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Abstract

This paper presents a new algorithm for a reconfigurable distributeddomain-orientedatomic object
service, called DO-RAMBO, which stands for Domain-Oriented Reconfigurable Atomic Memory for
Basic Objects. This service is suitable for inclusion as a middleware system service for distributed
applications requiring atomic read/write data. The implementation substantially extends and refines the
abstract RAMBO algorithm of Lynch and Shvartsman that supports individual atomic objects. In this
paperdomainsare introduced to allow the users to group related atomic objects. The new implementation
manages configurations on the basis of domains, significantly improving the utility and the performance
of the resulting service. DO-RAMBO guarantees consistencyunder asynchrony, message loss, node
crashes, new node arrivals, and node departures. We presentthe formal algorithm development for
DO-RAMBO and give analytical and empirical results that illustrate the benefit of the new approach.

Index Terms

C.2.4 and H.3.4.b: Distributed systems, F.3.1: Specifyingand verifying and reasoning about pro-
grams, G.4.a: Algorithm and design analysis, G.4.g: Reliability and robustness.

I. INTRODUCTION

This paper presents a formal development of a practical distributed service supporting shared
read/write atomic objects in dynamic network settings. Users of the service can efficiently group
objects in the scope of interest into user-defined domains. This service is suitable for maintaining
consistent long-lived survivable data in dynamic networks, in which participants may join, leave,
or fail during the course of computation. Such settings are becoming increasingly common in
modern distributed applications that rely on multitudes ofcommunicating, computing devices.
The only way to ensure survivability of data is through redundancy: the data is replicated and
maintained at several network locations. Replication introduces the challenges of maintaining
consistencyamong the replicas, and managingdynamic participationas the collections of net-
work locations storing the replicas change due to arrivals,departures, and failures of nodes.

An approach to implementing read/write objects for dynamicnetworks was developed by
Lynch and Shvartsman [1], and extended by Gilbertet al. [2], [3] and Georgiouet al. [4].
Their atomic (linearizable) distributed memory service iscalled RAMBO (Reconfigurable Atomic
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Memory for Basic Objects). In order to achieve availabilityin the presence of failures, the objects
are replicated at several network locations. To maintain consistency in the presence of small
and transient changes, the algorithm usesconfigurationsconsisting ofquorumsof locations. To
accommodate larger and more permanent changes, the algorithm supportsreconfiguration, by
which new configurations are installed and obsolete configurations are removed from the system
concurrently with the ongoing read and write operations. The service tolerates asynchrony, node
arrivals, departures and failures, and message loss.

A. Motivation for the Current Development

The original RAMBO algorithms [1]–[4] are specified using the Input/Output Automata for-
malism [5], [6], enabling one to reason formally about the properties of the service. The service
is parameterized by object name, that is, the service is specified individually for each object
instance. Multiple objects are supported by composing multiple instances of the service, one for
each object. The resulting service is impractical for supporting large numbers of objects because
this requires running multiple instances of the service, one instance per object, introducing
substantial processing and messaging overhead. For example, bookkeeping communication is
carried out in the background individually for each object,and reconfiguration must also be
done on a per-object basis. With this approach, the penalty for the mathematical simplicity of
the formal specification is the reduced practicality of the resulting system.

In many settings applications may use multiple related objects, e.g., the objects may represent
data values of interest to certain users. In such cases it is highly desirable to eliminate redundancy
by allowing a collection of objects to share configurations and related processing. In this work
we investigate an approach where multiple related objects are grouped into adomain, so that
reconfiguration is performed on the per-domain basis instead of on the per-object basis. While
this is a conceptually sensible approach, formally specifying such a solution and proving it correct
is fairly involved. To assess the practicality of the solution, it is also important to experiment
with a working system that implements the desired service ina network.

B. Contributions

We present a new algorithm implementing reconfigurable, domain-oriented, atomic distributed
object service, called Domain-Oriented Reconfigurable Atomic Memory for Basic Objects, or
DO-RAMBO . The algorithm borrows from the abstract RAMBO algorithms [1]–[4] that implement
individual reconfigurable objects. We introduce the notionof domainsthat allow the service
users to group related objects. Users join the system by means of join requests. The objects in
domains are then accessed by means ofread andwrite operations. Users request reconfiguration
by means ofrecon operations. The algorithm manages configurations on the basis of domains,
which significantly improves the practicality of the service.

We use Input/Output Automata to specify the algorithms and reason about correctness.
Building on ideas from [1]–[3], we present and prove the correctness of our new algorithm.
Note that the presented algorithm in not practical for long-lived applications because it involves
messages that may grow in size without bound. A long-lived, practical version of the algorithm
can be obtained by applying the exact technique we developedin [4]. We omit such details from
this presentation, to focus on the domain-based approach which is the contribution of this work.

2



We perform conditional latency analysis that shows that, under reasonable network behavior
assumptions, the read and write operations take at most time8δ and configuration upgrade
takes at most4δ, where δ is the maximum message delay (unknown to the algorithm). We
developed a complete implementation of the DO-RAMBO service on a network of workstations.
This development is an example of an approach to software engineering in which formal
algorithm design is followed by a methodical translation ofthe abstract algorithm specification
in IOA to distributed Java code using our techniques [7]. We compare the performance of the
implementation of DO-RAMBO with the one of RAMBO on a network of workstations; the
obtained experimental results illustrate the performancebenefits of DO-RAMBO .

C. Related Work

Several approaches have been used to implement consistent data in (static) distributed systems.
Starting with the work of Gifford [8] and Thomas [9], many algorithms have used collections
of intersecting sets of replicas to solve the consistency problem. Upfal and Wigderson [10]
use majority sets of readers and writers to emulate shared memory. Vitányi and Awerbuch [11]
use matrices of registers where the rows and the columns are written and respectively read by
specific processors. Attiya, Bar-Noy and Dolev [12] use majorities of processors to implement
shared objects in static message passing systems. Extension for limited reconfiguration of
quorum systems have also been explored [13], [14]. Virtually synchronous services [15], and
group communication services (GCS) in general [16], can also be used to implement consistent
data services, e.g., by implementing a global totally ordered broadcast. While the universe of
processors in a GCS can evolve, in most implementations, forming a new view takes substantial
time, and client operations are interrupted during view formation. In our algorithm, as in [1]–[3],
reads and writes can make progress during reconfiguration. Finally, consensus algorithms can be
used directly to implement an atomic data service by allowing participants to agree on a global
total ordering of all operations [17]. In contrast, we use consensus to agree only on the sequence
of configurations and not on the individual operations. Also, in our algorithm, the termination
of consensus affects the termination of reconfiguration, but not of read and write operations.

D. Document Structure

In Section II we present the specification and the algorithmsfor our object service. Proof
of atomicity is in Section III. Conditional analysis of performance is presented in Section IV.
Experimental results are presented in Section V. Section VIcontains the concluding remarks.

II. THE DO-RAMBO ALGORITHM

In this section we first overview the DO-RAMBO service and its goals, and then we present
its architecture and components in detail. DO-RAMBO aims to provide a robust and practical
atomic memory service in dynamic systems. The service maintains atomicity in the presence of
arbitrary node crashes, with fault-tolerance implementedthrough replication. The service uses
quorums to ensure consistency, where the members of quorum sets are the object replica owners.
In order to achieve availability in dynamic systems, DO-RAMBO service uses reconfiguration that
introduces new quorum systems and removes obsolete quorum systems. Theconfigurationsused
by the service consist of a unique identifier, a set of node identifiers, a set of read-quorums, and a

3



set of write-quorums, where each quorum is a subset of node identifiers. Here every write-quorum
intersects every other write-quorum and every read-quorumintersects every write-quorum.

A. Atomicity

We now state a definition of atomicity for a read/write memoryservice following [6]. For any
execution, if all the read and the write operations complete, then the operations on objectx can
be partially ordered by an ordering≺,so that the following properties are satisfied:
P1. No operation has infinitely many other operations ordered before it.
P2. The order≺ is consistent with the external order of invocation and responses, that is, there

do not exist operationsπ1 andπ2 such thatπ1 completes beforeπ2 starts, yetπ2 ≺x π1.
P3. All write operations onx are totally ordered and every read operation onx is ordered with

respect to all the writes onx.
P4. Every read operation on objectx ordered after any write onx returns the value of the last

write on x preceding it in the partial order; any read operation onx ordered before all
writes onx returns the initial value ofx.

The original RAMBO specification [1]–[3] is given for a single object, where thecomplete
shared memory is obtained through atomicity-preserving composition of individual objects.
Doing so introduces performance overheads making the resulting service impractical for large
numbers of objects. The goal of DO-RAMBO is to provide atomicity and reconfigurability for a
complete shared memory in a practical implementation.

B. DO-RAMBO in a Nutshell

The DO-RAMBO service consists of two components, theJoiner component and theReader-
Writer component that implements the main features of the service.DO-RAMBO relies on an
externalReconservice to provide a consistent sequence of quorum configurations. We now briefly
introduce each of these, with the more detailed presentation following later in this section.

Each participant of DO-RAMBO runs an instance of theJoiner andReader-Writercomponent
and participates in theReconservice. The architecture of DO-RAMBO is depicted in Figure 1.
The participants inJoiner andReader-Writercomponents, andReconservice communicate with
each other via communication channels that may lose, delay,and reorder messages.

The Joiner component implements a simple protocol that allows new participants to join the
service. The join protocol is as follows. If a node is the firstto initiate the service, then it
is considered to be a creator and theJoiner component is used to initiate theReader-Writer
component and theReconservice. Otherwise, a node provides a seed set of possible participants
of the service (for the specific domain) and sends a join request. Receipt of a join request by
an active service participant is followed by an acknowledgment. Once a join acknowledgment
message is received the new node may participate in the service and to host object replicas.

The Reader-Writercomponent implements a read and write protocol and a configuration
upgrade protocol that removes old configurations. Read and write operations consist of two
phases. In the first phase, the node initiating the operationcontacts at least one read-quorum of
each usable configuration. The quorum intersection property ensures that the most up to date
information about the object is obtained. In the next phase this information (in case of a write,
the new value) is propagated to appropriate write-quorums of known configurations, ensuring
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consistency. Obsolete configurations are removed from the system by the configuration upgrade
protocol that consists of two phases during which the latestreplica information is transfered from
the write quorums of the configurations being removed to the write quorums of the configuration
being updated. Multiple configurations may be removed concurrently.

The reconfiguration process involves installation of new configurations, where the consistent
sequence of the configurations is established by an externalReconservice. Our service does not
depend on any specific implementation ofRecon, however, it is required that the sequence of
configurations emitted byReconbe without gaps and be totally ordered. At any time, an active
participant of the DO-RAMBO service can submit new configuration to be considered as a next
to be installed. TheReconservice decides which of the proposed configurations will beinstalled
and notifies the participants about its decision. It is important to point out that progress of read
and write operations is independent on any ongoing configuration installation.

We next define notation and needed data types and present the components in detail.

C. Data Types

We assume two distinguished elements,⊥ and±, which are not in any of the basic types.
For any typeA, we define new typesA⊥ = A∪ {⊥} andA± = A∪ {⊥,±}. If A is a partially
ordered set, we augment its ordering by assuming that⊥ < a < ± for everya ∈ A. We assume
the following specific data types, distinguished elements,and functions.

• I, the totally-ordered set oflocationsor nodes.
• D, the set ofdomains. For d ∈ D, (i0)d denotes the unique node that can create domaind.
• Xd, the set ofobject identifiersof domaind.
• For eachx ∈ Xd: Vx, the set of values that objectx may take on.(v0)x ∈ Vx, the initial value ofx.
• Td, the set oftagsof the domaind, defined asN × I.
• Cd, the set ofconfiguration identifiersfor domaind. We denote by(c0)d ∈ Cd, the initial configuration

identifier for d. We assume only the trivial partial order onCd, in which all elements are incomparable; in
Cd±

, all elements ofCd are still incomparable.
• For eachc ∈ Cd we define:

– members(c), a finite subset ofI.
– read-quorums(c), a set of finite subsets ofmembers(c).
– write-quorums(c), a set of finite subsets ofmembers(c).

We assume the following constraints:

– members((c0)d) = {(i0)d}. That is, the initial configuration for domaind has only a single member,
who is the creator (initiator) ofd.

– For everyc, everyR∈read-quorums(c), and everyW ∈write-quorums(c), R ∩ W 6= ∅.

We now define operations onCd.
• update, a binary function onCd±

, defined byupdate(c, c′) = max(c, c′) if c and c′ are comparable (in the
augmented partial ordering ofCd±

), update(c, c′) = c otherwise.
• extend , a binary function onCd±

, defined byextend(c, c′) = c′ if c = ⊥ andc′ ∈ Cd, andextend(c, c′) = c

otherwise.
• CMap, the set ofconfiguration maps, defined as mappings fromN to Cd±

, N → Cd±
. We extend theupdate

andextend operators element-wise to binary operations onCMap.
• truncate, a unary function onCMap, defined bytruncate(cm)(k) = ⊥ if there existsℓ ≤ k such that

cm(ℓ) = ⊥, truncate(cm)(k) = cm(k) otherwise. This truncates configuration mapcm by removing all the
configuration identifiers that follow a⊥.

• Truncated , the subset ofCMap such thatcm ∈ Truncated iff truncate(cm) = cm.
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• Usable, the subset ofCMap such thatcm ∈ Usable iff the pattern occurring incm consists of a prefix of
finitely many±s, followed by an element ofCd, followed by an infinite sequence of elements ofCd⊥

in
which all but finitely many elements are⊥.

D. DO-RAMBO : Architecture and Interface

The architecture of DO-RAMBO is given in Figure 1, where the components are defined as
Input/Output Automata [5], following the model of RAMBO . The main external distinction is
that DO-RAMBO automata are parameterized by a domain name, instead of an object name.

DO-RAMBOd at i

Reader-Writerd,i

Joinerd,i

DO-RAMBOd at j

Reader-Writerd,j

Joinerd,j
Channeld,i,j

Channeld,j,i

Recond

- -

��?6 ?6

?6 ?6

Fig. 1. DO-RAMBOd component architecture shown at some representative nodesi andj.

For each domaind and each participating nodei, the system includesJoinerd,i automata
that handle joining of new participants, andReader-Writerd,i automata that handle reading,
writing, and upgrading configurations.Reader-Writerd and Joinerd automata have access to
channelsChanneld,i,j providing communication from nodei to nodej, implemented as a typical
unidirectional asynchronous channel that does not corruptmessages, but that may reorder and
lose messages.Reader-Writerautomata interact with an arbitrary implementation of theRecon
service that is responsible for emitting a totally-orderedsequence of configurations based on
user requests (this service is as specified in [1]). TheJoinerd automata implement a very simple
protocol that allows new participants to join the system. The only difference is that in DO-
RAMBO nodes join the service for a domain of objects, and not for a single object.

The heart of the system is theReader-Writer automata that implement read and write
operations, perform upgrade to new and remove obsolete configurations. The external interface
of the service is given in Figure 2. Nodes join the system viajoin/join-ack events. Read and write
operations correspond toread/read-ack andwrite/write-ack events respectively. Participants submit
reconfiguration requests using therecon action, which is acknowledged via therecon-ack event.
Participants learn about new configurations via thereport event. We model node crashes using
an externalfail event. In the sequel we will deal with a single domain (only toreduce notational
clutter) and suppress explicit mention ofd where it is clear from the context.

E. Joiner Automata

The service is “bootstrapped” using a protocol that allows nodes to join the service. The
Joinerd,i component implements this protocol at nodei for the domaind. Signature, state,
and transitions of the component are specified in Figure 3. The state variables are as follows.
The statusvariable keeps track of the component as it joins the DO-RAMBOd service. When
status = idle then the component does not perform any local actions. Whenstatus = joining,
Joineri sends the join signal to the localReconi and Reader-Writeri components and awaits
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Data types:
I, a set of processes,D, a set of domains,V , a set of legal values
Xd, a set of object identifiers from domaind, whered ∈ D
C, a set of configurations, each consisting of members, read/write-quorums

Input:
join(rambo, J)d,i, J a finite subset ofI − {i}, i ∈ I,

such that ifi = i0 thenJ = ∅, d ∈ D
read(x)d,i, i ∈ I, x ∈ Xd, d ∈ D
write(x, v)d,i, v ∈ V, i ∈ I, x ∈ Xd, d ∈ D
recon(c, c′)d,i, c, c′ ∈ C, i ∈ members(c), i ∈ I, d ∈ D
faild,i, i ∈ I, d ∈ D

Output:
join-ack(rambo)d,i, i ∈ I, d ∈ D
read-ack(x, v)d,i, v ∈ V, i ∈ I, x ∈ Xd, d ∈ D
write-ack(x)d,i, i ∈ I, x ∈ Xd, d ∈ D
recon-ack(b)d,i, b ∈ {ok, nok}, i ∈ I, d ∈ D
report(c)d,i, c ∈ C, i ∈ I, d ∈ D

Fig. 2. DO-RAMBOd: External signature.

acknowledgment, which when received allowstatus to becomeactive. The child-statusis a
mapping from{recon, rw} → {idle, joining, active} and it keeps track of the localReconi and
Reader-Writeri components as they join the protocol. Prior toJoineri initiating the join protocol
with each componentchild-status [∗] = idle. Once Joineri sends a join signal toReconi or
Reader-Writeri component, the correspondingchild-status variable becomesjoining. When an
acknowledgment is received, the correspondingchild-status variable becomesactive. Variable
hints is a placeholder for the set of node identifiers thatJoineri component is seeded with.

WhenJoineri receives ajoin(rambo, J)i request from its environment, whereJ is a set of seed
processor identifiers, it sendsjoin messages to the processes inJ with the hope that they are
already participating in the service, and so can help in the attempt to join. Also, it submitsjoin

requests to the localReader-Writeri andReconi components and waits for acknowledgments. In
the next section we describeReader-Writerautomata and how they handlejoin messages.

Signature:
Input:

join(rambo, J)d,i, J a finite subset ofI − {i}, d ∈ D
join-ack(r)d,i, r ∈ {recon, rw}, d ∈ D
faild,i, d ∈ D

Output:
send(join)d,i,j , j ∈ I − {i}, d ∈ D
join(r)d,i, r ∈ {recon, rw}, d ∈ D
join-ack(rambo)d,i, d ∈ D

State:
status ∈ {idle, joining, active}, initially idle
child-status ∈ {recon, rw} → {idle, joining, active}, initially everywhereidle
hints ⊆ I, initially ∅
failed , a Boolean, initiallyfalse

Transitions:

Input join(rambo, J)d,i

Effect:
if ¬failed then

if status = idle then
status ← joining
hints ← J

Input join-ack(r)d,i

Effect:
if ¬failed then

if status = joining then
child-status(r)← active

Input faild,i

Effect:
failed ← true

Output join(r)d,i

Precondition:
¬failed
status = joining
child-status(r) = idle

Effect:
child-status(r)← joining

Output join-ack(rambo)d,i

Precondition:
¬failed
status = joining
∀r ∈ {recon, rw} : child-status(r) = active

Effect:
status ← active

Output send(join)d,i,j

Precondition:
¬failed
status = joining
j ∈ hints

Effect:
none

Fig. 3. Joinerd,i: Signature, state, and transitions

7



Data Types:

M , a set of messages, defined as〈W, cm, obj, v, t, pns, pnr〉, whereW ⊂ I, cm ∈ CMap, obj ∈ X, v ∈ Vobj , t ∈ T , andpns, pnr ∈ N

Signature:

Input:
read(x)i, x ∈ X
write(x, v)i, x ∈ X, v ∈ Vx

new-config(c, k)i, c ∈ C, k ∈ N
+

recv(join)j,i, j ∈ I − {i}
recv(m)i,j , m ∈M , j ∈ I
join(rw)i

faili

Output:
join-ack(rw)i

read-ack(x, v)i , x ∈ X, v ∈ Vx

write-ack(x)i, x ∈ X
send(m)i,j , m ∈M , j ∈ I

Internal:
query-fix(x)i, x ∈ X
prop-fix(x)i, x ∈ X
cfg-upgrade(k)i, k ∈ N

>0

cfg-upg-query-fix(k)i, k ∈ N
>0

cfg-upg-prop-fix(k)i, k ∈ N>0

cfg-upgrade-ack(k)i, k ∈ N>0

State:

status ∈ {idle, joining, active}, initially idle
world , a finite subset ofI, initially ∅
value(x) ∈ Vx, x ∈ X, initially ∀ x ∈ X: value(x) = (v0)x

tag ∈ X → T , initially ∀ x ∈ X: tag(x) = (0, i0)
cmap ∈ CMap, initially cmap(0) = c0,

cmap(k) = ⊥ for k ≥ 1
pnum1 ∈ X → N, initially ∀ x ∈ Xd: pnum1 (x) = 0
pnum2 ∈ X × I → N, initially ∀ x ∈ X,∀j ∈ I,

wherej 6= i: pnum2 (x, j) = 0
failed , a Boolean, initiallyfalse

op(x), an array of records (one for each objectx ∈ X) with fields:
type ∈ {read,write}
phase ∈ {idle, query, prop, done}, initially idle
pnum ∈ N

cmp ∈ CMap
acc, a finite subset ofI
val ∈ Vx

upg , a record with fields:
phase ∈ {idle, query, prop}, initially idle
pnum(x) ∈ N, ∀ x ∈ X: pnum(x) = 0
cmap ∈ CMap
acc(x), a finite subset ofI, ∀ x ∈ X
target ∈ N

Fig. 4. Reader-Writerd,i: Signature and state

F. Reader-Writer Automata

We now define theReader-Writeri automata, their signature, state, and transitions.

1) Signature and state:The signature and state variables are given in Figure 4. Variable
status keeps track of the progress of the component as it joins the protocol. Whenstatus = idle,
Reader-Writeri does not respond to any inputs (except forjoin) and does not perform any locally
controlled actions. Whenstatus = joining, Reader-Writeri is receptive to inputs but still does
not perform any locally controlled actions. Whenstatus = active, the automaton participates
fully in the protocol. Variableworld keeps track of all nodes that are known to have attempted
to join the system. Arrayvalue contains the latest known value of each object, i.e.,value(x) is
the value of the local replica ofx. Array tag holds the associated tag of each object, i.e.,tag(x)
is the latest known tag of objectx. Tags are pairs consisting of a sequence number and location
id, comparable lexicographically. Variablecmap(·) contains information about configurations: If
cmap(k) = ⊥, it means that thekth configuration is not yet known. Ifcmap(k) = c ∈ C, it
means thatReader-Writeri has learned that thekth configuration identifier isc. If cmap(k) = ±, it
means that some configuration upgrade operation removed thekth configuration.Reader-Writeri
learns about configuration identifiers either directly, from theReconservice, or indirectly, from
otherReader-Writerprocesses. The value ofcmap is always inUsable, that is,± for some finite
prefix of N, followed by an element ofC, followed by elements ofC ∪ {⊥}, with only finitely
many elements ofC. WhenReader-Writeri processes a read or write operation, it uses all the
configurations whose identifiers appear in itscmap up to the first⊥.

Array pnum1 and matrixpnum2 are used to identifies “recent” messages in regards to a
specific object.Reader-Writeri usespnum1 array to count the total number of operation “phases”
it has initiated overall per object, including phases occurring in read, write, and configuration
upgrade operations. (A “phase” here refers to either a queryor propagate phase, as described
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below.) For everyj, including j = i and some objectx, Reader-Writeri usespnum2 (x, j) to
record the largest number of a phase thati has learned thatj has started.

For each objectx, recordop(x) contains information about the latest locally-initiated read or
write operation. Recordupg contains information about the latest locally-initiated configuration
upgrade. A node can perform read/write operations concurrently with configuration upgrades.
Subfieldtype records the type of operation, either a read or a write. Thecmap subfield records the
configuration map associated with the operation onx. For read or write operations this consists
of the node’scmap when a phase begins, augmented by any new configurations discovered
during the phase. Thepnum subfield records the phase number when the phase begins, allowing
the initiator to determine which responses correspond to the phase. The phase of the operation
is indicated byphase subfield. Theacc subfield records which nodes have responded during the
current phase. The like named subfields ofupg record are defined analogously. Theupg .target
subfield records the identifier of configuration that is the target of current upgrade operation.

Reader-Writertransitions are given in Figures 5 and 6, and we next describeits operation.
2) Joining: WhenReader-Writeri’s state variable isstatus = idle and join(rw)i input occurs,

then: if i is the domain’s initiator, denoted by the valuei0, thenstatus becomesactive andReader-
Writeri is now ready for conducting operations; otherwise,status becomesjoining, making
Reader-Writeri receptive to inputs only. In both cases,Reader-Writeri records itself as a member
of its own world . From this point on,Reader-Writeri also adds to itsworld any process from
which it receives ajoin message (these messages are originated by theJoiner automata).

After Reader-Writeri receives arecv(∗)∗,i message (see Figure 5) from another process while
status = joining, thenstatus becomesactive. At this point, processi can perform ajoin-ack(rw)
and has acquired enough information to begin participatingfully.

3) Information propagation:Information is propagated betweenReader-Writerprocesses in
the background, usingsend and recv actions. Each message sent by processi is per object
(we describe in Section V how to remove this requirement) andincludes: an object identifier
obj , the latest knownvalue(obj ) and tag(obj ), world , cmap, and two phase numbers — the
current phase number ofi, pnum1 (obj), and the latest known phase number of the receiver,
pnum2 (obj, j). These background messages may be sent at any time, once the process is active.
They are sent only to processes in the sender’sworld set.

When Reader-Writeri receives a message,status is set to active. The incoming world
information W is merged with the localworld set. Also, the localcmap is updated with the
incoming configuration informationcm. That is, for eachk, if cmap(k) = ⊥ and cm(k) is a
configuration identifierc ∈ C, then processi sets itscmap(k) to c. Also, if cmap(k) ∈ C∪{⊥},
andcm(k) = ± thenReader-Writeri sets itscmap(k) to ±, indicating that this configuration has
been removed. The object identifierobj is used to update the remaining state variables.Reader-
Writeri compares the incoming tagt to its own tag(obj). If t is strictly greater, it represents a
more recent version of this object; in this case,tag(obj) is replaced witht andvalue(obj) with
value v. Reader-Writeri also updates itspnum2 (obj, j) component for the senderj to reflect
new information about the phase number of the sender for the object whose identifiers isobj ,
which appears in thepns component of the message.

The last sequence of updates depends on the following: ifReader-Writeri is conducting a
phase of a read, write, or configuration upgrade, and the incoming message is “recent”, then
senderj is replying to a message thati sent in the current phase. Phase numbers are used to
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Output send(〈W, cm, obj, v, t, pns, pnr〉)i,j

Precondition:
¬failed
status = active
j ∈ world
x ∈ X
〈W, cm〉 = 〈world , cmap〉
〈obj, v, t〉 = 〈x, value(x), tag(x)〉
〈pns, pnr〉 = 〈pnum1 (x), pnum2 (x, j)〉

Effect:
none

Input recv(〈W, cm, obj, v, t, pns, pnr〉)j,i

Effect:
if ¬failed and status 6= idle then
status ← active
world ← world ∪W
cmap ← update(cmap, cm)
if t > tag(obj) then
(value(obj), tag(obj))← (v, t)

pnum2 (obj, j)← max(pnum2 (obj, j), pns)
if op(obj ).phase ∈ {query, prop} and
pnr ≥ op(obj ).pnum then
op(obj ).cmp ←

extend(op(obj ).cmp , truncate(cm))
if op(obj ).cmp ∈ Truncated then

op(obj ).acc ← op(obj ).acc ∪ {j}
else

pnum1 (obj ) ← pnum1 (obj ) + 1
op(obj ).acc ← ∅
op(obj ).cmp ← truncate(cmap)

if upg .phase ∈ {query, prop} and
pnr ≥ upg .pnum(obj) then
upg .acc(obj)← upg .acc(obj) ∪ {j}

Input new-config(c, k)i

Effect:
if ¬failed and status 6= idle then
cmap(k)← update(cmap(k), c)

Input read(x)i

Effect:
if ¬failed and status 6= idle then
pnum1 (x)← pnum1 (x) + 1
op(x) ← 〈read, query, pnum1 (x),

truncate(cmap), ∅, op.(x).value〉

Input write(x, v)i

Effect:
if ¬failed and status 6= idle then
pnum1 (x)← pnum1 (x) + 1
op(x) ← 〈write, query, pnum1 (x),

truncate(cmap), ∅, op.(x).value〉

Internal query-fix(x)i

Precondition:
¬failed
status = active
op(x).type ∈ {read, write}
op(x).phase = query
∀k ∈ N, c ∈ C : (op(x).cmp(k) = c)
⇒ (∃R ∈ read-quorums(c) :

R ⊆ op(x).acc)
Effect:

if op(x).type = read then
op(x).value ← value

else
value(x)← op(x).value
tag(x)← 〈tag(x).seq + 1, i〉

pnum1 (x)← pnum1 (x) + 1
op(x).pnum ← pnum1 (x)
op(x).phase ← prop
op(x).cmp ← truncate(cmap)
op(x).acc ← ∅

Internal prop-fix(x)i

Precondition:
¬failed
status = active
op(x).type ∈ {read, write}
op(x).phase = prop
∀k ∈ N, c ∈ C : (op(x).cmp(k) = c)
⇒ (∃W ∈ write-quorums(c) :

W ⊆ op(x).acc)
Effect:

op(x).phase = done

Output read-ack(x, v)i

Precondition:
¬failed
status = active
op(x).type = read
op(x).phase = done
v = op(x).value

Effect:
op(x).phase = idle

Output write-ack(x)i

Precondition:
¬failed
status = active
op(x).type = write
op(x).phase = done

Effect:
op(x).phase = idle

Fig. 5. Reader-Writerd,i: Read/write transitions

perform this check: if the incoming phase numberpnr is at least as large as the current operation
phase number (op(obj).pnum or upg .pnum(obj)), then the message is recent. If these conditions
are met thenop(obj) andupg records are updated.

4) Read and write operations:Each read and write operation on objectx consists of a query
phase and a propagation phase. In each phase,Reader-Writeri communicates with “enough”
nodes (as we explain below) through information propagation in the background.

For an objectx, whenReader-Writeri starts a phase of a read or write, it setsop(x ).cmp to
truncate(cmap) that includes all configuration identifiers incmap up to the first⊥. When a
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Internal cfg-upgrade(k)i

Precondition:
¬failed
status = active
upg .phase = idle
cmap(k) ∈ C
∀l ∈ N, l < k : cmap(l) 6= ⊥

Effect:
for all x ∈ X do

pnum1 (x)← pnum1 (x) + 1
upg .pnum(x)← pnum1 (x)
upg .acc(x)← ∅

upg .phase ← query
upg .target ← k
upg .cmap ← cmap

Internal cfg-upgrade-ack(k)i

Precondition:
¬failed
status = active
upg .target = k
∀l ∈ N, l < k : cmap(l) = ±

Effect:
upg .phase = idle

Internal cfg-upg-query-fix(k)i

Precondition:
¬failed
status = active
upg .phase = query
upg .target = k
∀l ∈ N, l < k : upg .cmap(l) ∈ C
⇒ ∃R ∈ read-quorums(upg .cmap(l)) :
∃W ∈ write-quorums(upg .cmap(l)) :
R ∪W ⊆ upg .acc(x), ∀x ∈ X

Effect:
for all x ∈ X do

pnum1 (x)← pnum1 (x) + 1
upg .pnum(x)← pnum1 (x)
upg .acc(x)← ∅

upg .phase ← prop

Internal cfg-upg-prop-fix(k)i

Precondition:
¬failed
status = active
upg .phase = prop
upg .target = k
∃W ∈ write-quorums(upg .cmap(k)) :

W ⊆ upg .acc(x), ∀x ∈ X
Effect:

for l ∈ N : l < k do
cmap(l)← ±

Fig. 6. Reader-Writerd,i: Configuration upgrade transitions

new CMap, cm, is received during the phase,op(x ).cmp is “extended” by adding all newly-
discovered configuration identifiers, up to the first⊥ in cm. If adding these new configuration
identifiers does not create a “gap”, that is, if the extendedop(x ).cmp is in Truncated , then the
phase continues using the newop(x ).cmp. Else if a “gap” is present (i.e., the result is not in
Truncated ), then the configuration map is out-of-date. In this case, the phase is “restarted” using
the best currently knownCMap information that is obtained by computingtruncate(cmap).

Other than restarts, nodei never removes configuration identifiers fromop(x ).cmp in
processing a phase. In particular, if nodei learns during a phase that a configuration identifier
in op(x ).cmp(k) has been included in some configuration upgrade, it does not remove it from
op(x ).cmp, but continues to include it in conducting the phase.

The query phase terminates when aquery fixed pointis reached. This happens whenReader-
Writeri receives recent responses from some read-quorum of each configuration inop(x ).cmp.
Let t denote nodei’s tag(x) at the query fixed point. Then we know thatt is at least as great as
the tag(x) value that each process in each of these read-quorums had at the start of this phase.

If the operation is a read, then processi at this point fixes its current value as the value to be
returned to its client. However, before returning this value, processi performs the propagation
phase, whose purpose is to make sure that “enough”Reader-Writerprocesses have acquired
tags that are at leastt (and associated values). Again, the information is propagated in the
background, andop(x ).cmp is managed as described above. The propagation phase ends once
a propagation fixed pointis reached, whenReader-Writeri has received recent responses from
some write-quorum of each configuration in the currentop(x ).cmp. When this occurs, we know
that thetag(x) of each process in each of these write-quorums is at leastt.

Processing for a write operation, for objectx, starting with awrite(x, v)i event is similar to
that for a read. The query phase is conducted exactly as for a read, but processing after the
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Input:
join(recon)d,i, i∈I, d∈D
recon(c, c′)d,i, c, c′∈C, i ∈ members(c), d∈D
faild,i, i ∈ I, d ∈ D

Output:
join-ack(recon)d,i, i ∈ I, d ∈ D
recon-ack(b)d,i , b ∈ {ok, nok}, i ∈ I, d ∈ D
report(c)d,i, c ∈ C, i ∈ I, d ∈ D

new-config(c, k)d,i, c∈C, k∈N+, i∈I, d∈D

Fig. 7. Recond,i: External signature

query fixed point is different. Supposet, processi’s tag(x) at the query fixed point, is of the
form (n, j). ThenReader-Writeri defines the tag for its write operation to be the pair(n + 1, i).
Reader-Writeri sets its localtag(x) to (n + 1, i) and itsvalue(x) to v, the value it is currently
writing. Then, it performs its propagation phase. The purpose of the propagation phase is to
ensure that “enough” processes acquire tags that are at least as great as the new tag(n + 1, i).
The propagation phase is conducted and concluded exactly asfor a read operation.

5) New configurations and configuration upgrade:Configurations go through three stages:
proposal, installation, and upgrade. Theinstall stage requires interaction with the externalRecon
service. The external interface toReconis depicted in Figure 7. Recall thatReconis responsible
for emitting a consistent sequence of configurations chosenfrom the configurations submitted by
the participants, but the exact implementation of this service is immaterial. TheReconservice
is activated viajoin(recon), where the correspondingjoin-ack(recon) event indicates readiness
of the service. New configurations are submitted intoReconservice (i.e.,proposed) though the
recon(c, c′) event, wherec′ is the new configuration andc is the latest configuration known to
the node emitting the proposal. Providingc as a parameter serves the following functions:(i)
as a guard, where the submitting node must be a member ofc, (ii) members ofc will decide
on the next configuration (wherec′ is included as one of the choices), and(iii) ensures total
ordering of installations. When the configuration installation request completes,Reader-Writer
is notified viarecon-ack(b) event, whereb is ok when installation ofc′ was successful andnok

otherwise. Successfully installed configurations are reported to theReader-Writerservice via the
report event. TheReconservice is as specified in [1], except that the specification of Reconis
parameterized bydomainsinstead ofobjects. Since otherwise the implementation details of the
Reconservice are not essential to this presentation, we do not discuss it further.

The configuration isupgraded when every configuration with a smaller index has been
removed. Once a configuration has been upgraded, it is responsible for maintaining the data.
Upgrades are performed by the configuration upgrade operations (see Figure 6). The operation
requires two phases, a query phase and a propagate phase. Thequery phase completes with
eventcfg-upg-query-fix when for each object in the domain fresh responses are collected from
at least one read-quorum and at least one write-quorum of each old configuration. In the second
phase, the latest object information obtained in the query phase is propagated to the members of
the write-quorum of the new configuration. This means that eventupg-cfg-prop-fix occurs when
fresh responses for each object in the domain are collected from a write-quorum of the new
configuration, ensuring that the latest domain informationis propagated to the new configuration.

Note that in DO-RAMBO the upgrade operation is conducted on behalf of all objects in the
domain, hence the query and propagation phases are based on fresh responses for each object
from appropriate quorums.
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G. The complete algorithm

The complete implementationS is the composition of theJoiner i, Reader-Writeri automata for
all i, all the channels, and any automaton whose traces satisfy the Reconsafety specification [1],
with all the non-external actions of DO-RAMBO hidden.

H. Environment Well-Formedness

We assume that the clients of the service submit well-formedrequests: clients follow the
protocol to join and to initiate reconfigurations; clients initiate only one operation at a time on
each object; clients wait for appropriate acknowledgmentsbefore proceeding.

First we state the well-formedness assumptions of DO-RAMBOd , whered ∈ D, in terms of
the following conditions.

For everyx ∈ Xd, and i ∈ I:
• No join(rambo, ∗)d,i, read(x)d,i, write(x, ∗)d,i event is preceded by afaild,i event.
• At most onejoin(rambo, ∗)d,i event occurs.
• Any read(x)d,i, write(x, ∗)d,i, or recon(∗, ∗)d,i event is preceded by ajoin-ack(rambo)d,i

event.
• Any read(x)d,i, write(x, ∗)d,i, or recon(∗, ∗)d,i event is preceded by an-ack event for any

preceding event of any of these kinds.
• For everyc, at most onerecon(∗, c)d,∗ event occurs.
• For everyc, c′, andi, if a recon(c, c′)d,i event occurs, then it is preceded by: (1) areport(c)d,i

event, and (2) ajoin-ack(rambo)d,j event for everyj ∈ members(c′).
The following are the well-formedness assumptions forRecond. For everyi:
• No join(recon)d,i or recon(∗, ∗)d,i event is preceded by afaild,i event.
• At most onejoin(recon)d,i event occurs.
• Any recon(∗, ∗)d,i event is preceded by ajoin-ack(recon)d,i event.
• Any recon(∗, ∗)d,i event is preceded by an-ack for any precedingrecon(∗, ∗)d,i event.
• For everyc, at most onerecon(∗, c)d,∗ event occurs.
• For everyc andc′ if a recon(c, c′)d,i event occurs, then it is preceded by: (1) areport(c)d,i

event, and (2) ajoin-ack(recon)d,j event for everyj ∈ members(c′).
In the rest of this paper we deal with“good” executionsof implementationsS, viz. executions

where the environment is well-formed, and where the communication channels behave correctly,
delivering only the messages that were sent, but possibly reordering and losing some messages.

III. PROOF OFATOMICITY

We now prove the correctness of DO-RAMBO : we prove that the service implements atomic
read/write memory. In Section III-A, notation and basic invariants and lemmas are presented
that are used in Section III-B to prove atomicity.

A. Notation and Basic Lemmas

We start by showing a simple result about the well-formedness of the DO-RAMBO service.
Theorem 1: In any good execution of DO-RAMBO the following guarantees are provided.

For everyd ∈ D and i:
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• Any join-ack(rambo)d,i (resp.,recon-ack(∗)d,i) event has a precedingjoin(rambo, ∗)d,i (resp.,
recon(∗, ∗)d,i) event with no intervening invocation or response action for d and i.

• Any read-ack(x, ∗)d,i (resp., write-ack(x)d,i) event has a precedingread(x)d,i (resp.,
write(x, ∗)d,i) event with no intervening invocation or response action for d, x and i.

Proof. This simple result follows from code inspection under the assumptions about the client
well-formedness as stated in Section II-H. �

In the rest of this section we restate the results from RAMBO [1]–[3], and we introduce certain
history variables1 to the global state of systemS. Some of the notation in the proofs has been
modified to allow us to reason about the new algorithm. Several of the original lemmas in [1]–
[3] are restated using new notation and their proofs are updated accordingly. The results that
pertain to the individual object are essentially unchanged. To avoid unnecessary restatement in
what follows, we omit any proofs that are essentially the same as [1]–[3]. We refer the reader
to the cited papers for these proofs, and here we focus on presenting new lemmas and new or
re-constructed proofs that also constitute the contribution of this work. Definitions and meaning
of data types used in this section are found in Section II-C.

In our presentation we are dealing with executions of implementationS and read, write, and
configuration upgradeoperationsoccurring in the executions. (Recall that we elide the mention
of domains, unless the identity of a domain is material.) Read and write operations are performed
on objects in a domain, and are uniquely identified by their starting events, specifically, a read
operation onx at nodei is defined by itsread(x)i event, and a write operation is similarly
defined by itswrite(x, v)i event. We will use notationπ(x) to denote a read or a write operation
on x. A configuration upgrade operation is performed for a domain, and it is defined by the
correspondingcfg-upgradei event.

We introduce the following history variables:
• in-transit, a set of messages, initially∅. A message is added to the set when it is sent by

any Reader-Writeri to anyReader-Writerj. No messages is every removed from this set.
• c(k) ∈ C, for everyk ∈ N, initially undefined. This is set when the firstnew-config(c, k)i

occurs, for somec and i. It is set to thec that appears as the first argument of this action.
• tag(π(x)) ∈ T , initially undefined. This is set to the value oftag(x) at the process running

π(x), at the point right afterπ(x)’s query-fix(x) event occurs. Ifπ(x) is a read operation
this is the highest tag that it encounters during the query phase. Ifπ(x) is a write operation,
this is the new tag that is selected for performing the write.

• query-cmap(π(x)), aCMap, initially undefined. This is set in thequery-fix(x) step ofπ(x),
to the value ofop(x ).cmap in the pre-state.

• R(π(x), k), for k ∈ N, a subset ofI, initially undefined. This is set in thequery-fix(x)
step of π(x), for eachk such thatquery-cmap(π(x))(k) ∈ C. It is set to an arbitrary
R ∈ read-quorums(c(k)) such thatR ⊆ op(x).acc in the pre-state.

• prop-cmap(π(x)), a CMap, initially undefined.
• W (π(x), k), for k ∈ N, a subset ofI, initially undefined. This is set in theprop-fix(x)

step of π(x), for eachk such thatprop-cmap(π(x))(k) ∈ C. It is set to an arbitrary
W ∈ write-quorums(c(k)) such thatW ⊆ op(x).acc in the pre-state.

1History variables are used to aid reasoning about properties of the algorithm and are not used by the algorithm.
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• tag(x, γ) ∈ T , initially undefined. This is set to the value oftag(x) at the process running
γ, at the point right afterγ’s cfg-upg-query-fix event occurs.

• removal-set(γ), a subset ofN, initially undefined. This is set in thecfg-upgrade step ofγ,
to the set{ℓ : ℓ < k, cmap(ℓ) 6= ±}.

• R(γ, ℓ), for ℓ ∈ N, a subset ofI, initially undefined. This is set in thecfg-upg-query-fix

step ofγ, for all ℓ ∈ removal-set(γ), to an arbitraryR ∈ read-quorums(c(ℓ)) such that
R ⊆ upg(x).acc in the pre-state, for eachx ∈ Xd.

• W1(γ, ℓ), for ℓ ∈ N, a subset ofI, initially undefined.This is set in thecfg-upg-query-fix

step ofγ, for all ℓ ∈ removal-set(γ), to an arbitraryW ∈ write-quorums(c(ℓ)) such that
W ⊆ upg(x).acc in the pre-state, for eachx ∈ Xd.

• W2(γ), a subset ofI, initially undefined.This is set in thecfg-upg-prop-fix step ofγ, to
an arbitraryW ∈ write-quorums(c(k)) such thatW ⊆ upg(x).acc in the pre-state, for all
x ∈ Xd.

In any good executionα, we define the following events (more precisely, we are giving
additional name to some existing events):
• query-phase-start(π(x)), initially undefined. This is defined in thequery-fix(x) step ofπ(x),

to be the unique earlier event at which the collection of query results was started and not
subsequently restarted. This is either aread(x), write(x, ∗), or recv(∗, ∗, x, ∗, ∗, ∗, ∗) event.

• prop-phase-start(π(x)), initially undefined. This is defined in theprop-fix(x) step ofπ(x),
to be the unique earlier event at which the collection of propagation results was started and
not subsequently restarted. This is either aquery-fix(x) or recv(∗, ∗, x, ∗, ∗, ∗, ∗) event.

1) Configuration map invariants:Here we give invariants describing the kinds of configuration
maps that may appear in various places in the state ofS.

We begin with a lemma saying that various operations yield orpreserve the “usable” property.

Lemma 1 ([1]–[3]): The following hold:
1) If cm, cm′ ∈ Usable thenupdate(cm, cm′) ∈ Usable.
2) If cm ∈ Usable, k ∈ N, c ∈ C, and cm′ is identical to cm except thatcm′(k) =

update(cm(k), c), thencm′ ∈ Usable.
3) If cm, cm′ ∈ Usable thenextend(cm, cm′) ∈ Usable.
4) If cm ∈ Usable then truncate(cm) ∈ Usable.

The following invariant describes some properties ofcmapi that hold whileReader-Writeri
is conducting a configuration upgrade operation.

Invariant 1 ([1]–[3]): If upg .phasei 6= idle andupg .target i =k, then:
1) ∀ ℓ : ℓ ≤ k =⇒ cmap(ℓ)i ∈ C ∪ {±}.
2) If k1 = min{ℓ : ℓ ≤ k ∧ upg .cmap(ℓ) 6= ±} thenk1 = 0 or cmap(k1 − 1)i = ±.

Next we describe the patterns ofC, ⊥, and± values that may occur in configuration maps
in various places in the system state. We use the dot notationto indicate components of state,
for example,s.cmapi indicates that value ofcmapi in states.

Invariant 2: Let cm be aCMap that appears as one of the following:
1) Thecm component of some message inin-transit.
2) cmapi for any i ∈ I.
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3) op(x ).cmapi for somei ∈ I and for somex ∈ Xd for which op(x ).phasei 6= idle.
4) query-cmap(π(x)) or prop-cmap(π(x)) for any operationπ(x) on any objectx.
5) upg .cmapi for somei ∈ I for which upg .phasei 6= idle.

Then cm ∈ Usable.

Proof. By induction on the length of a finite execution.
Base: Part 1 holds becausein-transit is empty initially. Part 2 holds because initially, for

everyi, cmap(0)i = c0 andcmap(k)i = ⊥; the resultingCmap is in Usable. Parts 3 and 5 hold
vacuously, because in the initial state, allop(x ).phase andupg .phase values areidle. Part 4 also
holds vacuously, because initially, allquery-cmap andprop-cmap variables are undefined.

Inductive step:Let s and s′ be the states before and after the new event, respectively. We
consider Parts 1-5 one by one.
For Part 1, the interesting case is asendi,∗ event that puts a message containingcm in in-transit.
The precondition on thesend action implies thatcm is set tos.cmapi. The inductive hypothesis,
Part 2, implies thats.cmapi ∈ Usable, which suffices.
For Part 2, fixi. The interesting cases are those that may chagecmapi, namely,new-configi,
recv∗,i for a gossip (non-join) message, andcfg-upg-prop-fixi.

1) new-config(c, ∗)i. This part of the proof is as in [2]; we refer the reader there for details.
2) recv(〈∗, cm, ∗, ∗, ∗, ∗, ∗〉)∗,i. This part of the proof is also as in [2].
3) cfg-upg-prop-fix(k)i. This part of the proof is also as in [2].

For Part 3, we consider actions that modifyop(x).cmapi, namely, readi, writei, recvi, and
query-fixi, for some objectx ∈ Xd.

1) read(x)i, write(x, ∗)i, andquery-fix(x)i: By inductive hypothesis,s.cmapi ∈ Usable. The
new step setss′.op(x ).cmapi to truncate(s.cmapi); sinces.cmapi ∈ Usable, Lemma 1,
Part 4, implies that this is also usable.

2) recv(〈∗, cm, x, ∗, ∗, ∗, ∗〉)∗,i: This step may alter op(x ).cmapi only if
s.op(x ).phasei ∈ {query, prop}, and then in only two ways: by setting it either to
extend(op(x ).cmapi, truncate(cm)) or to truncate(update(s.cmapi, cm)). The inductive
hypothesis implies thattruncate, extend, and update all preserve usability. Therefore,
s′.op(x ).cmapi ∈ Usable.

For Part 4, we considerquery-fix(x)i andprop-fix(x)i, of some read or write operationπ(x).
1) query-fix(x)i. This setss′.query-cmap(π(x))i to the value ofs.op(x ).cmapi. Since by

inductive hypothesis the latter is usable, so iss′.query-cmap(π(x))i.
2) prop-fix(x)i. This setss′.prop-cmap(π(x))i to the value ofs.op(x ).cmapi. Since by

inductive hypothesis the latter is usable, so iss′.prop-cmap(π(x))i.
For Part 5, the actions to consider arecfg-upgrade(k)i and cfg-upg-query-fix(k)i. These set
s′.upg .cmapi to the value ofs.cmapi. Since by the inductive hypothesis the later is usable so
is s′.upg .cmapi. �

We now strengthen Invariant 2 to say more about the form of theCMaps that are used for
read and write operations:

Invariant 3: Let cm be a CMap that appears asop(x ).cmapi for some i ∈ I for which
op(x ).phase 6= idle, or asquery-cmap(π(x)) or prop-cmap(π(x)) for any operationπ(x) on
objectx ∈ Xd. Then:
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1) cm ∈ Truncated .
2) cm consists of finitely many± entries followed by finitely many entries fromC followed

by a infinite number of⊥ entries.

Proof. We prove that the desired properties hold for acm that is op(x ).cmapi. The same
properties forquery-cmap(π(x)) and prop-cmap(π(x)) follows by the way they are defined,
from op(x ).cmapi.

To prove Part 1 we proceed by induction. In the initial sate,op(x ).phasei = idle, which makes
the claim vacuously true. For the inductive step we considerall actions that alterop(x ).cmapi:

1) read(x)i, write(x, ∗)i, or query-fix(x)i: These setop(x ).cmapi to truncate(cmapi), which
is necessarily inTruncated.

2) recv(〈∗, cm, x, ∗, ∗, ∗, ∗〉)∗,i: This first setsop(x ).cmapi to a preliminary value and then
tests if the result is inTruncated. If it is, we are done. If not, then this step resets
op(x ).cmapi to truncate(cmapi), which is in Truncated.

To see Part 2, note thatcm ∈ Usable by Invariant 2. The fact thatcm ∈ Truncated then follows
from the definition ofUsableand Part 1. �

2) Phase guarantees:Lemmas presented here discuss the effects of query and propagation
phases of read/write and configuration upgrade operations.In more detail, we describe the
information flow that must occur during these phases to allowoperation completion.

Note that the casej = i is treated uniformly with the case wherej 6= i becauseReader-Writer
algorithm treats communication from a location to itself exactly the way as communication
between two different locations. We first consider the queryphase of a configuration-upgrade.

Lemma 2: Suppose that acfg-upg-query-fix(k)i event for configuration upgrade operationγ
occurs inα andk′ ∈ removal-set(γ). Supposej ∈ R(γ, k′) ∪ W1(γ, k′).
Then for eachx ∈ Xd there exist messagesmx from i to j andm′x from j to i such that:

1) obj component of messagesmx andm′x is equal tox.
2) mx is sent after thecfg-upgrade(k)i event ofγ.
3) m′x is sent afterj receivesmx.
4) m′x is received before thecfg-upg-query-fix(k)i event ofγ.
5) In any state afterj receivesmx, cmap(ℓ)j 6= ⊥ for all ℓ ≤ k.
6) tag(x, γ) ≥ t, wheret is the value oftag(x)j in any state beforej sends messagem′x.

Proof. The phase number discipline, applied to objectx, implies the existence of the claimed
messagesmx and m′x. For Part 5, the precondition ofcfg-upgrade(k) implies that, when the
cfg-upgrade(k)i event ofγ occurs,cmap(ℓ)i 6= ⊥ for all ℓ ≤ k. Therefore,j setscmap(ℓ)j 6= ⊥
for all ℓ ≤ k when it receivesmx. Monotonicity of cmapj ensures that this property persists.

For Part 6, lett be the value oftag(x)j in any state beforej sends messagem′x. Let t′ be
the value oftag(x)j in the state just beforej sendsm′x. Thent ≤ t′, by monotonicity. Thetag
component ofm′x is equal tot′, by the code forsend. Sincei receives this message before the
cfg-upg-query-fix(k)i, it follows that tag(x, γ) is set byi to a value≥ t. �

Next, we consider the propagation phase of a configuration upgrade.
Lemma 3: Suppose that acfg-upg-prop-fix(k)i event for a configuration upgrade operationγ

occurs inα. Suppose thatj ∈ W2(γ).
Then for eachx ∈ Xd there exist messagesmx from i to j andm′x from j to i such that:
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1) obj component of messagesmx andm′x is equal tox.
2) mx is sent after thecfg-upg-query-fix(k)i event ofγ.
3) m′x is sent afterj receivesm.
4) m′x is received before thecfg-upg-prop-fix(k)i event ofγ.
5) In any state afterj receivesm, tag(x)j ≥ tag(x, γ), for all x ∈ Xd.

Proof. The phase number discipline, on individual object, impliesthe existence of the claimed
messagesmx and m′x. For Part 5, whenj receivesmx, it sets tag(x)j to be ≥ tag(x, γ).
Monotonicity of tag(x)j ensures that this property persists in later states. �

Next, we consider the query phase of read/write operations.

Lemma 4: Suppose that inα a query-fix(x)i event occurs for a read or write operationπ(x)
on objectx. Let k, k′ ∈ N. Supposequery-cmap(π(x))(k) ∈ C and j ∈ R(π(x), k).
Then there exist messagesmx from i to j andm′x from j to i such that:

1) obj field of messagesm andm′ equalsx.
2) mx is sent after thequery-phase-start(π(x)) event.
3) m′x is sent afterj receivesm.
4) m′x is received before thequery-fix(x) event ofπ(x).
5) If t is the value of thetag(x)j in any state beforej sendsm′x, then:

(a) tag(π(x)) ≥ t, and (b) ifπ(x) is a write operation thentag(π(x)) > t.
6) If cmap(ℓ)j 6=⊥ for all ℓ≤k′ in any state beforej sendm′x, thenquery-cmap(π(x))(ℓ) ∈ C

for someℓ≥k′.

Proof. The phase number discipline, on individual object, impliesthe existence of the claimed
messagesm andm′. For Part 5, thetag component of messagem′x is ≥ t, so it receives a tag
that is≥ t during the query phase ofπ(x). Therefore,tag(π(x)) ≥ t. Also, if π(x) is a write,
the effects of thequery-fix(x) imply that tag(π(x)) > t.

Finally, we show Part 6. In thecm component of messagem′x, cm(ℓ) 6= ⊥ for all ℓ ≤ k′.
Therefore,truncate(cm)(ℓ) = cm(ℓ) for all ℓ ≤ k′, so truncate(cm) 6= ⊥ for all ℓ ≤ k′.

Let cm′ be the configuration mapextend(op(x ).cmapi, truncate(cm)) computed byi during
the effects of therecv event for m′x. Since i does not resetop(x).acc to ∅ in this step, by
definition of thequery-phase-start(pi(x)) event, it follows thatcm′ ∈ Truncated , andcm′ is the
value ofop(x ).cmapi just after therecv step.

Fix ℓ, 0 ≤ ℓ ≤ k′. We claim thatcm′(ℓ) 6= ⊥. We consider cases:
1) op(x ).cmap(ℓ)i 6= ⊥ just before therecv step. Then the definition ofextend implies that

cm′ 6= ⊥, as needed.
2) op(x ).cmap(ℓ)i = ⊥ just before therecv step andtruncate(cm)(ℓ) ∈ C. Then the

definition of extend implies thatcm′(ℓ) ∈ C, which implies thatcm′(ℓ) 6= ⊥, as needed.
3) op(x ).cmap(ℓ)i = ⊥ just before therecv step and truncate(cm)(ℓ) /∈ C. Since

truncate(cm))(ℓ) 6= ⊥, it follows that truncate(cm)(ℓ) /∈ C. By the case assumption,
op(x ).cmap(ℓ)i = ⊥ just before therecv step. Since by Invariant 3,op(x ).cmapi ∈
Truncated , it follows thatop(x ).cmap(ℓ′) = ⊥ before therecv step. Then by definition of
extend , we have thatcm′(ℓ) = ⊥ while cm′(ℓ) ∈ C. This implies thatcm′ /∈ Truncated ,
which contradicts the fact, already shown,thatcm′ ∈ Truncated . So this case cannot arise.

Since this argument holds for allℓ, 0 ≤ ℓ ≤ k′, it follows that cm′(ℓ) 6= ⊥ for all ℓ ≤ k′. Since
cm′(ℓ) 6= ⊥ for all ℓ ≤ k′, Invariant 2 implies thatcm′ ∈ Usable, which implies by definition
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of Usable that cm′(ℓ) ∈ C for someℓ ≥ k′. That is,op(x ).cmapi(ℓ) ∈ C for someℓ ≥ k′

immediately after therecv step. This implies thatquery-cmap(π(x))(ℓ) ∈ C for someℓ ≥ k′,
as needed. �

And finally, we consider the propagation phase of read and write operations.

Lemma 5: Suppose that aprop-fix(x)i event for a read or a write operationπ(x) on objectx
occurs inα. Supposeprop-cmap(π(x))(k) ∈ C andj ∈ W (π(x), k).
Then there exist messagesmx from i to j andm′x from j to i such that:

1) obj field of messagesmx andm′x equalsx.
2) mx is sent after theprop-phase-start(π(x)) event.
3) m′x is sent afterj receivesmx.
4) m′x is received before theprop-fix(x) event ofπ(x).
5) In any state afterj receivesmx, tag(x)j ≥ tag(π(x)).
6) If cmap(ℓ)j 6=⊥ for all ℓ<k′ in any state beforej sendsm′x, thenprop-cmap(π(x))(ℓ) ∈ C

for someℓ≥k′.

Proof. The phase number discipline, on individual object, impliesthe existence of the claimed
messagesmx andm′x. For Part 5, letmx.tag be the tag in messagemx. Sincemx is sent after
eventprop-phase-start(π(x)), which is not earlier thanquery-fix(x)i, it must be thatmx.tag ≥
tag(π(x)). Therefore, by the effects ofrecv, just after j receivesmx, tag(x)j ≥ m.tag ≥
tag(π(x)). Then monotonicity oftag(x)j implies thattag(x)j ≥ tag(π(x)) in any state afterj
receivesmx.

For Part 6, the proof is analogous to the proof of part 5 of Lemma 4. In fact, it is identical
except for the final conclusion, which now says thatprop-cmap(π(x))(ℓ) ∈ C for someℓ ≥ k′. �

B. Atomic Consistency

We now proceed to prove atomicity of the service in stages. First, in Section III-B.1 we present
lemmas describing the relationship between configuration upgrade operations. We show in detail
how object information is propagated during the configuration upgrade operation. Section III-B.2
describes the relationship between read/write operationsand configuration upgrade operations.
Section III-B.3 then considers two read or write operationson the same object, culminating
in Lemma 14 that says that tags are monotone with respect to non-concurrent read or write
operations on an object. Finally, Section III-B.4 uses the tags to define a partial order on
operations that has sufficient properties (given in SectionII-A) to claim atomicity.

1) Behavior of configuration upgrade:Here we present lemmas describing information flow
between configuration upgrade operations to assert the existence of a sequence of configuration
upgrade operations with certain properties. In particular, the key property is that the tag of each
object in the domain is monotonically increasing with respect to the specific sequence of upgrade
operations, guaranteeing that the value/tag information is propagated to newer configurations.
Observe that the statements and proofs in this section, withthe exception of the proof of
Lemma 8, remain unchanged (when compared to [1]–[3]). The reason is that the configuration
upgrade is performed on an entire domain (hence on all objects simultaneously). Proof of
Lemma 8 needs to be modified since it requires reasoning aboutthe tag information of individual
objects, hence we update the proof to reflect modifications ofDO-RAMBO .
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The first lemma shows that if all configuration upgrade operations remove two particular
configurations together, then those two configurations are always in the same state in allcmaps.

Lemma 6 ([1]–[3]): Suppose thatk > 0, andα is an execution in which nocfg-upg-prop-fix(k)
event occurs. Suppose thatcm is a CMap appearing as one of the following in any state inα:

1) Thecm component of some message inin-transit.
2) cmapi for any i ∈ I.

If cm(k − 1) = ± thencm(k) = ±.

The following corollary says that if acfg-upgrade(k) event for an upgrade operationγ occurs
in an execution, then there is some previous configuration upgradeγ′ (that completes beforeγ
starts) where the target ofγ′ is the configuration with the smallest index removed byγ.

Corollary 1: Let γ be a configuration upgrade operation, initiated by acfg-upgrade(k)i

event in α, and let k1 = min{removal − set(γ)}. That is, k1 is the smallest element such
that upg-cmap(γ)(k1) ∈ C. Assumek1 > 0. Then a cfg-upg-prop-fix(k1)j event for some
configuration upgrade operationγ′ occurs inα for somej such that thecfg-upg-prop-fixj event
of γ′ precedes thecfg-upgrade(k)i event inα.

The next lemma says that for a given configuration upgrade operationγ, there exists a sequence
of preceding upgrade operations satisfying certain properties. The lemma begins by assuming
that some configuration with indexk is removed by the specified upgrade operation. For every
configuration with an index smaller thank, we choose a single upgrade operation—that removes
that configuration—to add to the sequence. Therefore the constructed sequence may well contain
the same configuration upgrade operation multiple times, ifthe operation has removed multiple
configurations. If two elements in the sequence are distinctupgrade operations, then the earlier
operation in the sequence completes before the later operation is initiated. Also, the target of
an upgrade operation in the sequence is removed by the next distinct upgrade operation. As a
result of these properties, the configuration upgrade process obeys a sequential discipline.

Lemma 7 ([1]–[3]): If a cfg-upgradei event for upgrade operationγ occurs inα such that
k ∈ removal-set(γ), then there exists a sequence (possibly containing repeated elements) of
configuration upgrade operationsγ0, γ1, . . . , γk with the following properties:

1) ∀ s : 0 ≤ s ≤ k, s ∈ removal-set(γs),
2) ∀ s : 0 ≤ s < k, if γs 6= γs+1, then thecfg-upg-prop-fix event ofγs occurs inα and the

cfg-upgrade event ofγs+1 occurs inα, and thecfg-upg-prop-fix event ofγs precedes the
cfg-upgrade event ofγs+1, and

3) ∀ s : 0 ≤ s < k, if γs 6= γs+1, then target(γs) ∈ removal-set(γs+1).

The sequential nature of configuration upgrade has a nice consequence for propagation of
tags: for any sequence of upgrade operations (as in Lemma 7),tag(x, γs) is nondecreasing ins.

Lemma 8: Let γℓ, . . . , γk be a sequence of configuration upgrade operation such that:
1) ∀ s : 0 ≤ s ≤ k, s ∈ removal-set(γs),
2) ∀ s : 0 ≤ s < k, if γs 6= γs+1, then thecfg-upg-prop-fix event ofγs occurs inα and the

cfg-upgrade event ofγs+1 occurs inα, and thecfg-upg-prop-fix event ofγs precedes the
cfg-upgrade event ofγs+1, and

3) ∀ s : 0 ≤ s < k, if γs 6= γs+1, then target(γs) ∈ removal-set(γs+1).
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Then∀ s, x : 0 ≤ s < k, x ∈ Xd, tag(x, γs) ≤ tag(x, γs+1).

Proof. If γs = γs+1, then it is trivially true thattag(x, γs) ≤ tag(x, γs+1), for all x. Therefore
assume thatγs 6= γs+1. This implies thatcfg-upg-prop-fix event ofγs precedes thecfg-upgrade

event ofγs+1. Let k be the largest element inremoval-set(γs). We know by assumption that
k + 1 ∈ removal-set(γs+1). Therefore,W2(γs), a write-quorum of configurationc(k + 1), has
at least one element in common withR(γs+1, k + 1); label this processj. By Lemma 3, and
the monotonicity oftag(x)j , of each objectx, after thecfg-upg-prop-fix event ofγs we know
that tag(x)j ≥ tag(x, γs), again for eachx ∈ Xd. Then by Lemma 2 for anyx we know that
tag(x, γs+1) ≥ tag(x, γs). Therefore,tag(x, γs) ≤ tag(x, γs+1). �

The next result follows immediately from the above lemma by induction.

Corollary 2: Let γℓ, . . . , γk be a sequence of configuration upgrade operation such that:
1) ∀ s : 0 ≤ s ≤ k, s ∈ removal-set(γs),
2) ∀ s : 0 ≤ s < k, if γs 6= γs+1, then thecfg-upg-prop-fix event ofγs occurs inα and the

cfg-upgrade event ofγs+1 occurs inα, and thecfg-upg-prop-fix event ofγs precedes the
cfg-upgrade event ofγs+1, and

3) ∀ s : 0 ≤ s < k, if γs 6= γs+1, then target(γs) ∈ removal-set(γs+1).
Then∀ s, s′, x : 0 ≤ s ≤ s′ < k, x ∈ Xd, tag(x, γs) ≤ tag(x, γs′).

2) Behavior of a read or a write following a configuration upgrade: Now we describe
the relationship between an upgrade operation and a following read or write operation. The
following three lemmas relateremoval-set of a preceding configuration upgrade operation with
the query-cmap of a later read or write operation.

The first lemma shows that if, for some read or write operationπ(x), k is the smallest index
such thatquery-cmap(π(x))(k) ∈ C, then some configuration upgrade operation with targetk
precedes the read or write operation.

Lemma 9: For some objectx, let π(x) be a read or write operation whosequery-fix(x) event
occurs inα. Let k be the smallest element such thatquery-cmap(π(x))(k) ∈ C. Assumek > 0.
Then there must exist a configuration upgrade operationγ such thatk = target(γ), and the
cfg-upg-prop-fix event ofγ precedes thequery-phase-start(π(x)).

Proof. Follows from Lemma 6. Lets be the state just before eventquery-phase-start(π(x)).
By definition, query-cmap(π(x)) = s.cmapi. Sinces.cmap(k − 1)i = ± and s.cmap(k)i 6= ±,
there must exist such a configuration upgrade fork by the contrapositive of Lemma 6. �

Second, if some upgrade removingk does complete before thequery-phase-start event of a
read or write operation, then some configuration with index≥ k + 1 must be included in the
query-cmap of a latter read or write operation.

Lemma 10: Let γ be a configuration upgrade operation such thatk ∈ removal-set(γ). Let
π(x) be a read or write operation on objectx whosequery-fix(x) event occurs inα. Suppose
that the cfg-upg-prop-fix event of γ precedes thequery-phase-start(π(x)) event in α. Then
query-cmap(π(x))(ℓ) ∈ C for someℓ ≥ k + 1.

Proof. Suppose for the sake of contradiction thatquery-cmap(π(x))(ℓ) /∈ C for all ℓ ≥ k +1.
Fix k′ = max({ℓ′ : query-cmap(π(x))(ℓ′) ∈ C}). Thenk′ ≤ k.

21



Let γ0, . . . , γk be the sequence of upgrade operations whose existence is asserted by Lemma 7,
where γk = γ. Then, by this construction,k′ ∈ removal-set(γk′), and thecfg-upg-prop-fix

event of γk′ does not come after thecfg-upg-prop-fix event of γ in α. By assumption, the
cfg-upg-prop-fix event of γ precedes thequery-phase-start(π(x)) event in α. Therefore, the
cfg-upg-prop-fix event ofγk′ precedes thequery-phase-start(π(x)) event inα.

Then, since k′ ∈ removal-set(γk′), write-quorum W1(γk′, k′) is defined. Since
query-cmap(π(x))(k′) ∈ C, the read-quorumR(π(x), k′) is defined. Choosej ∈ W1(γk′, k′) ∩
R(π(x), k′). Assume thatkt = target(γk′). Notice thatk′ < kt. Then Lemma 2 and monotonicity
of cmap imply that, in the state just prior to thecfg-upg-query-fix event ofγk′, cmap(ℓ)j 6= ⊥
for all ℓ≤kt. Then Lemma 4 implies thatquery-cmap(π(x))(ℓ)∈C for someℓ ≥ kt. But this
contradicts the choice ofk′. �

The next lemma describes the propagation of object tag information from a configuration
upgrade operation to a following read or write operation.

Lemma 11: Let α be an execution with a configuration upgrade operationγ. Assume that
k = target(γ). Let π(x) be a read or write operation on objectx with eventquery-fix(x) in α.
Suppose that eventcfg-upg-prop-fix of γ precedes eventquery-phase-start(π(x)). Suppose also
that query-cmap(π(x))(k) ∈ C. Then:
(1) tag(x, γ) ≤ tag(π(x)), and (2) Ifπ(x) is a write operation thentag(x, γ) < tag(π(x)).

Proof. The propagation phase ofγ accesses write quorumW2(γ) of c(k), whereas the query
phase ofπ(x) accesses read-quorumR(π(x), k). Since both are quorums of configurationc(k),
they have a nonempty intersection, hence choosej ∈ W2(γ) ∩ R(π(x), k).

Lemma 3 implies that, in any state after thecfg-upg-prop-fix event forγ, tag(x)j ≥ tag(x, γ).
Since thecfg-upg-prop-fix event ofγ precedes thequery-phase-start(π(x)) event, we have thatt ≥
tag(x), wheret is defined to be the value oftag(x)j just before thequery-phase-start(π(x)) event.
Then Lemma 4 implies thattag(π(x)) ≥ t, and if π(x) is a write operation, thentag(π(x)) > t.
Combining the inequalities yields both conclusions of the lemma. �

3) Behavior of sequential reads and writes:For two read or write operations on some object
x that execute sequentially, we can prove certain relationships between theirquery-cmaps, prop-
cmaps, andtags. Lemma 12 says that when two read or write operations onx execute sequentially,
the smallest configuration index used in the propagation phase of the first operation is no higher
than the largest index used in the query phase of the second.

Lemma 12: Let π(x)1 andπ(x)2 be two read or write operations on objectx, such that:
1) Theprop-fix(x) event ofπ(x)1 occurs inα.
2) Thequery-fix(x) event ofπ(x)2 occurs inα.
3) Theprop-fix(x) event ofπ(x)1 precedes thequery-phase-start(π(x)2) event.

Thenmin({ℓ : prop-cmap(π(x)1)(ℓ) ∈ C}) ≤ max({ℓ : query-cmap(π(x)2)(ℓ)}).

Proof. Suppose for the sake of contradiction thatmin({ℓ : prop-cmap(π(x)1)(ℓ) ∈
C}) > k, where k is defined to bemax({ℓ : query-cmap(π(x)2)(ℓ)}). Then in particular,
prop-cmap(π(x)1)(k) /∈ C. The form ofprop-cmap(π(x)1), as expressed in Invariant 3, implies
that prop-cmap(π(x)1)(k) = ±.

This implies that somecfg-upg-prop-fix event for some upgrade operationγ such that
k ∈ removal-set(γ) occurs prior to theprop-fix(x) of π(x)1, and hence prior to the
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query-phase-start(π(x)2) event. Lemma 10 then implies thatquery-cmap(π(x)2)(ℓ) ∈ C for
someℓ ≥ k + 1. But this contradicts the choice ofk. �

The next lemma describes propagation oftag information, in the case where the propagation
phase of the first operation and the query phase of the second operation share a configuration.

Lemma 13: Assumeπ(x)1 andπ(x)2 are two read or write operations on some objectx, and:
1) Theprop-fix(x) event ofπ(x)1 occurs inα.
2) Thequery-fix(x) event ofπ(x)2 occurs inα.
3) Theprop-fix(x) event ofπ(x)1 precedes thequery-phase-start(π(x)2) event.
4) prop-cmap(π(x)1)(k) andquery-cmap(π(x)2)(k) are both inC, for somek ∈ N.

Then: (1)tag(π(x)1) ≤ tag(π(x)2), and (2) If π(x)2 is a write thentag(π(x)1) < tag(π(x)2).

Proof. The hypothesis imply thatprop-cmap(π(x)1)(k) = query-fix(π(x)2)(k)=c(k). Then
W (π(x)1, k) andR(π(x)2, k) are both defined inα. Since they are both quorums of configuration
c(k), they have a nonempty intersection; choosej ∈ W (π(x)1, k) ∩ R(π(x)2, k).

Lemma 5 implies that, in any state after theprop-fix(x) event of π(x)1, tag(x)j ≥
tag(π(x)1). Since theprop-fix(x) event ofπ(x)1 precedes thequery-phase-start(π(x)2) event,
we have thatt ≥ tag(π(x)1), where t is defined to be the value oftag(x)j just before the
query-phase-start(π(x)2) event. Then Lemma 4 implies thattag(π(x)2) ≥ t, and if π(x)2 is a
write operation, thentag(π(x)2) > t. Combining the inequalities yields both conclusions.�

The following lemma is similar to the previous one, but it does not assume that the propagation
phase of the first operation and the query phase of the second operation share a configuration.
The focus of the proof is on the situation where all configuration indices used in the query phase
of the second operation are greater than those used in the propagation of the first operation.

Lemma 14: Assumeπ(x)1 andπ(x)2 are two read or write operations on objectx, and:
• prop-fix(x) of π(x)1 occurs inα.
• query-fix(x) of π(x)2 occurs inα.
• prop-fix(x) event ofπ(x)1 precedes thequery-phase-start(π(x)2) event.

Then: (1)tag(π(x)1) ≤ tag(π(x)2), and (2) If π(x)2 is a write thentag(π(x)1) < tag(π(x)2).

Proof. Let i1 and i2 be the indices of the processes that run operationsπ(x)1 and π(x)2,
respectively. Letcm1 = prop-cmap(π(x)1) and cm2 = query-cmap(π(x)2). If there existsk
such thatcm1(k) ∈ C and cm2(k) ∈ C, then Lemma 13 implies the conclusions of the lemma.
So from now on, we assume that no suchk exists.

Lemma 12 implies that min({ℓ : cm1(ℓ) ∈ C}) ≤ max({ℓ : cm2(ℓ) ∈ C}). Invariant 3 implies
that the set of indices used in each phase consists of consecutive integers. Since the intervals have
no indices in common, it follows thats1 < s2, wheres1 is defined to be max({ℓ : cm1(ℓ) ∈ C})
ands2 to be min({ℓ : cm2(ℓ) ∈ C}).

Lemma 9 implies that there exists a configuration upgrade operation that we will callγs2−1 such
thats2 = target(γs2−1), and thecfg-upg-prop-fix of γs2−1 precedes thequery-phase-start(π(x)2)
event. Then by Lemma 11,tag(x, γs2−1) ≤ tag(π(x)2), and if π(x)2 is a write operation than
tag(x, γs2−1) < tag(π(x)2).

Next we will demonstrate a chain of configuration upgrade operation with non-decreasing tags.
Lemma 7, in conjunction with the already definedγs2−1, implies the existence of a sequence of
configuration upgrade operationsγ0, . . . , γs2−1 such that:
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1) ∀s : 0 ≤ s ≤ s2 − 1, s ∈ removal-set(γs),
2) ∀s : 0 ≤ s < s2 − 1, if γs 6= γs+1, then thecfg-upg-prop-fix event ofγs precedes the

cfg-upgrade event ofγs+1 in α.
3) ∀s : 0 ≤ s < s2 − 1, if γs 6= γs+1, then target(γs) ∈ removal-set(γs+1).

As a special case of above first property, sinces1 ≤ s2−1, we know thats1 ∈ removal-set(γs1
).

Then Corollary 2 implies thattag(x, γs1
) ≤ tag(x, γs2−1).

It remains to show that the tag ofπ(x)1 is no greater than the tag ofγs1
. Therefore we focus on

the relationship between operationπ(x)1 and configuration upgradeγs1
. The propagation phase

of π(x)1 accesses write-quorumW (π(x)1, s1) of configurationc(s1), whereas the query phase of
γs1

accesses read-quorumR(γs1
, s1) of configurationc(s1). SinceW (π(x)1, s1)∩R(γs1

, s1) 6= ∅,
we may fix somej ∈ W (π(x)1, s1) ∩ R(γs1

, s1). Let messagemx,1 from i1 to j and message
m′x,1 from j to i1 be as in Lemma 5 for the propagation phase ofγs1

.
Let messagemx,2 from the process runningγs1

to j and messagem′x,2 from j to the process
runningγs1

be the message whose existence is asserted in Lemma 2 for the query phase ofγs1
.

We claim thatj sendsm′x,1, its message forπ(x)1, before it sendsm′x,2, its message for
γs1

. Suppose for the sake of contradiction thatj sendsm′x,2 before it sendsm′x,1. Assume that
st = target(γs1

). Notice thatst > s1, sinces1 ∈ removal-set(γs1
). Lemma 2 implies that in any

state afterj receivesm2, beforej sendsm′x,2, cmap(k)j 6= ⊥ for all k ≤ st. Sincej sendsm′x,2

before it sendsm′x,1, monotonicity ofcmapimplies that just beforej sendsm′x,1, cmap(k)j 6= ⊥
for all k ≤ st. Then Lemma 5 implies thatprop-cmap(π(x)1)(ℓ) ∈ C for someℓ ≥ st. But this
contradicts the choice ofs1, sinces1 < st. This implies thatj sendsm′x,1 before it sendsm′x,2.

Since j sendsm′x,1 before it sendsm′x,2, Lemma 5 implies that, at the timej sendsm′x,2,
tag(π(x)1) ≤ tag(x)j . Lemma 2 implies thattag(π(x)1) ≤ tag(x, γs1

). From above, we know
that tag(x, γs1

) ≤ tag(x, γs2−1), and tag(x, γs2−1) ≤ tag(x, γπ(x)2), and if π(x)2 is a write then
tag(x, γs2−1) < tag(x, γπ(x)2). Combining the inequalities yields both conclusions. �

4) Atomicity: We now proceed to prove atomicity of DO-RAMBO by showing that in any
good execution, properties P1, P2, P3, and P4 (stated in Section II-A) hold for any object.

Let β be a trace ofS, the system that implements DO-RAMBO , where all read and write
operations on some objectx ∈ Xd complete. Consider any particular good executionα of S
whose trace isβ. We define a partial order≺x on read and write operations onx in β, in terms
of the operation tags inα. Namely, we totally order the writes in order of their tags, and we
order each read with respect to all writes as follows: a read with tag t is ordered after all writes
with tags≤ t and before all writes with tags> t.

Lemma 15: The ordering≺x is well-defined, for allx∈Xd.

Proof. The key is to show that no two write operations on some objectx get assigned the
same tag. This is obviously true for two writes that are initiated at different locations, because
the low-order tiebreaker identifiers are different. For twowrites at the same location, for the
same objectx, Lemma 14 implies that the tag of the second is greater than the tag of the first.
This suffices. �

Lemma 16: The order≺x, for all x ∈ Xd, satisfies properties P1, P2, P3, and P4.

Proof. We begin with property P2, the most interesting one. We consider two operationsπ(x)1

andπ(x)2 on objectx. Now, suppose for the sake of contradiction thatπ(x)1 completes before
π(x)2 starts, yetπ(x)2 ≺x π(x)1. We consider two cases:
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1) π(x)2 is a write operation. Sinceπ(x)1 completes beforeπ(x)2, Lemma 14 implies that
tag(π(x)2) > tag(π(x)1). On the other hand, the fact thatπ(x)2 ≺x π(x)1 implies that
tag(π(x)2) ≤ tag(π(x)1), hence contradiction.

2) π(x)2 is a read operation. Sinceπ(x)1 completes beforeπ(x)2 starts, Lemma 14 implies
that tag(π(x)2) ≥ tag(π(x)1). On the other hand, the fact thatπ(x)2 ≺x π(x)1 implies
that tag(π(x)2) < tag(π(x)1), hence a contradiction.

Since we have a contradiction in either case, property P2 must hold.
Property P1 follows from property P2. Properties P3 and P4 are straightforward. �

Finally, we tie everything together and show safety of our implementationS, assuming the
environment safety assumptions (Section II-H).

Theorem 2: Let β be a trace of systemS that implements DO-RAMBO . Thenβ satisfies the
atomicity guarantee for each objectx.

Proof. Assume that all read and write operations complete inβ. Let α be a good execution
of S whose trace isβ. For all objectsx ∈ Xd define the ordering≺x, on the read and write
operations for each objectx in β as above using the executionα. Then Lemma 16 says that≺x

satisfies the four conditions in the definition of atomicity for eachx ∈ D. Thus,β satisfies the
atomicity condition for all objects as needed. �

IV. CONDITIONAL OPERATION LATENCY ANALYSIS

A conditional analysis of RAMBO read, write, and configuration upgrade operation latency
is presented in [1]–[4]. Here we show that under the same conditions, these operations in DO-
RAMBO have the same latency. We start by giving relevant definitions (following [2], [3]). Let
δ denote the maximum message delivery latency. Also letδ be the interval at which the gossip
messages are sent. Assumeα is an admissible timed execution, andα′ a finite prefix ofα. Let
ℓtime(α′) denote the time of the last event inα′. We sayα is anα′-normal execution if(i) after
α′, the local clocks of all automata progress at exactly the rate of real time,(ii) no message
sent inα after α′ is lost, and(iii) if a message is sent at timet in α and it is delivered, then it
is delivered by the timemax{t + δ, ℓtime(α′) + δ}.

DO-RAMBO allows sending of gossip messages at arbitrary times. For the purpose of latency
analysis, we restrict the sending pattern: we assume that each automaton sends messages at the
first possible time and at regular intervals ofδ thereafter, as measured on the local clock. Also,
non-send locally controlled events occur just once, withintime 0 on the local clock.

As with all quorum-based algorithms, operation liveness depends on all the processes in some
quorums remaining alive or not departing. We say that a configuration is installed when every
member of the configuration has been notified about the configuration. We say that an execution
α is (α′,e,τ)-configuration-viableif for every installed configuration, there exists a read-quorum,
R and a write-quorum,W , such that no process inR∪W fails or departs before the maximum
of (i) time τ after the next configuration is installed, and(ii) ℓtime(α′) + e + τ .

We say that executionα satisfies(α′, τ)-recon-spacingif after α′, at least timeτ elapses
between the event that reports a new configurationc (report(c)i) and any following event that
proposes a new configuration (recon(c, ∗)i). In other words, afterα′, when the system stabilizes,
reconfigurations are not too frequent.
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Executionα is said to satisfy(α′, e)-join-connectivityif after α′, for any two processes that
both joined the system at timet − e, they know about each other by timet.

Executionα satisfies(α′, e + τ)-recon-readinessif after α′, every recon(c) event proposing
a new configuration includes a processi in c only if i joined at least timee + τ ago. This, in
conjunction with(α′, e)-join-connectivity, ensure that all the processes in active configurations
are aware of each other.

As in [2], [3], we assume thatα is anα′-normal execution, satisfying(α′,e,23δ)-configuration-
viability, (α′, 8δ)-recon-spacing, (α′, e)-join-connectivity, and(α′, e + δ)-recon-readiness.

The following theorems give the latency bounds on read, write, and configuration upgrade
operations under the stated timing assumptions. These results apply to DO-RAMBO because
in terms of messaging, our read-write protocol for an objectis identical to that of RAMBO .
Moreover, the configuration upgrade operation is similar tothe previous RAMBO algorithms,
where the only differences are semantic: we manage information per domain as opposed to
managing it per object. Hence, we forgo detailed proofs of the following theorems as they are
identical to those in [1]–[4] (except for the notation in domain vs. object indexing).

Theorem 3 ([1]–[4]): Let α be an α′-normal execution of DO-RAMBO satisfying join-
connectivity, recon-readiness, recon-spacing, and configuration-viability. Let t > ℓtime(α′) +
e + δ. Assumei is a process that received ajoin-acki prior to time t − e − δ, and neither fails
nor departs inα until after timet + 8δ. Then if a read or write operation starts at processi for
objectx at time t, it completes by timet + 8δ.

Recall that message delay is bounded byδ and local processing takes zero time. Since after
time t messages are not lost and nodes do not fail and the node initiating an operation has
already joined the service, the thesis of Theorem 3 follows from the following observation. The
bound of t + 8δ represents the sum of a maximum duration of the two phases comprising a
read or a write operation. Each phase can be interrupted by anongoing reconfiguration where a
new quorum system is detected while processing messages forthe current phase. From timing
assumptions, each phase can be interrupted exactly once, hence the result follows.

Theorem 4 ([1]–[4]): Let α be an α′-normal execution of DO-RAMBO satisfying
join-connectivity, recon-readiness, recon-spacing, configuration-viability. Assume thatt >
ℓtime(α′) + e + δ, and that acfg-upgrade(k)i occurs at timet at nodei. Assume that node
i does not depart or fail beforet + 4δ. Thencfg-upg-ack(k)i occurs no later than timet + 4δ.

Configuration upgrade proceeds independently from configuration installation and any
read/write operations. The duration of configuration upgrade is bounded by the maximum
duration of the two phases involved in this operation, hencethe thesis of Theorem 4 follows.

V. IMPLEMENTATION AND EVALUATION

We now present the empirical results obtained from our implementations of RAMBO and DO-
RAMBO on a LAN, comparing the performance of the two implementations using three different
experimental settings. We note that our two implementations differ only in the introduction of
domains in DO-RAMBO , while all low-level sequencing of control and communication carried
out in response to client requests is essentially the same inboth systems. Thus we believe that
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Fig. 8. Left:DO-RAMBO vs. the composition of|Xd| instances of RAMBO ; Right: DO-RAMBO vs. RAMBO for a
single “super-object” of|Xd| objects.

our experimental results indeed reveal differences in performance that are due to the domain-
oriented approach implemented in DO-RAMBO . The results presented in this section support our
expectation that grouping objects into domains leads to improved performance.

We manually translated the Input/Output Automata specifications of RAMBO and DO-RAMBO

to Java code. To mitigate the introduction of errors during translation, the implementers followed
a set of precise rules that guided the derivation of Java code[7]. The target platform consists
of a cluster with nodes running Linux that are dedicated to the project. The nodes are various
Pentium processors up to 900 MHz interconnected via a 100Mbps Ethernet switch.

Each instance of RAMBO and DO-RAMBO uses a single socket to receive messages over
TCP/IP, and maintains a list of open, outgoing connections to each process in its world. Both
algorithms use identical communication routines. The implementation ofJoiner and Recon
services is also identical. Management ofcommonstate variables in RAMBO and DO-RAMBO ,
such asworld , cmap, is identical. TheReader-Writerservice is implemented as described in
this paper. However, we make one simple optimization in the implementation of DO-RAMBO

relative to its specification. In the specification of DO-RAMBO we assume that each gossip
message is per object (containingvalue, tag, and object identifierof a single object). In the
implementation our messages may include information aboutmultiple objects (at least one).
This simple optimization trivially preserves correctness. It is worth to mention that the memory
location in our experiments is implemented as a Java Integer.

Experiment 1: Grouping objects into a domain under a stable configuration.This experiment
is designed to compare the performance of DO-RAMBO with |Xd| objects to that of a|Xd|
instances of RAMBO , where all processes perform concurrent read and write operations on all
objects in the domain. To eliminate the effects of reconfiguration (that are likely to further benefit
DO-RAMBO ), a single stable configuration is used in this experiment.

In this experiment, there are ten nodes that do not leave the system and a single configuration
is installed that includes all of these nodes as members. Theconfiguration does not change over
time and consists of majorities, of at least six nodes each.

As the domain increases, additional instances of RAMBO service are needed to support new
objects added to the domain. For domain size one a single RAMBO service suffices and we
expect to see same performance as that of DO-RAMBO with |Xd| = 1. However, each addition
of RAMBO introduces overhead that DO-RAMBO removes by consolidating all objects into
a single domain. Therefore, we expect that DO-RAMBO will outperform the composition of
RAMBO services as the size of domain increases.
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Figure 8 (left) presents average latency of read/write operations (over all objects and all nodes)
as the number of objects grows from 1 to 32. The data points represent averages collected over
a series of runs. We note that collecting data for the composition of RAMBO instances when the
number of objects is8 or larger (8×RAMBO ) was not possible, as our network platform was
not capable of executing concurrently more than eight instances of RAMBO .

A possible explanation of this phenomenon is the rapidly growing communication burden
within the increasing number of RAMBO components. The performance comparison of the two
systems substantiates our claim that DO-RAMBO is a more practical system.

Experiment 2:Performance modeling of a domain inRAMBO under a stable configuration.This
experiment is designed to compare the performance of DO-RAMBO to a single RAMBO instance
that encapsulates objects of the entire domain in a single object that we call super-object. This
is done to allow RAMBO to “model” a domain with the goal of measuring its performance. In
this experiment we choose a single object from the domain on which a single chosen process
performs read and write operations.

Note that this experiment is designed to measure performance only — the semantics of objects
is changed when using the super-object approach to model domains in RAMBO . With a super-
object, a write to a single object is accomplished by readingthe super-object (the entire modeled
domain), modifying the value of the object, and writing the super-object. Therefore, if two writers
are attempting to concurrently perform write operations ontwo different objects within a super-
object, then one write can possibly undo the effects of the other write on the different object.
However, conducting the experiment is still meaningful single-writer/multiple-reader systems,
where the writer issues one write at the time per domain.

The setup for this experiment is as in Experiment 1. Here eachof the ten nodes is a member
of the configuration installed and used during data collection, where this configuration does not
change over time. Nodes do not fail or depart during the experiment.

Unlike in the previous experiment, this time a single instance of RAMBO service is used.
Hence, there is no overhead associated with running multiple Reader-WriterandReconservices.
However, RAMBO sees the domain as a single object and it cannot benefit from the mentioned
earlier simple communication optimization applied to DO-RAMBO . Meaning, DO-RAMBO is
aware of the individual objects that compose the domain and can respond to a read/write request
with a message that includes information pertaining to the specific request. Whereas, RAMBO

is not aware of the internal structure of the super-object, hence whenever a request is made
to access some object within the super-object the resultingmessages must include the entire
super-object. We expect performance of RAMBO to decrease as the size of the domain increases
– larger message size causes increase in message latency andnetwork throughput.

Figure 8 (right) presents the average latency of read/writeoperations (over all nodes) as the
number of objects in the domain increases from 1 to 1000. The chart shows that DO-RAMBO

outperforms the single super-object RAMBO . As the number of objects increases so does the
size of the messages exchanged by RAMBO , hence degrading operation latency. In comparison,
messages in DO-RAMBO (in this experiment) include information for a single object only, hence
are of constant size. Therefore, as the size of the domain increases the message latency remains
unchanged, hence resulting in roughly constant latency forread and write operations.

Experiment 3:Impact of reconfigurations.This last experiment is designed to measure the impact
of reconfigurations on the performance of DO-RAMBO and RAMBO systems. The system tested
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implements a three object memory system. In the case of DO-RAMBO this means a domain of
size three. The RAMBO -based system is a composition of three RAMBO instances, one for each
object. More specifically, we measure the impact of reconfiguration on the throughput of each
system in terms of the number of read and write operations persecond.

For this experiment nine nodes were used. We run one copy of DO-RAMBO per node. One
nodes act as a reconfigurer, where new configurations are submitted with varying delays between
completion of one reconfiguration request and submission ofanother to allow us to throttle
frequency of reconfiguration. We use two configurations of four nodes, with no members in
common, and the reconfigurer alternates between the two. Theremaining nodes continuously
perform read and write operations, where read and write requests locally alternate, and three
nodes access the first object, three nodes access the second object, and two nodes access the
third. There are a total of 500 read and write operations initiated at each node, and each data
point on the graph in Figure 9 represents an average system throughput that is computed over
all operations and all nodes.

To assess the behavior of RAMBO , we used three instances of the implementation, where
three copies of RAMBO are run on each node. Again, nine nodes are used and one is chosen
as a reconfigurer for each RAMBO service. Configurations used are as before. Total of eight
instances are chosen to perform the read/write test using the same setup as in the test of
DO-RAMBO . The data points on the graph represent system throughput that is computed
using average operation latency (as explained in the DO-RAMBO part of this experiment).

Fig. 9. Throughput during reconfigurations.

As it was the case in Experiment 1, we expect that
the overhead caused by running multiple instances of
Reader-WriterandReconservice will result in the com-
position of RAMBO services to have poor performance.
The compelling reason supporting our expectation is that
the Recon service utilizes, communication expensive,
consensus to ensure total ordering of installed config-
urations. This is regardless of the fact that there is only
one reconfigurer present in this experiment, since the
implementation allows for any number of configuration
proposals to be submitted to the system at the same time.
Therefore, we expect the performance of RAMBO composition to degrade as the frequency
of reconfiguration increases. The data in Figure 9 indicatesthat DO-RAMBO outperforms the
composition of three RAMBO services in the presence of reconfigurations. As expected, alikely
reason for this behavior is that RAMBO running three instances of reconfiguration, requiring
consensus, generates a significant number of messages henceleading to increased network
latency. With increased latency and volume of messages, themessages used by read and write
operations also require more time for delivery and processing, hence negatively impacting the
latency of these operations.

VI. D ISCUSSION

RAMBO [1] is an atomic memory service for dynamic networks. Several proposals were
recently made to make this service more practical [2]–[4], [7]. An implementation of RAMBO

is presented in [7]. These successive improvements improved the performance of RAMBO
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implementations, but support only a single object per system instance. To support multiple shared
atomic objects one has to use a composition of multiple RAMBO instances, one per object. This
approach is inefficient. In this paper we presented a specification and an efficient implementation
of a memory service that supports multiple related objects by grouping them into domains.
We proved that the algorithms implement atomic objects. We methodically derived a real
implementation of the service for a network-of-workstations, and we compared its performance
to the performance of a similar implementation of the prior RAMBO service.

One remaining interesting question is whether our approachcan be used to implement a
snapshot operation for a set of related registers. We intendto pursue research in this direction.

Acknowledgements.The authors thank the anonymous referees for insightful comments that
allowed us to improve the presentation of our work. We also acknowledge the question of one
referee regarding the possibility of implementing snapshot memory using our approach.
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