a second communication round. Since, howgyeannot distinguish between
a complete second communication roundpgfthat scnt(Q;). ,, and the incomplete
second communication round pf that scnt(Q; N Q;)«,,,, thenp; and p, may not
be concurrent but yet be both slow. That however violatepétty 3 of the semifast
definition.

We conclude that robust quorum-based semifast implemenssdre not possible.

Corollary 1. Semifast quorum-based implementations are not robust.

Remark 1.0bserve that the robustness of fast quorum-based implatimTg can be

improved by the following techniques: (i) relaxing the ée# model and requiring more
than a single quorum to reply at any read/write operatiod, (@himpose restrictions

on the number of reader participants and on the construciaghe quorum system

they deploy. This however will negatively affect the perf@nce of the quorum system
and will introduce strong assumptions for its maintenantaking eventually the use
of quorums impractical. Thus in this work we avoid makinglsassumptions and we
prefer to trade operation performance for higher faukefimhce and applicability.

The following example help us visualize the application bé tsecond tech-
nique presented in the above remark. Assume the followittingeunder [3]:S =
{1,2,3,4,5}, R = 2 and¢ = 1. Any operation may receive replies frofh— ¢ servers
and from one of the set§); = {1,2,3,4}, Q2 = {1,3,4,5},Q3 = {1,2,4,5},Q4 =
{1,2,3,5}, Q5 = {2,3,4,5}. Observe that the intersection of any three sets contains
two servers#(+ 1). Since there are two readers and one writer then a writtiere vaay

| ‘2(a)

Fig. 2. (@) gView(1), (b) ¢View(2), (c) ¢View(3) with incomplete write, (dyView(3) with
complete write.

be disseminated by contacting at most three different setsei worst case (a different
set per read/write operation). So restricting the numbeeatlers allows the concen-
tration of the common intersection between a subset of gua@ets, which serves as a
“hot spot” to ensure consistency between the operations.

4 Weak-Semifast Implementations

In the previous section we have established that no robstsbfgdemifast quorum-based
implementations are possible. We therefore now considekwsemifast implementa-
tions. In this section we introduce the notion @fiorum Viewghat describe certain
knowledge that a read operation may witness during its finstraunication round. We
then present an algorithm, called8, for atomic registers, and we reason, based on
the knowledge in quorum views, about read operations ngediperform one or two
communication rounds to complete. We deviate from theiotis® quorums properties
presented in Section 3 and we allow our implementation toamsarbitrary quorum
system construction.

4.1 Quorum Views

A quorum viewrefers to the distribution of the maximum timestamp thatadrep-
erationp; witnesses after its first communication round. Considet ttheread opera-
tion p; strictly contacts quorund); during its first communication round, denoted by
sent(Qi)«,p,- Each membes € Q; replies with a timestamp.ts to p;. We define
guorum views in terms of the following three possible case®f:

1. [¢View(1)] Vs € Q; : s.ts = maxTS,

2. [¢View(2)| VQ; € Qi # j,IJA C Q;NQ;, st A # DandVs € A : sits <
mazT'S,

3. [¢View(3)] 3s' € Q; : s'.ts < mazTS and3Q; € Qi #j st. Vs € Q; NQ; :
s.ts = maxTS.

Analyzing these three types of quorum views we can deriveclosions on the
state of the write operation (complete or incomplete) thasto propagate a value with
themazTS in the system. Figure 2 illustrates those quorum views asgythat the
read operatiop, scnt(Q;).,,. The dark nodes maintain the maximum timestamp of the
system and white nodes or “empty” quorums maintain an oldeedtamp. Recall that
it follows from our failure model that no operation (read orite) can wait for more
than one quorum to reply. Thus having a full quorum reporthrgysamenaxT'S, as

seen in Fig. 2(a), implies the possible completion of theenwperation (in the case of
Figure 2(a) the complete write operation strictly contagts

Observe that if a full guorum containsaz7'S then the members of any intersection
of that quorum contaimax1'S. So witnessing a subset of members of each intersec-
tion of Q; (as seen in Fig. 2(b) the representationybfiew(2)) to maintain an older
timestamp, implies directly that the write operation whmopagatesnaxzT'S is not
yet complete.

Finally, ¢View(3), provides insufficient information regarding the statehef write
operation. Observe Figures 2(c) and 2(d). In the former aomplete write operation
propagates theraxzT'S in the dark nodes and in the latter it completes by receiving
replies from().. Notice that if a read operatignstrictly contacts); (i.e., scnt(Q;)«,,)
in the two executions, it won't be able to distinguish 2(onfr2(d). So, more formally,
if an operation withesses some intersectipm @, that containsnaxT'S in all of its
members, then a write operation might: (i) have been comglahd contacte@. or
(i) be incomplete and contacted a subset of servgisuch thatQ; N Q. € B and

VQ; € Q,Q; £ B.

4.2 Algorithm SLIQ

Our implementation includes, automatdiriter,, that handles the write operations for
the writer processy, automatonReader,, that handles the reading for eache R,
and automatoServer,, that handles the read and write requests on the atomiceegist
for eachs; € S. These automata use reliable asynchronous process<essrohannels
Channel,, , to communicate.

Algorithm Description.Due to space limitations we only provide a high level descrip
tion of our algorithm. A more technical description and fatnspecification can be
found in [10].

Writer. The write protocol involves the propagation of a write mgses#o all the
servers. Once the writer receives replies from a full quoitlincrements its timestamp
and the operation completes.

Readers.The read protocol also requires that a reader propagatesi amessage to all

the servers. Once the reader receives replies from a futugud examines the maxi-
mum timestampraz7'S) distribution within that quorum, which in turn charactess

a quorum view. If the view is eithefVicw(1) or gView(2) then the reader terminates

in the first communication round and retumgx1'S or maxT'S — 1 respectively. If

the view isqView(3) then the reader proceeds to the second communication round
where it propagates the maximum timestamp to a full quorum similar manner as

the writer. Once the reader gets replies from a full quorura,dperation completes,
returningmaxT'S.

Servers.The servers maintain a passive role; they just receive rgessapdate their
replica value according to the message contents and refiipse messages.

Algorithm CorrectnessWe prove that algorithm SqQ follows its specifications and
preserves atomicity; specifically we show that each atdynjmoperty of Section 2.1
holds for any execution of the algorithm. The main theorethésfollowing:

Theorem 4. Algorithm SLIQ implements a SWMR atomic read/write register.

Proof (Sketch)Let ¢s,(7) to denote the timestamp of the read or write operation
from a processgp, after the completion event af Summarizing the atomicity properties
we want to show: (i) The timestamp at each process is morazthyiincreasing, (ii)
If a read operation succeeds a write operatianthents.(p) > ts, (w) and, (iii) If
p1 and p, are two read operations such that — po thents.(p2) > ts.(p1). The
monotonicity on the timestamps (property (i)) for everyqass can be easily derived
from the algorithm. For property (ii) we can observe thatsirthe write operation
is completed them will witness a timestamps greater or equal tos,, (w). If ts >
tsyw(w) thents.(p) > ts,(w) sincets,(p) = ts orts.(p) = ts — 1. If ts = ts,(w)
then p will witness eithergView(1) or ¢View(3). In either casés..(p) = ts. Finally
for property (iii) we investigate all the possible quorunews. We need to show that
if py is fast thents.(p2) is at least equal tos.(p1). Notice thatp, is fast only if a
qView(1) or ¢View(2) is observed. IfView(1) is witnessed by, thenp, witnesses
an intersection with timestamps greater or equakidp;). If ¢View(2) is witnessed
by p; then a timestamps = ts.(p1) + 1 has already introduced in the system and thus
the write operation that wrote a timestamp equaktdp;) is already completed. Thus,
by Property (ii)p2 returnsts.(p2) > ts.(p1), and hence property (iii) follows.

Note that it is straightforward to verify that.8 belongs in the class of weak-semifast
implementations (that is, it satisfies propertils P2andP4 of Definition 2).

5 Simulation Results

To practically evaluate our findings, we simulated our athom using the the NS-2
network simulator. The detailed testbed and discussicardagg the simulation appears
in [10]. According to our setting, only the messages betwkeinvoking processes and
the servers, and the replies from the servers are delivaethéssages are exchanged
between any servers or among the invoking processes).

We have evaluated our approach over multiple quorum systemagritiesQ,,,,
matrix quorumsQ, and crumbling wallsQ.), but due to space limitations we only
present here some of the plots we obtained exploiting cringlvalls (see [22]). The
quorum system is generated apriori and is distributed th @acticipant node via an
external service (out of the scope of this work). No dynamiorgms are assumed,
so the configuration of the quorum system remains the sarnaghout the execution
of the simulation. We model server failures by choosing tbe-faulty quorum and
allowing any server that is not a member of that quorum tdfagrashing. Note that the
non-faulty quorum is not known to any of the participantse Plositive time parameter
cInt is used, to model the failure frequency or reliability of vservers;.

We use the positive time parametet&it andwInt (both greater than %ec) to
model the time intervals between any two successive reactpes and any two suc-
cessive write operations respectively. We considereckthiulation scenarios corre-
sponding to the following paramete(s) rInt < wint: this models frequent reads and
infrequent writes(ii) »Int = wInt: this models evenly spaced reads and writés)
rint > wint: this models infrequent reads and frequent writes.

Furthermore for each one of the above scenarios we considesdttings:

randint data plot fixint data plot

“randint.all.crumpling.data.0" using 3:4:10

“fixint.all.crumpling data.0" using 3:4:10 ——

%-2comm

Setting a: Stochastic simulations Setting b: Fixed interval simulations

Fig. 3. Simple runs using Crumbling Walls

(a) Stochastic settingthe read/write intervals vary randomly withjfi. .. rInt] and
[0...wInt] respectively.

(b) Fixed settingthe read/write intervals are fixed to the valueréht andwlint re-
spectively.

We can summarize our simulations testbed for each classarftims and for the
settings presented above, as follows:

(1) Simple Runs: @, Qz, Q) IS| = 25 (Qe, Q,) 0r |S| = 10 (@), cInt = 0
(failure check for every reply) and| € [10, 20, 40, 80]. Here we want to demonstrate
the performance of the algorithm under similar environreéqtiorum,failures) but with
different read load.

(2) Quorum Diversity Runs: (Q., Q) |S| € [11,25,49] (Q.) and|S| € [11, 25,49]
(Q,), eInt = 0 and|R| € [10, 20,40, 80]. These runs demonstrate the performance
of the algorithm in different quorum systems with varyingpgum membership. Each
quorum is tested in variable read load.

(3) Failure Diversity Runs: (Q., Q.) |S| = 25, cInt € [10...50] with steps ofl0
and|R| € [10, 20, 40, 80]. These runs tested the durability of the algorithm to faiur
Notice that the smaller the crash interval the faster werdavéo the non-faulty quorum.
As the crash interval becomes bigger, less servers faillarsirhore quorums “survive”
in the quorum system. For this class of runs we tested bothabes when the servers
get the crash interval randomly froff. . . cInt] and[10...10 + cInt].

Figure 3iillustrates the results obtained when we assumgalairuns and exploiting
crumbling walls quorum. The Z axis presents the percentatieedead operations that
performed two communication rounds, the X axis correspondse number of reader
participants and the Y axis represents time and in partichkarInt interval. In the
stochastic environment (Figure 3.a) we observe that theepéage of slow reads drops
as the number of readers increases, regardless of the Valde This behavior can
be explained from the fact that the concurrency between pleeations is minimized
and thus the maximum timestamp is propagated (by both themand the readers)
to enough servers that favor the fast behavior. Since theecgence point is similar

regardless the number of readers, then increasing thersgadereases the number of
fast reads and decreases the percentage of slow readsarSimilavior is observed
in the fixed interval environment (Figure 3.b) whenever ¢hisrno strict concurrency
between the reads and the writes. The worst case is obserthd point where all
operations are invoked concurrently.

Our results (including the ones given in [10]) reveal thatréalistic cases (i.e.
stochastic settings), the percentage of two communicatand reads does not ex-
ceed13%. The only case that requires more th&i¥% of the reads to be slow is the
worst case scenario were the read and write intervals arktiidne same value. Notice
however that this scenario is unlikely to appear in pratiedtings. Comparing our
results with the ones obtained in [9] one can observe thadifference in the random
scenarios does not exceétl.

6 Conclusions

In this paper we have shown that no robust fast or semifastugudased implemen-
tations of atomic read/write objects are possible in thesgmee of crashes. We thus
introduced the notion of weak-semifast implementatioeasoned that this notion is
meaningful, and showed that robust weak-semifast quorasedbimplementations ex-
ist. As a tool, we introduced the notion of a Quorum View thatwged in the design and
analysis of our robust algorithm. We formally proved thereomess of the algorithm
and we obtained simulation results that demonstrate thagrualistic conditions the
overwhelming number of read operations are fast.

The algorithm does not explicitly provide any guaranteesharelative frequency
of slow and fast read operations. Thus it would be intergstinexamine ways to re-
duce the number of slow operations either by imposing a sup@htal communication
scheme or by using a special form of quorum systems. An istiege direction is to
investigate whether combining quorum views with refinedrguoo systems [15] can
lead to more efficient implementations. In another direttidynamic membership of
quorum systems can also further improve the flexibility sandltftolerance of quorum-
based implementations. Given the results in [4, 18] a quarpsonfiguration requires
some communication overhead. So a natural question aggesding the communi-
cation efficiency of such dynamic systems and their impacthenperformance of a
weak-semifast implementation.

References

1. H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in naggspassing systems.
Journal of the ACM42(1):124-142, 1996.

2. S. Dolev, S. Gilbert, N. Lynch, A. Shvartsman, and J. Welch. Gewgus: Implement-
ing atomic memory in mobile ad hoc networks. Pnoceedings of the 17th International
Symposium on Distributed Computing (DIS@ages 306—-320, 2003.

3. P. Dutta, R. Guerraoui, R. R. Levy, and A. Chakraborty. How ¢asta distributed atomic
read be? IfProceedings of the 23rd ACM Symposium on Principles of Distributed Gtngp
(PODC), pages 236—245, 2004.

4. B. Englert and A. A. Shvartsman. Graceful quorum reconfiuman a robust emulation of
shared memory. IRroceedings of 20th International Conference on Distributed Computing
Systems (ICDCSpages 454-463, 2000.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

R. Fan and N. Lynch. Efficient replication of large data objectrbreedings of the 17th
International Symposium on Distributed Computing (DIS82)ges 75-91, 2003.

. H. Garcia-Molina and D. Barbara. How to assign votes in a distributeisy Journal of

the ACM 32(4):841-860, 1985.

. C. Georgiou, P. M. Musial, and A. A. Shvartsman. Developing aistet® domain-oriented

distributed object service. IRroceedings of the 4th IEEE International Symposium on Net-
work Computing and Applications (NCAJages 149-158, 2005.

. C. Georgiou, P. M. Musial, and A. A. Shvartsman. Long-lived RADIBrading knowledge

for communicationTheoretical Computer Sciencg83(1):59-85, 2007.

. C. Georgiou, N. Nicolaou, and A. Shvartsman. Fault-tolerant semifgolementations for

atomic read/write registergdournal of Parallel and Distributed Computingccepted, 2008.
(A preliminary version appears in SPAA 2006, pages 281-290.)

C. Georgiou, N. Nicolaou, and A. Shvartsman. On the robustrfesemi)fast quorum-
based implementations of atomic shared memory, 20068p://www.cse.uconn.

edu/ ~ ncn03001/pubs/TRs/GNS08.pdf

D. K. Gifford. Weighted voting for replicated data. Pnoceedings of the 7th ACM Sympo-
sium on Operating Systems Principles (SQ®@apes 150-162, 1979.

S. Gilbert, N. Lynch, and A. Shvartsman. RAMBO II: Rapidly refagurable atomic mem-
ory for dynamic networks. IProceedings of the 2003 International Conference on Depend-
able Systems and Networks (DSpBges 259—-268, 2003.

V. Gramoli, E. Anceaume, and A. Virgillito. SQUARE: scalable quottimsed atomic mem-
ory with local reconfiguration. IProceedings of the 2007 ACM Symposium on Applied
Computing (SAG)ages 574-579, 2007.

R. Guerraoui and M. Vukdli How fast can a very robust read be Phoceedings of the 25th
ACM Symposium on Principles of Distributed Computing (PO@apes 248-257, 2006.

R. Guerraoui and M. Vukdi Refined quorum systems. Rroceedings of the 26th ACM
Symposium on Principles of Distributed Computing (PODf2)ges 119-128, 2007.

L. Lamport. On interprocess communication, part |: Basic formmalistributed Comput-
ing, 1(2):77-85, 1986.

N. Lynch.Distributed Algorithms Morgan Kaufmann Publishers, 1996.

N. Lynch and A. Shvartsman. RAMBO: A reconfigurable atomic menservice for dy-
namic networks. IrProceedings of the 16th International Symposium on Distributed Com-
puting (DISC) pages 173-190, 2002.

N. Lynch and M. Tuttle. An introduction to input/output automafaNI-Quarterly pages
219-246, 1989.

N. A. Lynch and A. A. Shvartsman. Robust emulation of sharechong using dynamic
quorum-acknowledged broadcasts.Pimceedings of the 27th International Symposium on
Fault-Tolerant Computing (FTCSpages 272-281, 1997.

D. Malkhi and M. Reiter. Byzantine quorum systenmstributed Computing11(4):203—
213, 1998.

D. Peleg and A. Wool. Crumbling walls: A class of high availability quosystems. In
Proceedings of the 14th ACM Symposium on Principles of Distributed CionmgeODC)
pages 120-129, 1995.

C. Shao, E. Pierce, and J. L. Welch. Multi-writer consistency comdifior shared memory
objects. InProceedings of the 17th International Symposium on Distributed Computing
(DISC), pages 106-120, 2003.

