Developing a Consistent Domain-Oriented
Distributed Object Service

Chryssis Georgiou, Peter M. Musial, Alexander A. Shvartsma

Abstract

This paper presents a new algorithm for a reconfigurableilolitéd domain-orientecatomic object
service, called DO-RAMBO, which stands for Domain-Orieh®Reconfigurable Atomic Memory for
Basic Objects. This service is suitable for inclusion as ddieware system service for distributed
applications requiring atomic read/write data. The impetation substantially extends and refines the
abstract RAMBO algorithm of Lynch and Shvartsman that sujgpimdividual atomic objects. In this
paperdomainsare introduced to allow the users to group related atomieatbj The new implementation
manages configurations on the basis of domains, significanpiroving the utility and the performance
of the resulting service. DO-RAMBO guarantees consistamegler asynchrony, message loss, node
crashes, new node arrivals, and node departures. We préseformal algorithm development for
DO-RAMBO and give analytical and empirical results thatslrate the benefit of the new approach.

Index Terms

C.2.4 and H.3.4.b: Distributed systems, F.3.1: Specifyng verifying and reasoning about pro-
grams, G.4.a: Algorithm and design analysis, G.4.g: Riigtand robustness.

. INTRODUCTION

This paper presents a formal development of a practicalilniséd service supporting shared
read/write atomic objects in dynamic network settings.rdsé the service can efficiently group
objects in the scope of interest into user-defined domainis. Service is suitable for maintaining
consistent long-lived survivable data in dynamic netwpnksvhich participants may join, leave,
or fail during the course of computation. Such settings aeoming increasingly common in
modern distributed applications that rely on multitudescommunicating, computing devices.
The only way to ensure survivability of data is through redamcy: the data is replicated and
maintained at several network locations. Replicationoahtices the challenges of maintaining
consistencyamong the replicas, and managidgnamic participatiomas the collections of net-
work locations storing the replicas change due to arrivdépartures, and failures of nodes.

An approach to implementing read/write objects for dynamétworks was developed by
Lynch and Shvartsman [1], and extended by Gilbetrtal. [2], [3] and Georgiouet al. [4].
Their atomic (linearizable) distributed memory servicealed RAMBO (Reconfigurable Atomic

This work is supported in part by the NSF Grants 9988304, 98840121277, and 0311368. A preliminary version of this
work appears in Proc. of the 4th IEEE International Sympuositn Network Computing and Applications, 2005, pages 149-15

C. Georgiou is with Dept. of Computer Science, UniversityCgprus, 75 Kallipoleos Str., P.O. Box 20537, CY-1678, Niaps
Cyprus. Email: chryssis@cs.ucy.ac.cy

P.M. Musial is with Naval Postgraduate School, Computee&® Department, 1411 Cunningham Rd., GE-314, Monterey,
CA 93943, USA. Email: pmmusial@nps.edu

A.A. Shvartsman is with Department of Computer Science &iB@gring, University of Connecticut, 371 Fairfield Rd., Uni
2155, Storrs CT 06269, USA. Email: aas@cse.uconn.edu

Memory for Basic Objects). In order to achieve availabiiitythe presence of failures, the objects
are replicated at several network locations. To maintaimsstency in the presence of small
and transient changes, the algorithm usesfigurationsconsisting ofquorumsof locations. To
accommodate larger and more permanent changes, the higaiipportseconfiguration by
which new configurations are installed and obsolete cordigans are removed from the system
concurrently with the ongoing read and write operations $@rvice tolerates asynchrony, node
arrivals, departures and failures, and message loss.

A. Motivation for the Current Development

The original RAMBO algorithms [1]-[4] are specified using the Input/Output é&matata for-
malism [5], [6], enabling one to reason formally about theparties of the service. The service
is parameterized by object name, that is, the service isifsgmbdndividually for each object
instance. Multiple objects are supported by composingipialinstances of the service, one for
each object. The resulting service is impractical for suppg large numbers of objects because
this requires running multiple instances of the serviceg amstance per object, introducing
substantial processing and messaging overhead. For exatgbkkeeping communication is
carried out in the background individually for each objemtd reconfiguration must also be
done on a per-object basis. With this approach, the penaityhe mathematical simplicity of
the formal specification is the reduced practicality of thsuiting system.

In many settings applications may use multiple relatedaibjee.g., the objects may represent
data values of interest to certain users. In such casesigh$/desirable to eliminate redundancy
by allowing a collection of objects to share configurations aelated processing. In this work
we investigate an approach where multiple related objeetsgeouped into alomain so that
reconfiguration is performed on the per-domain basis idstdaon the per-object basis. While
this is a conceptually sensible approach, formally spewfguch a solution and proving it correct
is fairly involved. To assess the practicality of the sauatiit is also important to experiment
with a working system that implements the desired servica imetwork.

B. Contributions

We present a new algorithm implementing reconfigurable,alorariented, atomic distributed
object service, called Domain-Oriented ReconfigurablenAitoMemory for Basic Objects, or
Do-RAmMBO. The algorithm borrows from the abstrackiRB0 algorithms [1]—[4] that implement
individual reconfigurable objects. We introduce the notaindomainsthat allow the service
users to group related objects. Users join the system by snefinin requests. The objects in
domains are then accessed by meansaf andwrite operations. Users request reconfiguration
by means ofrecon operations. The algorithm manages configurations on this lbAgiomains,
which significantly improves the practicality of the semiic

We use Input/Output Automata to specify the algorithms aedson about correctness.
Building on ideas from [1]-[3], we present and prove the ecimess of our new algorithm.
Note that the presented algorithm in not practical for Idigd applications because it involves
messages that may grow in size without bound. A long-livedcical version of the algorithm
can be obtained by applying the exact technique we develiopi@d. We omit such details from
this presentation, to focus on the domain-based approaahwshthe contribution of this work.

We perform conditional latency analysis that shows thatleurreasonable network behavior
assumptions, the read and write operations take at most §imand configuration upgrade
takes at mostd, where$ is the maximum message delay (unknown to the algorithm). We
developed a complete implementation of the-BAMBO service on a network of workstations.
This development is an example of an approach to softwaréneagng in which formal
algorithm design is followed by a methodical translationtlod abstract algorithm specification
in I0A to distributed Java code using our techniques [7]. Wepare the performance of the
implementation of @-RAMBO with the one of RMBO on a network of workstations; the
obtained experimental results illustrate the performéverefits of -RAMBO.

C. Related Work

Several approaches have been used to implement consiatanhdstatic) distributed systems.
Starting with the work of Gifford [8] and Thomas [9], many atghms have used collections
of intersecting sets of replicas to solve the consisten@plpm. Upfal and Wigderson [10]
use majority sets of readers and writers to emulate sharadonye Vitanyi and Awerbuch [11]
use matrices of registers where the rows and the columns rterwand respectively read by
specific processors. Attiya, Bar-Noy and Dolev [12] use mags of processors to implement
shared objects in static message passing systems. Extefwidimited reconfiguration of
guorum systems have also been explored [13], [14]. Vigugyinchronous services [15], and
group communication services (GCS) in general [16], cao hisused to implement consistent
data services, e.g., by implementing a global totally cdebroadcast. While the universe of
processors in a GCS can evolve, in most implementationsyifgr a new view takes substantial
time, and client operations are interrupted during viewrfation. In our algorithm, as in [1]-[3],
reads and writes can make progress during reconfiguratioally; consensus algorithms can be
used directly to implement an atomic data service by allgwparticipants to agree on a global
total ordering of all operations [17]. In contrast, we usasgnsus to agree only on the sequence
of configurations and not on the individual operations. Alsoour algorithm, the termination
of consensus affects the termination of reconfiguration,not of read and write operations.

D. Document Structure

In Section Il we present the specification and the algorithionsour object service. Proof
of atomicity is in Section Ill. Conditional analysis of permance is presented in Section IV.
Experimental results are presented in Section V. Sectionovitains the concluding remarks.

[I. THE DO-RAMBO ALGORITHM

In this section we first overview the ®RAMBO service and its goals, and then we present
its architecture and components in detailodRAMBO aims to provide a robust and practical
atomic memory service in dynamic systems. The service @mias@atomicity in the presence of
arbitrary node crashes, with fault-tolerance implemertedugh replication. The service uses
guorums to ensure consistency, where the members of quatsnare the object replica owners.
In order to achieve availability in dynamic system&dRAMBO service uses reconfiguration that
introduces new quorum systems and removes obsolete qugsienss. Theonfigurationsused
by the service consist of a unique identifier, a set of nodstifiers, a set of read-quorums, and a

3

set of write-quorums, where each quorum is a subset of ne@aeifgers. Here every write-quorum
intersects every other write-quorum and every read-quaniersects every write-quorum.

A. Atomicity

We now state a definition of atomicity for a read/write memseyvice following [6]. For any
execution, if all the read and the write operations compliten the operations on objectcan
be partially ordered by an ordering,so that the following properties are satisfied:

P1. No operation has infinitely many other operations orderddrbeit.

P2. The order< is consistent with the external order of invocation and oeses, that is, there
do not exist operations; andm, such thatr; completes beforer, starts, yetrs <, 7.

P3. All write operations onr are totally ordered and every read operationzos ordered with
respect to all the writes on.

P4. Every read operation on objectordered after any write om returns the value of the last
write on x preceding it in the partial order; any read operationzonrdered before all
writes onzx returns the initial value of.

The original RRMBO specification [1]-[3] is given for a single object, where tt@mplete
shared memory is obtained through atomicity-preservinppsition of individual objects.
Doing so introduces performance overheads making thetmggudervice impractical for large
numbers of objects. The goal ofdRAMBO is to provide atomicity and reconfigurability for a
complete shared memory in a practical implementation.

B. Do-RAMBO in a Nutshell

The Do-RAMBO service consists of two components, th@ner component and thReader-
Writer component that implements the main features of the seriiceRAMBO relies on an
externalReconservice to provide a consistent sequence of quorum confignsa We now briefly
introduce each of these, with the more detailed presentéibowing later in this section.

Each participant of D-RAMBO runs an instance of th#oiner andReader-Writercomponent
and patrticipates in th®econservice. The architecture of @RAMBO is depicted in Figure 1.
The participants iddoiner and Reader-Writercomponents, anBeconservice communicate with
each other via communication channels that may lose, defayreorder messages.

The Joiner component implements a simple protocol that allows newiggants to join the
service. The join protocol is as follows. If a node is the firstinitiate the service, then it
is considered to be a creator and th@ner component is used to initiate tiieeader-Writer
component and thBeconservice. Otherwise, a node provides a seed set of possitileipants
of the service (for the specific domain) and sends a join re&igqueceipt of a join request by
an active service participant is followed by an acknowledgmOnce a join acknowledgment
message is received the new node may participate in theceeand to host object replicas.

The Reader-Writercomponent implements a read and write protocol and a coatiguar
upgrade protocol that removes old configurations. Read arite¢ wperations consist of two
phases. In the first phase, the node initiating the operatmtacts at least one read-quorum of
each usable configuration. The quorum intersection prgparsures that the most up to date
information about the object is obtained. In the next phaseihformation (in case of a write,
the new value) is propagated to appropriate write-quorufrisnown configurations, ensuring

4

consistency. Obsolete configurations are removed fromytseis by the configuration upgrade
protocol that consists of two phases during which the latgdtca information is transfered from
the write quorums of the configurations being removed to theewuorums of the configuration
being updated. Multiple configurations may be removed coeatly.

The reconfiguration process involves installation of newfigurations, where the consistent
sequence of the configurations is established by an extBe@inservice. Our service does not
depend on any specific implementationR&con however, it is required that the sequence of
configurations emitted biReconbe without gaps and be totally ordered. At any time, an active
participant of the @-RAMBO service can submit new configuration to be considered as a nex
to be installed. Th&econservice decides which of the proposed configurations wilhisélled
and notifies the participants about its decision. It is intgairto point out that progress of read
and write operations is independent on any ongoing configuranstallation.

We next define notation and needed data types and presenbriifnents in detail.

C. Data Types

We assume two distinguished elementsand +, which are not in any of the basic types.
For any typeA, we define new typesl, = AU{L} andAL = AU{L,+}. If Ais a partially
ordered set, we augment its ordering by assuming thata < + for everya € A. We assume
the following specific data types, distinguished elemeams| functions.

1, the totally-ordered set dbcationsor nodes
D, the set ofdomains Ford € D, (ig)4 denotes the unique node that can create domdain
X4, the set ofobject identifiersof domaind.
For eachr € X,4: V,, the set of values that objeetmay take on(vy), € V;, the initial value ofzx.
Ty, the set oftags of the domaind, defined asN x 1.
Cy4, the set ofconfiguration identifierdor domaind. We denote by(cg)s € Cq, theinitial configuration
identifier for d. We assume only the trivial partial order @y, in which all elements are incomparable; in
Cq., all elements o’y are still incomparable.
o For eachc € C; we define:
— members(c), a finite subset of.
— read-quorums(c), a set of finite subsets ahiembers(c).
— write-quorums(c), a set of finite subsets ofiembers(c).

We assume the following constraints:

— members((co)a) = {(i0)a}. That is, the initial configuration for domai# has only a single member,
who is the creator (initiator) of.
— For everye, every Re€ read-quorums(c), and everyiV € write-quorums(c), RNW # 0.

We now define operations af;.

« update, a binary function orCy_, defined byupdate(c, ') = max(c, ') if ¢ and¢’ are comparable (in the
augmented partial ordering @f,,), update(c, ¢’) = ¢ otherwise.

« extend, a binary function orCy_ , defined byeztend(c,c’) = ¢ if ¢ = L andc’ € Cq, andextend(c,c’) = ¢
otherwise.

o CMap, the set ofconfiguration mapsdefined as mappings froid to Cy_, N — Cy_ . We extend thespdate
and eztend operators element-wise to binary operations@Wap.

 truncate, a unary function onCMap, defined bytruncate(cm)(k) = L if there exists¢ < k such that
em(f) = L, truncate(em)(k) = em(k) otherwise. This truncates configuration map by removing all the
configuration identifiers that follow 4..

o Truncated, the subset oCMap such thatem € Truncated iff truncate(cm) = em.

o Usable, the subset ofCMap such thatem € Usable iff the pattern occurring inem consists of a prefix of
finitely many +s, followed by an element of’;, followed by an infinite sequence of elements@f, in
which all but finitely many elements arke.

D. Do-RamBO: Architecture and Interface

The architecture of D-RAMBO is given in Figure 1, where the components are defined as
Input/Output Automata [5], following the model of #1BO. The main external distinction is
that Do-RAMBO automata are parameterized by a domain name, instead ofject oame.

Do-RAMBO, at i Do-RAMBOy at j

Joinery ; ' Channel,; ; I Joinery,;
Channel,; ;

Reader-Writeg,;

C Recon)

Fig. 1. Do-RamBO,; component architecture shown at some representative ricated;.

Reader-Writey, ;

For each domain/ and each participating nodg the system includegoiner;; automata
that handle joining of new participants, afreader-Writef, automata that handle reading,
writing, and upgrading configuration®eader-Writey and Joiner; automata have access to
channelChanne}; ; providing communication from nodeto nodej, implemented as a typical
unidirectional asynchronous channel that does not comgxsages, but that may reorder and
lose messagefeader-Writerautomata interact with an arbitrary implementation of Recon
service that is responsible for emitting a totally-ordesadjuence of configurations based on
user requests (this service is as specified in [1]). Jdiaer; automata implement a very simple
protocol that allows new participants to join the systeme Tdnly difference is that in D-
RAMBO nodes join the service for a domain of objects, and not fomglsiobject.

The heart of the system is thReader-Writerautomata that implement read and write
operations, perform upgrade to new and remove obsoletegcwafions. The external interface
of the service is given in Figure 2. Nodes join the systemjaiidjoin-ack events. Read and write
operations correspond tead/read-ack andwrite/write-ack events respectively. Participants submit
reconfiguration requests using theon action, which is acknowledged via thecon-ack event.
Participants learn about new configurations via fié@rt event. We model node crashes using
an externatfail event. In the sequel we will deal with a single domain (onlyegduce notational
clutter) and suppress explicit mention @fwhere it is clear from the context.

E. Joiner Automata

The service is “bootstrapped” using a protocol that allowsles to join the service. The
Joiner;; component implements this protocol at noddor the domaind. Signature, state,
and transitions of the component are specified in Figure 2. State variables are as follows.
The statusvariable keeps track of the component as it joins the-RamMBO, service. When
status = idle then the component does not perform any local actions. Whemns = joining,
Joiner; sends the join signal to the loc&econ and Reader-Writey components and awaits

6

Data types:
1, a set of processed), a set of domainsy/, a set of legal values
X4, a set of object identifiers from domaif)y whered € D
C, a set of configurations, each consisting of members, reagefguorums

Input: Output:
join(rambo, J) 4 ;, J a finite subset off — {i}, i € I, join-ack(rambo)y;, i € I, d € D
such that ifi = ig thenJ =0,d € D read-ack(z,v)q, vEV, i €I, v € Xgq, d€ D
read(z)g;, 1€ I, x € X4, d€ D write-ack(z)q,, 1 € I, x € X4, d€ D
write(z,v)qq, vEV, i€, x € Xgq, de D recon-ack(b)q ;, b € {ok,nok},i €I, de D
recon(c,c')q,i, ¢,/ € C, i € members(c), i €I, d€ D report(c)q,;, c€ C, i €1, d€ D

failg;, i€ I, de D
Fig. 2. Do-RamBO,: External signature.

acknowledgment, which when received allowutus to becomeactive. The child-statusis a
mapping from{recon,rw} — {idle, joining, active} and it keeps track of the loc&econ and
Reader-Writer components as they join the protocol. PriorJtmner; initiating the join protocol
with each componenthild-status[*] = idle. Once Joiner, sends a join signal t&Recon or
Reader-Writer component, the correspondingild-status variable becomegining. When an
acknowledgment is received, the correspondingd-status variable becomesctive. Variable
hintsis a placeholder for the set of node identifiers thainer, component is seeded with.

WhenJoiner; receives goin(rambo, .J); request from its environment, wheseis a set of seed
processor identifiers, it sendsin messages to the processes/iwith the hope that they are
already participating in the service, and so can help in ttegt to join. Also, it submitgoin
requests to the loc&eader-Writer and Recon components and waits for acknowledgments. In
the next section we descrilfigeader-Writerautomata and how they handlen messages.

Signature:

Input: Output:
join(rambo, J)g4 ;, J a finite subset of — {i}, d € D send(join)q; ;,j € I —{i},de D
join-ack(r)q,;, 7 € {recon,rw}, d € D join(r)q s, 7 € {recon,rw}, d € D
failg;, d € D join-ack(rambo)g ;, d € D

State:

status € {idle, joining, active}, initially idle

child-status € {recon,rw} — {idle, joining, active}, initially everywhereidle
hints C I, initially 0

failed, a Boolean, initiallyfalse

Transitions:
Input join(rambo, J) g4 ; Input fail, ; Output join-ack(rambo)g ;
Effect: Effect: Precondition:
if —failed then failed «— true —failed
if status = idle then status = joining
status «— joining Output join(r)q,; Vr € {recon,rw} : child-status(r) = active
hints «— J Precondition: Effect:
~failed status «— active
Input join-ack(r)q,; status = joining
Effect: child-status(r) = idle Output send(join)g,; ;
if —failed then Effect: Precondition:
if status = joining then child-status(r) < joining —failed
child-status(r) < active status = joining
j € hints
Effect:
none

Fig. 3. Joinery;: Signature, state, and transitions

Data Types:
M, a set of messages, defined @&, cm, obj, v, t, pns,pnr), whereW C I, cm € CMap, obj € X, v € Vopj, t € T, andpns,pnr € N

Signature:
Input: Output: Internal:
read(z);, z € X join-ack(rw); query-fix(z);, ¢ € X
write(z,v);, x € X, v € V. read-ack(z,v);, ¢ € X, v € Vy prop-fix(z);, x € X
new-config(c, k);, c € C, k € Nt write-ack(z);, z € X cfg-upgrade(k);, k € N>0
recv(join); i, j € I — {i} send(m); j, me M, je I cfg-upg-query-fix(k);, k € N>0
recv(m); j, me M, jel cfg-upg-prop-fix(k);, k € N>0
join(rw); cfg-upgrade-ack(k);, k € N>
fail;
State:
status € {idle, joining, active}, initially idle op(z), an array of records (one for each object X) with fields:
world, a finite subset of, initially 0 type € {read, write}
value(z) € Vi, z € X, initially V z € X: value(z) = (vo)z phase € {idle, query, prop, done}, initially idle
tag € X — T, initially V z € X: tag(z) = (0,49) pnum € N
cmap € CMap, initially cmap(0) = co, cmp € CMap
cmap(k) =L fork>1 acc, a finite subset of
pnuml € X — N, initially V « € Xg4: pnumi(x) =0 val € Vi
pnum2 € X x I — N, initially V z € X,Vj € I, upg, a record with fields:
wherej # i: pnum2(z,j) =0 phase € {idle, query, prop}, initially idle
failed, a Boolean, initiallyfalse pnum(z) €N, Va € X: pnum(xz) =0
cmap € CMap
acc(zx), a finite subset of, V z € X
target € N

Fig. 4. Reader-Writey ;: Signature and state

F. Reader-Writer Automata
We now define thdReader-Writey automata, their signature, state, and transitions.

1) Signature and stateThe signature and state variables are given in Figure 4.abki
status keeps track of the progress of the component as it joins @@ol. Whenstatus = idle,
Reader-Writey does not respond to any inputs (exceptjton) and does not perform any locally
controlled actions. Whentatus = joining, Reader-Writey is receptive to inputs but still does
not perform any locally controlled actions. Whertutus = active, the automaton participates
fully in the protocol. Variableworld keeps track of all nodes that are known to have attempted
to join the system. Arrayalue contains the latest known value of each object, velye(z) is
the value of the local replica of. Array tag holds the associated tag of each object, t@;(x)
is the latest known tag of objecet Tags are pairs consisting of a sequence number and location
id, comparable lexicographically. Variabtenap(-) contains information about configurations: If
cmap(k) = L, it means that thé&!" configuration is not yet known. lEmap(k) = ¢ € C, it
means thaReader-Writerhas learned that thé” configuration identifier is. If cmap (k) = =, it
means that some configuration upgrade operation removeldt@nfiguration Reader-Writer
learns about configuration identifiers either directlynirthe Reconservice, or indirectly, from
otherReader-Writerprocesses. The value ofuap is always inUsable, that is,+ for some finite
prefix of N, followed by an element of’, followed by elements of’ U { L}, with only finitely
many elements of’. When Reader-Writey processes a read or write operation, it uses all the
configurations whose identifiers appear indtsap up to the first.L.

Array pnumi and matrix pnum2 are used to identifies “recent” messages in regards to a
specific objectReader-Writeyusespnum1 array to count the total number of operation “phases”
it has initiated overall per object, including phases odogrin read, write, and configuration
upgrade operations. (A “phase” here refers to either a qoemyropagate phase, as described

8

below.) For everyj, including j = i and some object, Reader-Writey usespnum?2(x, j) to
record the largest number of a phase thhgas learned that has started.

For each object;, recordop(x) contains information about the latest locally-initiatedd or
write operation. Recordpg contains information about the latest locally-initiatezhfiguration
upgrade. A node can perform read/write operations conetlyrevith configuration upgrades.
Subfieldtype records the type of operation, either a read or a write. drh@p subfield records the
configuration map associated with the operationcofror read or write operations this consists
of the node’'scmap when a phase begins, augmented by any new configurationsvdred
during the phase. Thenum subfield records the phase number when the phase begingingjlo
the initiator to determine which responses correspond ¢optimse. The phase of the operation
is indicated byphase subfield. Theacc subfield records which nodes have responded during the
current phase. The like named subfieldsup§ record are defined analogously. Thgy.target
subfield records the identifier of configuration that is thegéa of current upgrade operation.

Reader-Writertransitions are given in Figures 5 and 6, and we next desdasbaperation.

2) Joining: When Reader-Writef's state variable istatus = idle andjoin(rw); input occurs,
then: if7 is the domain’s initiator, denoted by the valiyethenstatus becomesactive andReader-
Writer; is now ready for conducting operations; otherwiséitus becomesjoining, making
Reader-Writer receptive to inputs only. In both casé&ader-Writerrecords itself as a member
of its own world. From this point onReader-Writer also adds to itsworld any process from
which it receives goin message (these messages are originated byadiner automata).

After Reader-Writey receives aecv(x),; message (see Figure 5) from another process while
status = joining, thenstatus becomesctive. At this point, process can perform goin-ack(rw)
and has acquired enough information to begin participdiitiy.

3) Information propagation:Information is propagated betwe&eader-Writerprocesses in
the background, usingend and recv actions. Each message sent by process per object
(we describe in Section V how to remove this requirement) iactlides: an object identifier
obj, the latest knowrvalue(obj) and tag(obj), world, cmap, and two phase numbers — the
current phase number of pnuml(obj), and the latest known phase number of the receiver,
pnum?2(obj, j). These background messages may be sent at any time, onac®tiespis active.
They are sent only to processes in the sendev'sd set.

When Reader-Writer receives a messagefatus is set to active. The incoming world
information W is merged with the localvorild set. Also, the locakmap is updated with the
incoming configuration informatioam. That is, for eacht, if cmap(k) = L andem(k) is a
configuration identifier € C, then process sets itscmap(k) to c. Also, if cmap(k) € CU{L},
andem(k) = £+ thenReader-Writey sets itsemap(k) to £, indicating that this configuration has
been removed. The object identifielj is used to update the remaining state varialfResader-
Writer; compares the incoming tagto its own tag(obj). If ¢ is strictly greater, it represents a
more recent version of this object; in this case;(obj) is replaced witht and value(obj) with
value v. Reader-Writer also updates itgnum2(obj, j) component for the senderto reflect
new information about the phase number of the sender for bifgcowhose identifiers isb7,
which appears in thens component of the message.

The last sequence of updates depends on the followinBedder-Writer is conducting a
phase of a read, write, or configuration upgrade, and themimap message is “recent”, then
sender;j is replying to a message thatsent in the current phase. Phase numbers are used to

Output send((W, cm, obj, v, t, pns,pnr)); ; Internal query-fix(z);

Precondition: Precondition:
—failed —failed
status = active status = active
J € world op(z).type € {read, write}
reX op(z).phase = query
(W, em) = (world, cmap) Vk € N,ce C: (op(z).cmp(k) = c)
(obj,v,t) = (x, value(x), tag(zx)) = (3R € read-quorums(c) :
(pns,pnr) = (pnum1 (), prum?(, 7)) R C op(x).acc)

Effect: Effect:
none if op(z).type = read then

op(z).value — value
Input recv((W, cm, obj, v, t, pns,pnr)); i else
Effect:

value(z) — op(z).value
tag(z) <« (tag(x).seq + 1,14)
pnuml (z) — pnuml (z) + 1
op(z).pnum — pnuml (x)
op(z).phase «— prop
op(z).cmp — truncate(cmap)
)

if —failed and status # idle then
status < active
world «— world U W
cmap — update(cmap, cm)
if ¢ > tag(oby) then

(value(obj), tag(obj)) < (v, 1) op(z).acc — 0
pnum2(obj, j) < max(pnum?2(obj, j), pns)
if op(obj).phase € {query, prop} and Internal prop-fix(z);
pnr > op(obj).pnum then Precondition:
op(obj).cmp — —failed
extend(op(obj).cmp, truncate(cm)) status = active
if op(obj).cmp € Truncated then op(z).type € {read, write}
op(obj).acc < op(obj).acc U{j} op(z).phase = prop
else Vk € N,ce€ C: (op(z).cmp(k) = ¢)
pnuml (obj) — pnuml (obj) + 1 = (IW € write-quorums(c) :
op(obj).acc +— 0 W C op(z).acc)
op(obj).cmp — truncate(cmap) Effect:
if upg.phase € {query, prop} and op(z).phase = done
pnr > upg.pnum(obj) then
upg.acc(obj) «— upg.acc(oby) U {5} Output _rgad-ack(x,v)i
Precondition:
Input new-config(c, k); —failed
Effect: status = active
if —failed and status # idle then op(z).type = read
cmap (k) «— update(cmap(k), c) op(z).phase = done
v = op(z).value
Input read(z); Effect:
Effect: op(z).phase = idle
if —failed and status # idle then
pnuml (z) «— pnuml (z) + 1 Output write-ack(x);
op(z) < (read, query, pnuml (x), Precondition:
truncate(cmap), 0, op.(z).value) —failed

) status = active
Input write(z,v); op(z).type = write
Effect: op(z).phase = done
if —failed and status # idle then Effect:
pnuml (z) «— pnuml(z) + 1
op(z) «— (write, query, pnuml (x),
truncate(cmap), 0, op.(z).value)

op(z).phase = idle

Fig. 5. Reader-Writey ;: Read/write transitions

perform this check: if the incoming phase number is at least as large as the current operation

phase numberofp (obj).pnum or upg.pnum(obj)), then the message is recent. If these conditions
are met thervp(obj) and upg records are updated.

4) Read and write operation€Each read and write operation on objectonsists of a query
phase and a propagation phase. In each pHaeader-Writef communicates with “enough”
nodes (as we explain below) through information propagaitiothe background.

For an objectr, whenReader-Writey starts a phase of a read or write, it setgz).cmp to
truncate(cmap) that includes all configuration identifiers inmap up to the first L. When a

10

Internal cfg-upgrade(k);
Precondition:
—failed
status = active
upg.phase = idle
cmap(k) € C
VieN,l <k:cmap(l) # L
Effect:
for all x € X do
pnuml (x) «— pnuml (x) + 1
upg.pnum(zx) «— pnuml (x)
upg.acc(z) «— 0
upg.phase «— query
upg.target «— k
upg.cmap < cmap

Internal cfg-upgrade-ack(k);
Precondition:

—failed

status = active

upg.target = k

Vie N,l <k:cmap(l) =+
Effect:

upg.phase = idle

Internal cfg-upg-query-fix(k);
Precondition:
—failed
status = active
upg.phase = query
upg.target = k
VieN,l <k:upg.cmap(l) € C
= 3R € read-quorums(upg.cmap(l)) :
IW € write-quorums(upg.cmap(l)) :
RUW C upg.acc(z),Ve € X
Effect:
for all x € X do
pnuml (z) «— pnuml (x) + 1
upg.pnum(zx) — pnuml ()
upg.acc(z) «— 0
upg.phase «— prop

Internal cfg-upg-prop-fix(k);
Precondition:

—failed

status = active

upg.phase = prop

upg.target = k

IW € write-quorums(upg.cmap(k)) :

W C upg.acc(z), Vo € X
Effect:
forle N:l < k do
cmap(l) — £

Fig. 6. Reader-Writey ;: Configuration upgrade transitions

new CMap, cm, is received during the phasep(z).cmp is “extended” by adding all newly-
discovered configuration identifiers, up to the fidstin ¢m. If adding these new configuration
identifiers does not create a “gap”, that is, if the extende:).cmp is in Truncated, then the
phase continues using the new(z).cmp. Else if a “gap” is present (i.e., the result is not in
Truncated), then the configuration map is out-of-date. In this case pifase is “restarted” using
the best currently knowrW'Map information that is obtained by computinguncate(cmap).

Other than restarts, nodeé never removes configuration identifiers fronp(z).cmp in
processing a phase. In particular, if nodkarns during a phase that a configuration identifier
in op(z).cmp(k) has been included in some configuration upgrade, it doesemabve it from
op(z).cmp, but continues to include it in conducting the phase.

The query phase terminates whenuery fixed poinis reached. This happens whBeader-
Writer; receives recent responses from some read-quorum of eafiguwation inop(z).cmp.

Let ¢ denote nodé’s tag(z) at the query fixed point. Then we know thais at least as great as
the tag(x) value that each process in each of these read-quorums hiad start of this phase.

If the operation is a read, then procésat this point fixes its current value as the value to be
returned to its client. However, before returning this ealprocess performs the propagation
phase, whose purpose is to make sure that “enouRgdder-Writerprocesses have acquired
tags that are at least (and associated values). Again, the information is profaha the
background, andp(z).cmp is managed as described above. The propagation phase erels on
a propagation fixed points reached, whemReader-Writer has received recent responses from
some write-quorum of each configuration in the currentz).cmp. When this occurs, we know
that thetag(x) of each process in each of these write-quorums is at teast

Processing for a write operation, for objectstarting with awrite(z,v); event is similar to
that for a read. The query phase is conducted exactly as fea@, but processing after the

11

Input: Output:
join(recon)g ;, 1€ 1, deD join-ack(recon)q ;, i€ I, d€ D
recon(c, c’)q,i, ¢,c' €C, i € members(c), d€ D recon-ack(b)g ;, b € {ok,nok},i € I, d € D
failg,, i€ I, de D report(c)q,;, c€ C,i €I, de D
new-config(c, k)44, c€C, keNT, i€l, deD

Fig. 7. Recon;: External signature

query fixed point is different. Suppose processi’s tag(x) at the query fixed point, is of the
form (n, j). ThenReader-Writey defines the tag for its write operation to be the gair- 1,1).
Reader-Writey sets its localtag(x) to (n+ 1,7) and itsvalue(x) to v, the value it is currently
writing. Then, it performs its propagation phase. The psepof the propagation phase is to
ensure that “enough” processes acquire tags that are ataleageat as the new tdg + 1,1).
The propagation phase is conducted and concluded exacfty asread operation.

5) New configurations and configuration upgrad€onfigurations go through three stages:
proposal, installation, and upgrade. Tihetall stage requires interaction with the exterRalcon
service. The external interface Reconis depicted in Figure 7. Recall thReconis responsible
for emitting a consistent sequence of configurations chéream the configurations submitted by
the participants, but the exact implementation of this iseris immaterial. TheReconservice
is activated viajoin(recon), where the correspondingin-ack(recon) event indicates readiness
of the service. New configurations are submitted iR&conservice (i.e.proposed though the
recon(c, ¢) event, where’ is the new configuration and is the latest configuration known to
the node emitting the proposal. Providingas a parameter serves the following functiofig:
as a guard, where the submitting node must be a member (6f) members ofc will decide
on the next configuration (wher@ is included as one of the choices), afid) ensures total
ordering of installations. When the configuration instabila request completefeader-Writer
is notified viarecon-ack(b) event, where is ok when installation of’ was successful anabok
otherwise. Successfully installed configurations are meyloto theReader-Writerservice via the
report event. TheReconservice is as specified in [1], except that the specificatioR&conis
parameterized bygomainsinstead ofobjects Since otherwise the implementation details of the
Reconservice are not essential to this presentation, we do notstsit further.

The configuration isupgradedwhen every configuration with a smaller index has been
removed. Once a configuration has been upgraded, it is regg@rfor maintaining the data.
Upgrades are performed by the configuration upgrade opaesafsee Figure 6). The operation
requires two phases, a query phase and a propagate phasegudiyephase completes with
eventcfg-upg-query-fix when for each object in the domain fresh responses are tadldrom
at least one read-quorum and at least one write-quorum of @dcconfiguration. In the second
phase, the latest object information obtained in the qubgse is propagated to the members of
the write-quorum of the new configuration. This means thanewpg-cfg-prop-fix occurs when
fresh responses for each object in the domain are collected & write-quorum of the new
configuration, ensuring that the latest domain informatsopropagated to the new configuration.

Note that in Db-RAMBO the upgrade operation is conducted on behalf of all objecthe
domain, hence the query and propagation phases are basedsbnrésponses for each object
from appropriate quorums.

12

G. The complete algorithm

The complete implementatiais the composition of thdoiner;, Reader-Writerautomata for
all 4, all the channels, and any automaton whose traces satsfdabonsafety specification [1],
with all the non-external actions of @RAMBO hidden.

H. Environment Well-Formedness

We assume that the clients of the service submit well-formespliests: clients follow the
protocol to join and to initiate reconfigurations; clientstiate only one operation at a time on
each object; clients wait for appropriate acknowledgméefere proceeding.

First we state the well-formedness assumptions ofRrMBO,, whered € D, in terms of
the following conditions.

For everyxr € X, andi € [:

« No join(rambo,)4, read(x)q;, write(z, *)4, event is preceded by fail,; event.

« At most onejoin(rambo, %), ; event occurs.

o Any read(z)q;, write(,*)y;, OF recon(x,*)s; event is preceded by min-ack(rambo),;

event.

o Any read(x)g,;, write(x,*)q;, OF recon(x,x*),, event is preceded by aack event for any

preceding event of any of these kinds.

« For everyc, at most onegecon(x, c)4. event occurs.

« For everye, ¢, andi, if a recon(c,)4, event occurs, then it is preceded by: (Ikport(c)q;

event, and (2) goin-ack(rambo), ; event for everyj € members(c’).

The following are the well-formedness assumptionsRecon. For everyi:

« No join(recon)y; Or recon(x, x)4; event is preceded by fail,,; event.

« At most onejoin(recon),, event occurs.

« Any recon(x, x),; event is preceded by jain-ack(recon),, event.

« Any recon(x, x),,; event is preceded by anack for any precedingecon(x, x),,; event.

« For everyc, at most onegecon(x,)4, event occurs.

« For everyc and(if a recon(c, ¢’)4,; event occurs, then it is preceded by: (1jeport(c)q

event, and (2) goin-ack(recon),; event for everyj € members(c’).

In the rest of this paper we deal withood” executionsof implementationsS, viz. executions
where the environment is well-formed, and where the compaimn channels behave correctly,
delivering only the messages that were sent, but possiblyleeing and losing some messages.

[1l. PROOF OFATOMICITY

We now prove the correctness ofoERAMBO: we prove that the service implements atomic
read/write memory. In Section IlI-A, notation and basicanants and lemmas are presented
that are used in Section III-B to prove atomicity.

A. Notation and Basic Lemmas

We start by showing a simple result about the well-formedr@dsthe Do-RAMBO service.
Theorem 1:In any good execution of B-RAMBO the following guarantees are provided.
For everyd € D andi:

13

« Any join-ack(rambo),; (resp.,recon-ack(x),;) event has a precedifjgin(rambo,)., (resp.,
recon(x, ¥)4,;) event with no intervening invocation or response actiand@nd:.
o Any read-ack(zx,*)q; (resp., write-ack(x)s;) event has a precedingead(x)q; (resp.,
write(z, *)4;) event with no intervening invocation or response actiandior ands.
Proof. This simple result follows from code inspection under theuasptions about the client
well-formedness as stated in Section II-H. O

In the rest of this section we restate the results froamB0O [1]-[3], and we introduce certain
history variable5to the global state of syste. Some of the notation in the proofs has been
modified to allow us to reason about the new algorithm. Séwdrthe original lemmas in [1]-
[3] are restated using new notation and their proofs are tepddaccordingly. The results that
pertain to the individual object are essentially unchangedavoid unnecessary restatement in
what follows, we omit any proofs that are essentially the sa® [1]-[3]. We refer the reader
to the cited papers for these proofs, and here we focus ommtieg new lemmas and new or
re-constructed proofs that also constitute the contrloudif this work. Definitions and meaning
of data types used in this section are found in Section II-C.

In our presentation we are dealing with executions of imgetationS and read, write, and
configuration upgradeperationsoccurring in the executions. (Recall that we elide the noenti
of domains, unless the identity of a domain is material.)d=e@d write operations are performed
on objects in a domain, and are uniquely identified by theirtstg events, specifically, a read
operation onz at node: is defined by itsread(z); event, and a write operation is similarly
defined by itswrite(x, v); event. We will use notation(z) to denote a read or a write operation
on x. A configuration upgrade operation is performed for a domamd it is defined by the
correspondingfg-upgrade; event.

We introduce the following history variables:

« in-transit, a set of messages, initiallyy A message is added to the set when it is sent by

any Reader-Writey to any Reader-Writey. No messages is every removed from this set.

« c(k) € C, for everyk € N, initially undefined. This is set when the firséw-config(c, k);

occurs, for some andi. It is set to thec that appears as the first argument of this action.

« tag(m(z)) € T, initially undefined. This is set to the value ofg(x) at the process running

m(x), at the point right afterr(z)’s query-fix(z) event occurs. Ifr(z) is a read operation
this is the highest tag that it encounters during the queasehlfr(z) is a write operation,
this is the new tag that is selected for performing the write.
e query-cmap(w(zx)), a CMap, initially undefined. This is set in thguery-fix(x) step ofr(z),
to the value ofop(z).cmap in the pre-state.

e R(m(x),k), for k € N, a subset of, initially undefined. This is set in thguery-fix(x)
step of n(z), for eachk such thatquery-cmap(w(x))(k) € C. It is set to an arbitrary
R € read-quorums(c(k)) such thatR C op(x).acc in the pre-state.

e prop-cmap(m(x)), a CMap, initially undefined.

« W(n(z),k), for k € N, a subset off, initially undefined. This is set in therop-fix(x)
step of r(x), for eachk such thatprop-cmap(mw(z))(k) € C. It is set to an arbitrary
W € write-quorums(c(k)) such that C op(x).acc in the pre-state.

History variables are used to aid reasoning about progedtighe algorithm and are not used by the algorithm.

14

« tag(z,v) € T, initially undefined. This is set to the value ofg(x) at the process running
v, at the point right aften’s cfg-upg-query-fix event occurs.

. removal-set(y), a subset oN, initially undefined. This is set in thefg-upgrade step of~,
to the set{¢: ¢ < k, cmap(l) # £}.

e R(v,0), for ¢ € N, a subset off, initially undefined. This is set in thefg-upg-query-fix
step of~, for all ¢ € removal-set(y), to an arbitraryR € read-quorums(c(¢)) such that
R C upg(x).acc in the pre-state, for each € Xj.

e« Wi(v,¢), for £ € N, a subset ofl, initially undefined.This is set in thefg-upg-query-fix
step of~, for all £ € remowval-set(y), to an arbitraryW € write-quorums(c(¢)) such that
W C upg(z).acc in the pre-state, for each € X,.

« W5(v), a subset ofl, initially undefined.This is set in thefg-upg-prop-fix step of~, to
an arbitraryl' € write-quorums(c(k)) such thatiV C upg(z).acc in the pre-state, for all
T € Xd.

In any good executiony, we define the following events (more precisely, we are gvin

additional name to some existing events):

« query-phase-start(7(z)), initially undefined. This is defined in thgiery-fix(x) step ofr(z),
to be the unique earlier event at which the collection of guesults was started and not
subsequently restarted. This is eithefead(z), write(z, %), OF recv(x, *, x, *, *, *, *) event.

« prop-phase-start(m(x)), initially undefined. This is defined in theop-fix(z) step ofr(z),
to be the unique earlier event at which the collection of pggiion results was started and
not subsequently restarted. This is eithejuary-fix(x) oOr recv(x, *, x, *, %, x, %) event.

1) Configuration map invariantstHere we give invariants describing the kinds of configuratio
maps that may appear in various places in the statg. of
We begin with a lemma saying that various operations yielgreserve the “usable” property.

Lemma 1 ([1]-[3]): The following hold:

1) If em,cm’ € Usable thenupdate(cm, em’) € Usable.

2) If em € Usable, k € N, ¢ € C, and em’ is identical tocm except thatem/(k) =
update(em(k), ¢), thenem’ € Usable.

3) If em,em’ € Usable then extend(cm, em’) € Usable.

4) If em € Usable then truncate(em) € Usable.

The following invariant describes some propertiescofap; that hold whileReader-Writey
is conducting a configuration upgrade operation.
Invariant 1 [1]-[3]): If upg.phase;#idle and upg.target, =k, then:
1) VO: 4 <k= cmap(l); € CU{£}.
2) If ky =min{l: ¢ <k Aupg.cmap(l) # £} thenk; =0 or ecmap(ky — 1); = +.
Next we describe the patterns 6f 1, and + values that may occur in configuration maps

in various places in the system state. We use the dot notadiamdicate components of state,
for example,s.cmap, indicates that value ofmap, in states.

Invariant 2: Let cm be aCMap that appears as one of the following:

1) Thecm component of some messageimtransit
2) cmap, for anyi € I.

15

3) op(z).cmap, for somei € I and for somer € X, for which op(z).phase; # idle.
4) query-cmap(m(x)) or prop-cmap(w(x)) for any operationr(z) on any objectr.
5) upg.cmap, for some: € I for which upg.phase; # idle.

Thencem € Usable.

Proof. By induction on the length of a finite execution.

Base: Part 1 holds becausa:-transit is empty initially. Part 2 holds because initially, for
everyi, cmap(0); = co and cmap(k); = L; the resultingCmap is in Usable Parts 3 and 5 hold
vacuously, because in the initial state, @l z).phase andupg.phase values arédle. Part 4 also
holds vacuously, because initially, afl.ery-cmap and prop-cmap variables are undefined.

Inductive step:Let s and s’ be the states before and after the new event, respectivey. W
consider Parts 1-5 one by one.

For Part 1, the interesting case isead; . event that puts a message containingin in-transit
The precondition on theend action implies thatm is set tos.cmap,. The inductive hypothesis,
Part 2, implies that.cmap, € Usable, which suffices.

For Part 2, fixi. The interesting cases are those that may chagep,, namely, new-config,,
recv,, for a gossip (non-join) message, atfg-upg-prop-fix;.

1) new-config(c, x);. This part of the proof is as in [2]; we refer the reader thenedetails.

2) recv((x,cm, %, %, %, %, %)), ;. This part of the proof is also as in [2].

3) cfg-upg-prop-fix(k);. This part of the proof is also as in [2].

For Part 3, we consider actions that modiy(x).cmap,, namely, read;, write;, recv;, and
query-fix;, for some object: € X,.
1) read(z);, write(x, *);, and query-fix(x);: By inductive hypothesiss.cmap, € Usable. The
new step sets’.op(z).cmap, to truncate(s.cmap,); sinces.cmap; € Usable, Lemma 1,
Part 4, implies that this is also usable.

2) recv((x,cm,z,*, %, *,%)),,;0 This step may alter op(z).cmap, only if
s.op(x).phase, € {query,prop}, and then in only two ways: by setting it either to
extend(op(z).cmap,, truncate(cm)) or to truncate(update(s.cmap;, cm)). The inductive
hypothesis implies thatruncate extend and update all preserve usability. Therefore,
s'.op(z).cmap, € Usable.

For Part 4, we considetuery-fix(x); and prop-fix(z);, of some read or write operatianz).

1) query-fix(z);. This setss’.query-cmap(n(x)); to the value ofs.op(z).cmap,. Since by
inductive hypothesis the latter is usable, s&'iguery-cmap(m(x));.

2) prop-fix(z);. This setss’.prop-cmap(m(x)); to the value ofs.op(z).cmap,. Since by
inductive hypothesis the latter is usable, s&'igrop-cmap(m(x));.

For Part 5, the actions to consider amg-upgrade(k); and cfg-upg-query-fix(k);. These set
s’.upg.cmap, 1o the value ofs.cmap,. Since by the inductive hypothesis the later is usable so
is s".upg.cmap,;. O

We now strengthen Invariant 2 to say more about the form ofGMaps that are used for
read and write operations:

Invariant 3: Let cm be a CMap that appears asp(z).cmap, for somei € I for which
op(z).phase # idle, or as query-cmap(m(x)) or prop-cmap(w(z)) for any operationr(xz) on
objectz € X;. Then:

16

1) em € Truncated.
2) cm consists of finitely manyt entries followed by finitely many entries frodi followed
by a infinite number ofL entries.

Proof. We prove that the desired properties hold forra that is op(z).cmap,. The same
properties forquery-cmap(w(x)) and prop-cmap(n(z)) follows by the way they are defined,
from op(z).cmap,.
To prove Part 1 we proceed by induction. In the initial saj€z).phase, = idle, which makes
the claim vacuously true. For the inductive step we consadleactions that altepp(z).cmap,:
1) read(z);, write(z, *);, or query-fix(x);: These sebp(z).cmap, to truncate(cmap;), which
is necessarily infruncated

2) recv((*,cm, x, %, %, %, %)), ;. This first setsop(z).cmap, to a preliminary value and then
tests if the result is inTruncated If it is, we are done. If not, then this step resets
op(z).cmap, to truncate(cmap;), which is in Truncated

To see Part 2, note thatn € Usable by Invariant 2. The fact thatm € Truncated then follows
from the definition ofUsableand Part 1. O

2) Phase guaranteestemmas presented here discuss the effects of query andgatipa
phases of read/write and configuration upgrade operationsnore detail, we describe the
information flow that must occur during these phases to athperation completion.

Note that the cas¢ = i is treated uniformly with the case wheje# ¢ becausd&reader-Writer
algorithm treats communication from a location to itselfaetty the way as communication
between two different locations. We first consider the quergise of a configuration-upgrade.

Lemma 2: Suppose that afg-upg-query-fix(k); event for configuration upgrade operation
occurs ina andk’ € removal-set(vy). Supposej € R(v, k') U Wi (v, k).
Then for eachr € X,; there exist messages, from i to j andm/, from j to ¢ such that:

1) obj component of messages, andm/, is equal tox.

2) m, is sent after thefg-upgrade(k); event ofy.

3) m! is sent afterj receivesm,.

4) m/, is received before thefg-upg-query-fix(k); event of-.

5) In any state aftej receivesm,, cmap(¢); # L for all ¢ < k.

6) tag(x,7v) > t, wheret is the value oftag(z); in any state beforg sends message’,.

Proof. The phase number discipline, applied to objectmplies the existence of the claimed
messagesn, andm/. For Part 5, the precondition affg-upgrade(k) implies that, when the
cfg-upgrade(k); event ofy occurs,cmap(?); # L for all £ < k. Therefore;j setscmap(f); # L
for all ¢ <k when it receivesn,. Monotonicity of cmap; ensures that this property persists.

For Part 6, lett be the value oftag(z); in any state beforg sends message’,. Let ¢’ be
the value oftag(z); in the state just beforg¢ sendsm/. Thent <, by monotonicity. Theag
component ofn/, is equal tot’, by the code forsend. Since: receives this message before the
cfg-upg-query-fix(k);, it follows that tag(x,~) is set by: to a value> t¢. O

Next, we consider the propagation phase of a configuratignaade.

Lemma 3: Suppose that afg-upg-prop-fix(k); event for a configuration upgrade operatipn
occurs ina. Suppose thaf € Wy ().
Then for eachr € X, there exist messages, from i to j andm/, from j to i such that:

17

1) obj component of messages, andm/, is equal toz.

2) m, is sent after thefg-upg-query-fix(k); event of~.

3) m/, is sent afterj receivesm.

4) m/, is received before thefg-upg-prop-fix(k); event of~y.

5) In any state aftej receivesm, tag(z); > tag(x,~), for all x € X,.

Proof. The phase number discipline, on individual object, impttes existence of the claimed
messagesn, and m/. For Part 5, whenj receivesm,, it sets tag(x); to be > tag(z,~).
Monotonicity of tag(z); ensures that this property persists in later states. O

Next, we consider the query phase of read/write operations.

Lemma 4: Suppose that imv a query-fix(z); event occurs for a read or write operatiofi)
on objectz. Let k, k' € N. Supposequery-cmap(m(x))(k) € C andj € R(w(x), k).
Then there exist messages, from i to j andm/, from j to ¢ such that:
1) obj field of messages: andm’ equalsz.
2) m, is sent after thejuery-phase-start(m(z)) event.
3) m! is sent afterj receivesm.
4) m/, is received before thquery-fix(z) event ofr(z).
5) If ¢ is the value of thetag(z); in any state beforg sendsm/, then:
(@) tag(w(x)) > t, and (b) if r(x) is a write operation themag(r(x)) > t.
6) If cmap(¢);# L for all ¢ <k’ in any state beforg sendm/,, thenquery-cmap(w(x))(¢) € C
for some/> k.

Proof. The phase number discipline, on individual object, impthes existence of the claimed
messagesr: andm’. For Part 5, theiag component of message!, is > t, So it receives a tag
that is> ¢ during the query phase of(z). Therefore,tag(w(x)) > t. Also, if 7(x) is a write,
the effects of theyuery-fix(z) imply that tag(m(x)) > t.

Finally, we show Part 6. In them component of message’,, cm(¢) # L for all ¢ < k'
Therefore,truncate(cm)(¢) = em(¢) for all ¢ < k', so truncate(cm) # L for all £ < k',

Let cm’ be the configuration magprtend(op(z).cmap,, truncate(cm)) computed byi during
the effects of therecv event form!. Sincei does not resebp(z).acc to () in this step, by
definition of thequery-phase-start(pi(z)) event, it follows thatm’ € Truncated, andem’ is the
value of op(z).cmap, just after therecv step.

Fix ¢, 0 < ¢ < k'. We claim thatem/(¢) # L. We consider cases:

1) op(z).cmap(?); # L just before therecv step. Then the definition ofztend implies that

em/ # 1, as needed.

2) op(z).cmap(?); = L just before therecv step andtruncate(em)(¢) € C. Then the

definition of extend implies thatem/(¢) € C, which implies thatem/(¢) # L, as needed.

3) op(z).cmap(); = L just before therecv step andtruncate(cm)(¢) ¢ C. Since

truncate(cm))(0) # L, it follows that truncate(ecm)(¢) ¢ C. By the case assumption,
op(z).cmap(f); = L just before therecv step. Since by Invariant 3op(z).cmap; €
Truncated, it follows thatop(z).cmap(¢') = L before therecv step. Then by definition of
extend, we have thatm/(¢) = L while em/(¢) € C. This implies thatem’ ¢ Truncated,
which contradicts the fact, already shown,that € Truncated. So this case cannot arise.
Since this argument holds for &) 0 < ¢ < £/, it follows thatem/(¢) # L for all £ < k’. Since
em!(€) # L for all ¢ < K/, Invariant 2 implies thatm’ € Usable, which implies by definition

18

of Usable that cm’(¢) € C for somel > k'. That is, op(z).cmap,(¢) € C for somel > k'
immediately after theecv step. This implies thaguery-cmap(w(x))(¢) € C for somel > K/,
as needed. O

And finally, we consider the propagation phase of read antevaperations.

Lemma 5: Suppose that arop-fix(z); event for a read or a write operatiafiz) on objectz
occurs ina. Supposeprop-cmap(m(z))(k) € C andj € W(n(z), k).
Then there exist messages. from i to j andm/ from j to i such that:

1) obj field of messages:, andm/ equalsz.

2) m, is sent after therop-phase-start(7(x)) event.

3) m/, is sent afterj receivesm,.

4) m/, is received before therop-fix(z) event ofr(x).

5) In any state aftej receivesm,, tag(z); > tag(m(x)).

6) If cmap(l);# L for all { <k’ in any state beforg sendsn’,, thenprop-cmap(n(z))(¢) € C

for some/l >k .

Proof. The phase number discipline, on individual object, impttes existence of the claimed
messagesn, andm/,. For Part 5, letn,.tag be the tag in message,. Sincem,, is sent after
eventprop-phase-start(m(z)), which is not earlier thamuery-fix(x);, it must be thatn,.tag >
tag(m(x)). Therefore, by the effects akcv, just after j receivesm,, tag(z); > m.tag >
tag(m(x)). Then monotonicity oftag(z); implies thattag(x); > tag(w(z)) in any state aftey
receivesm,,.

For Part 6, the proof is analogous to the proof of part 5 of Lem#nlIn fact, it is identical
except for the final conclusion, which now says thatp-cmap(7(z))(¢) € C for somel > k'. [

B. Atomic Consistency

We now proceed to prove atomicity of the service in stagest,ikn Section I11-B.1 we present
lemmas describing the relationship between configuratpgrade operations. We show in detalil
how object information is propagated during the configoratipgrade operation. Section IlI-B.2
describes the relationship between read/write operatmulsconfiguration upgrade operations.
Section [lI-B.3 then considers two read or write operatiomsthe same object, culminating
in Lemma 14 that says that tags are monotone with respect necoocurrent read or write
operations on an object. Finally, Section IlI-B.4 uses thgstto define a partial order on
operations that has sufficient properties (given in Sedtig) to claim atomicity.

1) Behavior of configuration upgradddere we present lemmas describing information flow
between configuration upgrade operations to assert theepges of a sequence of configuration
upgrade operations with certain properties. In particulaa key property is that the tag of each
object in the domain is monotonically increasing with redpie the specific sequence of upgrade
operations, guaranteeing that the value/tag informatsopropagated to newer configurations.
Observe that the statements and proofs in this section, tughexception of the proof of
Lemma 8, remain unchanged (when compared to [1]-[3]). Theae is that the configuration
upgrade is performed on an entire domain (hence on all abjsichultaneously). Proof of
Lemma 8 needs to be modified since it requires reasoning ahetag information of individual
objects, hence we update the proof to reflect modificationd @RAMBO.

19

The first lemma shows that if all configuration upgrade openat remove two particular
configurations together, then those two configurations lkvayas in the same state in almaps

Lemma 6 (1]-[3]): Suppose that > 0, and« is an execution in which nefg-upg-prop-fix(k)
event occurs. Suppose that is a CMap appearing as one of the following in any statenin
1) Thecm component of some messageimtransit
2) cmap, for anyi € I.
If em(k —1) =+ thenem(k) = +.

The following corollary says that if afg-upgrade(k) event for an upgrade operatignoccurs
in an execution, then there is some previous configuratigrage~’ (that completes before
starts) where the target of is the configuration with the smallest index removediby

Corollary 1: Let v be a configuration upgrade operation, initiated byfgupgrade(k);
event in«, and letk; = min{removal — set(y)}. That is, k; is the smallest element such
that upg-cmap(y)(k1) € C. Assumek; > 0. Then acfg-upg-prop-fix(k;); event for some
configuration upgrade operatior occurs ina for some; such that thefg-upg-prop-fix; event
of o/ precedes thefg-upgrade(k); event ina.

The next lemma says that for a given configuration upgradeatipa~, there exists a sequence
of preceding upgrade operations satisfying certain pt@serThe lemma begins by assuming
that some configuration with index is removed by the specified upgrade operation. For every
configuration with an index smaller th@n we choose a single upgrade operation—that removes
that configuration—to add to the sequence. Therefore thstrarted sequence may well contain
the same configuration upgrade operation multiple timetheafoperation has removed multiple
configurations. If two elements in the sequence are distipgrade operations, then the earlier
operation in the sequence completes before the later aperatinitiated. Also, the target of
an upgrade operation in the sequence is removed by the rekiadiupgrade operation. As a
result of these properties, the configuration upgrade ggobeys a sequential discipline.

Lemma 7 (1]-[3]): If a cfg-upgrade, event for upgrade operatiomn occurs ina such that
k € removal-set(y), then there exists a sequence (possibly containing repeddéenents) of
configuration upgrade operationsg, 71, - . . , 7 With the following properties:

1) Vs:0<s<k, s € removal-set(vs),

2) Vs:0<s <k, if v4 # 7541, then thecfg-upg-prop-fix event of~, occurs ina and the
cfg-upgrade event of~,,, occurs ina, and thecfg-upg-prop-fix event of~, precedes the
cfg-upgrade event ofv,,;, and

3) Vis:0<s<k,if y5 # vs11, thentarget(v,) € removal-set(ysi1).

The sequential nature of configuration upgrade has a niceequence for propagation of
tags: for any sequence of upgrade operations (as in Lemmag{);, vs) is nondecreasing is.

Lemma 8: Let v, ...,v, be a sequence of configuration upgrade operation such that:

1) Vs:0<s<k, s € removal-set(ys),

2) Vs:0<s <k, if v4 # 7511, then thecfg-upg-prop-fix event of~, occurs ina and the
cfg-upgrade event of~,,, occurs ina, and thecfg-upg-prop-fix event of~, precedes the
cfg-upgrade event ofy,,;, and

3) Vis:0<s<k,if y5 # vs11, thentarget(v,) € removal-set(ysi1)-

20

ThenV s,z :0 < s < k,x € Xy, tag(x,~s) < tag(z,vysi1)-

Proof. If v, = 7,41, then it is trivially true thattag(x,~s) < tag(x,vs11), for all z. Therefore
assume that, # v,.1. This implies thatcfg-upg-prop-fix event of+, precedes thefg-upgrade
event ofy,,,. Let k be the largest element iremoval-set(vs). We know by assumption that
k + 1 € removal-set(vs11). Therefore,Ws(~;), a write-quorum of configuration(k + 1), has
at least one element in common wift(~,, 1,k + 1); label this procesg. By Lemma 3, and
the monotonicity oftag(x);, of each object:, after thecfg-upg-prop-fix event ofy, we know
that tag(x); > tag(x,~s), again for eachc € X,;. Then by Lemma 2 for any we know that
tag(x,vs11) > tag(x,vs). Thereforetag(z,vs) < tag(x, ysi1)- O

The next result follows immediately from the above lemma iguiction.

Corollary 2: Let v, ..., be a sequence of configuration upgrade operation such that:

1) Vs:0<s<k, s € removal-set(ys),

2) Vs:0<s <k, if v4 # 7541, then thecfg-upg-prop-fix event of~, occurs ina and the
cfg-upgrade event of~,,; occurs ina, and thecfg-upg-prop-fix event of~, precedes the
cfg-upgrade event ofy,,;, and

3) Vis:0<s<k,if v5 # vs11, thentarget(v,) € removal-set(ysy1)-

ThenV s, 2 :0<s <5 <k,x € Xy, tag(x,vs) < tag(x,vs).

2) Behavior of a read or a write following a configuration upge: Now we describe
the relationship between an upgrade operation and a folpwead or write operation. The
following three lemmas relateemoval-set of a preceding configuration upgrade operation with
the query-cmap of a later read or write operation.

The first lemma shows that if, for some read or write operation), & is the smallest index
such thatquery-cmap(w(x))(k) € C, then some configuration upgrade operation with tafget
precedes the read or write operation.

Lemma 9: For some object, let 7(z) be a read or write operation whogeery-fix(x) event
occurs ina. Let k£ be the smallest element such thatry-cmap(7(z))(k) € C. Assumek > 0.
Then there must exist a configuration upgrade operatiguch thatk = target(v), and the
cfg-upg-prop-fix event ofy precedes thquery-phase-start(m(z)).

Proof. Follows from Lemma 6. Let be the state just before evemiery-phase-start(m(x)).
By definition, query-cmap(w(x)) = s.cmap;. Sinces.cmap(k — 1); = + and s.cmap(k); :
there must exist such a configuration upgradeifday the contrapositive of Lemma 6. [

Second, if some upgrade removikgdoes complete before thgiery-phase-start event of a
read or write operation, then some configuration with ingdex + 1 must be included in the
query-cmap Of a latter read or write operation.

Lemma 10: Let v be a configuration upgrade operation such that removal-set(y). Let
m(x) be a read or write operation on objectwhosequery-fix(z) event occurs inv. Suppose
that the cfg-upg-prop-fix event of v precedes thejuery-phase-start(w(z)) event ina. Then
query-cmap(m(x))(¢) € C for somel > k + 1.

Proof. Suppose for the sake of contradiction thatry-cmap(m(z))(¢) ¢ C for all ¢ > k+ 1.
Fix £’ = max({¢' : query-cmap(w(x))(¢') € C'}). Thenk’ < k.

21

Leto, ..., be the sequence of upgrade operations whose existencerseddsy Lemma 7,
where v, = ~. Then, by this constructiony’ € removal-set(yx), and thecfg-upg-prop-fix
event of v, does not come after thefg-upg-prop-fix event of v in a. By assumption, the
cfg-upg-prop-fix event of v precedes thejuery-phase-start(7(z)) event in a. Therefore, the
cfg-upg-prop-fix event ofy, precedes th@uery-phase-start(r(z)) event ina.

Then, since k' € removal-set(vyy), write-quorum Wi(ve, k') is defined. Since
query-cmap(m(z)) (k") € C, the read-quoruni (7 (zx), k') is defined. Choosg € Wi (v, k') N
R(m(z), k"). Assume thak, = target(:). Notice thatt’ < k;. Then Lemma 2 and monotonicity
of ecmap imply that, in the state just prior to thefg-upg-query-fix event ofy;, cmap(¢); # L
for all ¢ <k,;. Then Lemma 4 implies thajuery-cmap(n(x))(¢) € C for somel > k,. But this
contradicts the choice df'. O

The next lemma describes the propagation of object tag nmdton from a configuration
upgrade operation to a following read or write operation.

Lemma 11: Let o be an execution with a configuration upgrade operatiossume that
k = target(v). Let m(z) be a read or write operation on objectwith eventquery-fix(x) in a.
Suppose that evenfg-upg-prop-fix of v precedes everjuery-phase-start(7(z)). Suppose also
that query-cmap(m(x))(k) € C. Then:
(1) tag(x,v) < tag(m(x)), and (2) Ifr(x) is a write operation thettag(z,) < tag(m(z)).

Proof. The propagation phase ofaccesses write quorumy(~y) of ¢(k), whereas the query
phase ofr(z) accesses read-quoruR(r(z), k). Since both are quorums of configuratio(t),
they have a nonempty intersection, hence chgosély(v) N R(w(x), k).

Lemma 3 implies that, in any state after #fg-upg-prop-fix event forv, tag(x); > tag(z,).
Since thecfg-upg-prop-fix event ofy precedes thguery-phase-start(7(x)) event, we have that>
tag(z), wheret is defined to be the value édg(x), just before thejuery-phase-start(7(x)) event.
Then Lemma 4 implies thaug(r(z)) > t, and if r(z) is a write operation, thetug(n(x)) > t.
Combining the inequalities yields both conclusions of thmmna. O

3) Behavior of sequential reads and writeSor two read or write operations on some object
x that execute sequentially, we can prove certain relatipsghetween theiquery-cmapsprop-
cmapsandtags Lemma 12 says that when two read or write operations execute sequentially,
the smallest configuration index used in the propagatiosloé the first operation is no higher
than the largest index used in the query phase of the second.

Lemma 12: Let 7(x); andx(z), be two read or write operations on objegtsuch that:

1) Theprop-fix(x) event ofr(x); occurs ina.

2) Thequery-fix(x) event ofr(z), occurs ina.

3) Theprop-fix(x) event ofr(x); precedes thquery-phase-start(r(z);) event.
Thenmin({¢ : prop-cmap(n(z)1)(¢) € C}) < max{{ : query-cmap(m(zx)2)(€)}).

Proof. Suppose for the sake of contradiction thain({¢ : prop-cmap(n(z),)({) €
C}) > k, wherek is defined to bemax{¢ : query-cmap(m(z)2)(¢)}). Then in particular,
prop-cmap(m(z)1)(k) ¢ C. The form ofprop-cmap(n(zx),), as expressed in Invariant 3, implies
that prop-cmap(m(z)1)(k) = +.

This implies that somecfg-upg-prop-fix event for some upgrade operation such that
k € removal-set(vy) occurs prior to theprop-fix(z) of w(x);, and hence prior to the

22

query-phase-start(m(x)2) event. Lemma 10 then implies thatery-cmap(n(x)q)(¢) € C for
somel > k + 1. But this contradicts the choice &f O

The next lemma describes propagationi@j information, in the case where the propagation
phase of the first operation and the query phase of the sequerdtmn share a configuration.

Lemma 13: Assumer(x); andx(z), are two read or write operations on some objecind:
1) Theprop-fix(x) event ofr(x); occurs ina.
2) Thequery-fix(x) event ofr(z), occurs ina.
3) Theprop-fix(x) event ofr(x); precedes thquery-phase-start(r(z);) event.
4) prop-cmap(m(x);)(k) and query-cmap(w(x)q)(k) are both inC, for somek € N.
Then: (1)tag(m(x);) < tag(m(z)z), and (2) If w(x), is a write thentag(mw(z);) < tag(m(z)2).

Proof. The hypothesis imply thgtrop-cmap(m(z),)(k) = query-fix(m(x)s2) (k) =c(k). Then
W (n(z)1, k) andR(w(x)s, k) are both defined in. Since they are both quorums of configuration
c(k), they have a nonempty intersection; chogse W (7 (z)1, k) N R(w(z)2, k).

Lemma 5 implies that, in any state after tipeop-fix(z) event of n(x),, tag(z); >
tag(m(x)1). Since theprop-fix(z) event of 7(x); precedes theuery-phase-start(m(x)s) event,
we have thatt > tag(n(z);), wheret is defined to be the value ohg(z); just before the
query-phase-start(m(x)2) event. Then Lemma 4 implies thaig(7(z)2) > ¢, and if 7(x), is a
write operation, thertag(m(z),) > t. Combining the inequalities yields both conclusiong.]

The following lemma is similar to the previous one, but it do®t assume that the propagation
phase of the first operation and the query phase of the sequardtmn share a configuration.
The focus of the proof is on the situation where all configoraindices used in the query phase
of the second operation are greater than those used in tpagaton of the first operation.

Lemma 14: Assumern(z); andx(z), are two read or write operations on objegtand:
« prop-fix(z) of 7(z); occurs ina.
« query-fix(z) of 7(x), Occurs ina.
« prop-fix(x) event ofr(z),; precedes th@uery-phase-start(m(x)2) event.
Then: (1)tag(m(x)1) < tag(m(z)2), and (2) If w(x), is a write thentag(w(x)1) < tag(m(z)2).

Proof. Let i; and i, be the indices of the processes that run operatiopng; and 7 (x)s,
respectively. Letem; = prop-cmap(w(x)1) and emy = query-cmap(mw(z)s2). If there existsk
such thatem, (k) € C andemy (k) € C, then Lemma 13 implies the conclusions of the lemma.
So from now on, we assume that no suckexists.

Lemma 12 implies that m{{ ¢ : ecmy(¢) € C'}) < max({¢: cmy(¢) € C}). Invariant 3 implies
that the set of indices used in each phase consists of cdngeiriiegers. Since the intervals have
no indices in common, it follows thay < s9, wheres; is defined to be maxX¢ : em4(¢) € C})
and s, to be min({¢ : emq(¢) € C}).

Lemma 9 implies that there exists a configuration upgradeadipa that we will cally,, ; such
that s, = target(vs,—1), and thecfg-upg-prop-fix of v, precedes thquery-phase-start(7(x)s,)
event. Then by Lemma 1tqg(x,vs,—1) < tag(w(x)2), and if 7(z), is a write operation than
tag(z,vs,-1) < tag(m(x)z).

Next we will demonstrate a chain of configuration upgraderafen with non-decreasing tags.
Lemma 7, in conjunction with the already defined ,, implies the existence of a sequence of
configuration upgrade operations, . . ., 7,1 such that:

23

1) Vs:0<s<sy—1, s € removal-set(~s),
2) Vs : 0 < s < 89— 1, If v # 7511, then thecfg-upg-prop-fix event of v, precedes the
cfg-upgrade event ofv,,; in a.

3) Vs:0<s<sy—1,if v5 # vs11, thentarget(ys) € removal-set(ysi1).

As a special case of above first property, siacec s, — 1, we know thats; € removal-set(~s,).
Then Corollary 2 implies thatag(z,vs,) < tag(x,vs,—1)-

It remains to show that the tag of), is no greater than the tag of,. Therefore we focus on
the relationship between operatiafiz), and configuration upgrade,,. The propagation phase
of m(x),; accesses write-quoruil (7 (x);, s1) of configurationc(s;), whereas the query phase of
s, accesses read-quoruRiys,, s1) of configurationc(s;). SinceW (7(z)1, s1) N R (s, 51) # 0,
we may fix somej € W(m(x)1,s1) N R(7s,,s1). Let messagen, ; from i; to j and message
m;, , from j to i, be as in Lemma 5 for the propagation phaseyof

Let messagen,, from the process running,, to j and messager, , from j to the process
running~s, be the message whose existence is asserted in Lemma 2 faneghe ghase ofy,, .

We claim thatj sendsm, ,, its message forr(z),, before it sendsn, ,, its message for
7¥s,- Suppose for the sake of contradiction thiatendsm;, , before it sendSn . Assume that
s, = target(s,). Notice thats, > s;, sinces; € removal-set(~,,). Lemma 2 ImpIIeS that in any
state afterj receivesm,, beforej sendsm/, ,, cmap(k); # L for all k < s;. Sincej sendsm/, ,
before it sendsn), ;, monotonicity ofcmapimplies that just beforg sendsmn, ,, cmap(k); # L
for all £ < s,. Then Lemma 5 implies thatrop-cmap(w(z),)(¢) € C for somel > s,. But this
contradicts the choice of;, sinces; < s;. This implies thatj sendsm/, , before it sendsn;, ,.

Since j sendsm;, , before it sendsn;, ,, Lemma 5 implies that, at the timg sendSmw,
tag(m(z)1) < tag(x);. Lemma 2 implies thatag(7(z);) < tag(zx,s,). From above, we know
that tag(z,vs,) < tag(x,vs,—1), andtag(x, vs,—1) < tag(T, Vr(z),), and if m(z), is a write then
tag(x,vs,—1) < tag(z, Vr@),). Combining the mequalltles yields both conclusions. O

4) Atomicity: We now proceed to prove atomicity ofdRAMBO by showing that in any
good execution, properties P1, P2, P3, and P4 (stated im8dttA) hold for any object.

Let 5 be a trace ofS, the system that implementsd>RAMBO, where all read and write
operations on some object € X,; complete. Consider any particular good executioof S
whose trace igj. We define a partial ordek, on read and write operations anin 3, in terms
of the operation tags im. Namely, we totally order the writes in order of their tagadave
order each read with respect to all writes as follows: a redl tag ¢ is ordered after all writes
with tags< ¢t and before all writes with tags t.

Lemma 15: The ordering<, is well-defined, for allx € X§.

Proof. The key is to show that no two write operations on some objeget assigned the
same tag. This is obviously true for two writes that are até@d at different locations, because
the low-order tiebreaker identifiers are different. For twaotes at the same location, for the
same object:, Lemma 14 implies that the tag of the second is greater tharatip of the first.
This suffices. O

Lemma 16: The order<,, for all = € X,, satisfies properties P1, P2, P3, and P4.

Proof. We begin with property P2, the most interesting one. We ctandivo operations (),
andw(x), on objectz. Now, suppose for the sake of contradiction thé&t), completes before
m(x)q Starts, yetr(z), <, 7(z);. We consider two cases:

24

1) n(z), is a write operation. Since(x); completes beforer(x),, Lemma 14 implies that
tag(m(x)2) > tag(m(x);). On the other hand, the fact thatx), <, 7(z); implies that
tag(m(x)s) < tag(m(x);), hence contradiction.

2) m(z), is a read operation. Since(z); completes beforer(z), starts, Lemma 14 implies
that tag(m(z)2) > tag(m(z);). On the other hand, the fact thatz), <, w(x); implies
that tag(m(x)2) < tag(m(x);), hence a contradiction.

Since we have a contradiction in either case, property P2 huald.

Property P1 follows from property P2. Properties P3 and R4samightforward. O

T
T

Finally, we tie everything together and show safety of ouplementationS, assuming the
environment safety assumptions (Section II-H).

Theorem 2: Let 3 be a trace of systerf that implements D-RamMBO. Thenj satisfies the
atomicity guarantee for each object

Proof. Assume that all read and write operations completg.ihet o be a good execution
of S whose trace is3. For all objectsz € X,; define the ordering<,, on the read and write
operations for each objectin 5 as above using the execution Then Lemma 16 says that,
satisfies the four conditions in the definition of atomicioy fachx € D. Thus,; satisfies the
atomicity condition for all objects as needed. O

IV. CONDITIONAL OPERATION LATENCY ANALYSIS

A conditional analysis of RmBO read, write, and configuration upgrade operation latency
is presented in [1]-[4]. Here we show that under the sameitond, these operations ind®
RAMBO have the same latency. We start by giving relevant defirstidollowing [2], [3]). Let
0 denote the maximum message delivery latency. Alsa@ le¢ the interval at which the gossip
messages are sent. Assumés an admissible timed execution, antla finite prefix ofa. Let
(time(a’) denote the time of the last eventd. We saya is ana’-normal execution if(i) after
o/, the local clocks of all automata progress at exactly the odtreal time,(i7) no message
sent in« after o’ is lost, and(iiz) if a message is sent at timién « and it is delivered, then it
is delivered by the timenax{t + ¢, {time(a’) + ¢ }.

Do-RamBO allows sending of gossip messages at arbitrary times. Foptinpose of latency
analysis, we restrict the sending pattern: we assume tloat@ms@omaton sends messages at the
first possible time and at regular intervalsdothereafter, as measured on the local clock. Also,
non-send locally controlled events occur just once, witinme 0 on the local clock.

As with all quorum-based algorithms, operation livenegsetiels on all the processes in some
guorums remaining alive or not departing. We say that a cordigpn isinstalled when every
member of the configuration has been notified about the caatign. We say that an execution
a is (o ,e;r)-configuration-viabléf for every installed configuration, there exists a readgm,

R and a write-quoruml¥/, such that no process iR U IV fails or departs before the maximum
of (i) time 7 after the next configuration is installed, afvd) (time(a’) + e + 7.

We say that executiom satisfies(a/, 7)-recon-spacingif after «/, at least timer elapses
between the event that reports a new configuratigreport(c);) and any following event that
proposes a new configuratioredon(c, *);). In other words, after’, when the system stabilizes,
reconfigurations are not too frequent.

25

Executiona is said to satisfy(a/, e)-join-connectivityif after o/, for any two processes that
both joined the system at tinte— ¢, they know about each other by time

Executiona satisfies(o/, e + 7)-recon-readinessf after o/, everyrecon(c) event proposing
a new configuration includes a process c only if i joined at least time: + 7 ago. This, in
conjunction with(c/, e)-join-connectivity ensure that all the processes in active configurations
are aware of each other.

As in [2], [3], we assume that is ana’-normal execution, satisfyinga’,e 230)-configuration-
viability, («/, 8§)-recon-spacing(«’, e)-join-connectivity and (¢, e + ¢)-recon-readiness

The following theorems give the latency bounds on read,ewidind configuration upgrade
operations under the stated timing assumptions. Thesétgempply to Do-RAMBO because
in terms of messaging, our read-write protocol for an objscidentical to that of RmBO.
Moreover, the configuration upgrade operation is similath® previous RMBO algorithms,
where the only differences are semantic: we manage infeomater domain as opposed to
managing it per object. Hence, we forgo detailed proofs efftllowing theorems as they are
identical to those in [1]-[4] (except for the notation in daim vs. object indexing).

Theorem 3 (1]-[4]): Let o be an a’-normal execution of -RAMBO satisfying join-
connectivity, recon-readiness, recon-spacing, and amaigpn-viability. Lett > (time(a’) +
e + 6. Assumes is a process that receivedj@n-ack; prior to timet — e — , and neither fails
nor departs inv until after timet 4+ 80. Then if a read or write operation starts at procefs
objectx at timet, it completes by time + 8/.

Recall that message delay is boundeddibgnd local processing takes zero time. Since after
time ¢t messages are not lost and nodes do not fail and the noddimgtian operation has
already joined the service, the thesis of Theorem 3 follawmfthe following observation. The
bound oft + 8 represents the sum of a maximum duration of the two phasepreging a
read or a write operation. Each phase can be interrupted longoing reconfiguration where a
new quorum system is detected while processing messageélsef@urrent phase. From timing
assumptions, each phase can be interrupted exactly onueg ltfee result follows.

Theorem 4 (1]-[4]): Let o« be an o’-normal execution of [D-RAMBO satisfying
join-connectivity, recon-readiness, recon-spacing, figamation-viability. Assume thatt >
(time(’) + e + 6, and that acfg-upgrade(k); occurs at timet at nodei. Assume that node
i does not depart or fail beforle+ 46. Thencfg-upg-ack(k); occurs no later than time+ 44.

Configuration upgrade proceeds independently from cordtgur installation and any
read/write operations. The duration of configuration ugdgras bounded by the maximum
duration of the two phases involved in this operation, haheethesis of Theorem 4 follows.

V. IMPLEMENTATION AND EVALUATION

We now present the empirical results obtained from our imeletations of RMBo and Do-
RAamMBO on a LAN, comparing the performance of the two implementetiosing three different
experimental settings. We note that our two implementatidiffer only in the introduction of
domains in -RAamMBO, while all low-level sequencing of control and communioaticarried
out in response to client requests is essentially the sambetimsystems. Thus we believe that

26

100 900

900/ |—#—Do-Rambo 800 |——Do-Rambo
—m— Xd|-Rambq —m— |Xd|-Rambo

800 700

700

600

500

400

Avg. op. latency (msec)

300

200

100

0 T T T T T
. ; " . " - e % % B B B B B B
Number of objects Number of objects

Fig. 8. Left:Do-RAMBO vs. the composition ofX,| instances of RMBO; Right: Do-RAMBO vs. RaMBO for a
single “super-object” of X ;| objects.

our experimental results indeed reveal differences ingoerdnce that are due to the domain-
oriented approach implemented iOERAMBO. The results presented in this section support our
expectation that grouping objects into domains leads taangd performance.

We manually translated the Input/Output Automata spetifina of RamMBo and Do-RAMBO
to Java code. To mitigate the introduction of errors durnagslation, the implementers followed
a set of precise rules that guided the derivation of Java ¢odelrhe target platform consists
of a cluster with nodes running Linux that are dedicated ® gloject. The nodes are various
Pentium processors up to 900 MHz interconnected via a 108NHtpernet switch.

Each instance of RvBO and Do-RAMBO uses a single socket to receive messages over
TCP/IP, and maintains a list of open, outgoing connectiensdch process in its world. Both
algorithms use identical communication routines. The anpntation ofJoiner and Recon
services is also identical. Managementcoimmonstate variables in RvBO and Do-RAMBO,
such asworld, cmap, is identical. TheReader-Writerservice is implemented as described in
this paper. However, we make one simple optimization in thplémentation of @-RAMBO
relative to its specification. In the specification ooEBRAMBO we assume that each gossip
message is per object (containinglue tag, and object identifierof a single object). In the
implementation our messages may include information alpauitiple objects (at least one).
This simple optimization trivially preserves correctndsss worth to mention that the memory
location in our experiments is implemented as a Java Integer

Experiment 1: Grouping objects into a domain under a stable configuratibhis experiment
is designed to compare the performance af-RAMBO with | X,;| objects to that of d.X,|
instances of RMBO, where all processes perform concurrent read and writeatipas on all
objects in the domain. To eliminate the effects of reconfgjan (that are likely to further benefit
Do-RAMBO), a single stable configuration is used in this experiment.

In this experiment, there are ten nodes that do not leaveyitera and a single configuration
is installed that includes all of these nodes as memberscdhiguration does not change over
time and consists of majorities, of at least six nodes each.

As the domain increases, additional instances aMMBO service are needed to support new
objects added to the domain. For domain size one a singl@BR service suffices and we
expect to see same performance as that ofRAMBO with | X,| = 1. However, each addition
of RAMBO introduces overhead thatdRAMBO removes by consolidating all objects into
a single domain. Therefore, we expect thab-BaAmMBO will outperform the composition of
RAMBO services as the size of domain increases.

27

Figure 8 (left) presents average latency of read/write atpmrs (over all objects and all nodes)
as the number of objects grows from 1 to 32. The data pointesept averages collected over
a series of runs. We note that collecting data for the coniposbof RAMBO instances when the
number of objects I8 or larger §xRAMBO) was not possible, as our network platform was
not capable of executing concurrently more than eight ntsta of R\MBO.

A possible explanation of this phenomenon is the rapidlywgng communication burden
within the increasing number of /B0 components. The performance comparison of the two
systems substantiates our claim thad-BAMBO is a more practical system.

Experiment 2:Performance modeling of a domainiRamMBO under a stable configuratior.his
experiment is designed to compare the performance@RAaMBO to a single RMBO instance
that encapsulates objects of the entire domain in a singkcbthat we call super-object. This
is done to allow RMBO to “model” a domain with the goal of measuring its performana
this experiment we choose a single object from the domain lwohwa single chosen process
performs read and write operations.

Note that this experiment is designed to measure perforenanly — the semantics of objects
is changed when using the super-object approach to modehiderim RamMBO. With a super-
object, a write to a single object is accomplished by reathegsuper-object (the entire modeled
domain), modifying the value of the object, and writing tlipar-object. Therefore, if two writers
are attempting to concurrently perform write operationgwa different objects within a super-
object, then one write can possibly undo the effects of tierotvrite on the different object.
However, conducting the experiment is still meaningfulgseawriter/multiple-reader systems,
where the writer issues one write at the time per domain.

The setup for this experiment is as in Experiment 1. Here @&c¢he ten nodes is a member
of the configuration installed and used during data colbectivhere this configuration does not
change over time. Nodes do not fail or depart during the enyssrt.

Unlike in the previous experiment, this time a single ins&f RAMBO service is used.
Hence, there is no overhead associated with running meiRphder-Writerand Reconservices.
However, RRMBO sees the domain as a single object and it cannot benefit frerm#éntioned
earlier simple communication optimization applied t@{RAMBO. Meaning, DD-RAMBO is
aware of the individual objects that compose the domain andrespond to a read/write request
with a message that includes information pertaining to thecsic request. Whereas,ARBO
is not aware of the internal structure of the super-objeetick whenever a request is made
to access some object within the super-object the resuitiegsages must include the entire
super-object. We expect performance ofNBO to decrease as the size of the domain increases
— larger message size causes increase in message latenogtamadk throughput.

Figure 8 (right) presents the average latency of read/vayerations (over all nodes) as the
number of objects in the domain increases from 1 to 1000. Haet shows that D-RAMBO
outperforms the single super-objeca®B0. As the number of objects increases so does the
size of the messages exchanged lWRO, hence degrading operation latency. In comparison,
messages in B-RAMBO (in this experiment) include information for a single olijealy, hence
are of constant size. Therefore, as the size of the domareadses the message latency remains
unchanged, hence resulting in roughly constant latencydad and write operations.

Experiment 3:Impact of reconfigurationshis last experiment is designed to measure the impact
of reconfigurations on the performance ocbfRAMBO and RaAMBO systems. The system tested

28

implements a three object memory system. In the case@RRAMBO this means a domain of
size three. The RvBO-based system is a composition of threeM80 instances, one for each
object. More specifically, we measure the impact of recondigon on the throughput of each
system in terms of the number of read and write operationseeond.

For this experiment nine nodes were used. We run one copyceRBMBO per node. One
nodes act as a reconfigurer, where new configurations areitsethrwvith varying delays between
completion of one reconfiguration request and submissioanaftther to allow us to throttle
frequency of reconfiguration. We use two configurations afr foodes, with no members in
common, and the reconfigurer alternates between the two.rdihaining nodes continuously
perform read and write operations, where read and writeegiquiocally alternate, and three
nodes access the first object, three nodes access the sdgjectl and two nodes access the
third. There are a total of 500 read and write operationsateitl at each node, and each data
point on the graph in Figure 9 represents an average systemgtiput that is computed over
all operations and all nodes.

To assess the behavior ofaARBO, we used three instances of the implementation, where
three copies of RMBO are run on each node. Again, nine nodes are used and one isnchos
as a reconfigurer for eachARIBO service. Configurations used are as before. Total of eight
instances are chosen to perform the read/write test usiagséime setup as in the test of

Do-RAMBO. The data points on the graph represent system throughpiitishcomputed
The compelling reason supporting our expectation is tf

proposals to be submitted to the system at the same time.

latency. With increased latency and volume of messagesnt#ssages used by read and write

using average operation latency (as explained in tleeRAMBO part of this experiment).
As it was the case in Experiment 1, we expect that
6 M Do-Rambo
Rambo

¢ Composition
the Recon service utilizes, communication expensive 2
consensus to ensure total ordering of installed conf
Therefore, we expect the performance oANBO composition to degrade as the frequency
of reconfiguration increases. The data in Figure 9 indicttas Do-RAMBO outperforms the
operations also require more time for delivery and proogsdience negatively impacting the
latency of these operations.

A3

D
! System Hfoughput

(readfwrite operations per second)

the overhead caused by running multiple instances|of
Reader-Writerand Reconservice will result in the com-
position of RAMBO services to have poor performance.
urations. This is regardless of the fact that there is only Omsec 300msec 3000msec

. Delay between reconfiguration operations
one reconfigurer present in this experiment, since the ' linmilliseconds)
implementation allows for any number of configuratiopy o Throughput during reconfigurations.
composition of three RMBO services in the presence of reconfigurations. As expectkki s
reason for this behavior is thatARIBO running three instances of reconfiguration, requiring
consensus, generates a significant number of messages leaneg to increased network

VI. DISCUSSION

RAMBO [1] is an atomic memory service for dynamic networks. Sedveraposals were
recently made to make this service more practical [2]-[4], An implementation of RMBO
is presented in [7]. These successive improvements imgroke performance of RvBO

29

implementations, but support only a single object per sysiestance. To support multiple shared
atomic objects one has to use a composition of multipl1Bo instances, one per object. This
approach is inefficient. In this paper we presented a spatidic and an efficient implementation
of a memory service that supports multiple related objegtgglmuping them into domains.
We proved that the algorithms implement atomic objects. Wethodically derived a real
implementation of the service for a network-of-workstapand we compared its performance
to the performance of a similar implementation of the priegmR0 service.

One remaining interesting question is whether our apprazoh be used to implement a
snapshot operation for a set of related registers. We intemqirsue research in this direction.

Acknowledgements.The authors thank the anonymous referees for insightfulncents that
allowed us to improve the presentation of our work. We aldmawledge the question of one
referee regarding the possibility of implementing snapshemory using our approach.

REFERENCES

[1] N. Lynch and A. Shvartsman, “RAMBO: A reconfigurable aiormemory service for dynamic networks,” Proceedings
of 16th International Symposium on Distributed Computi2@02, pp. 173-190.

[2] S. Gilbert, N. Lynch, and A. Shvartsman, “RAMBO II: Rapjideconfigurable atomic memory for dynamic networks,” in
Proceedings of International Conference on DependabléeBys and Networks2003, pp. 259-268.

[8] ——, “RAMBO: A robust, reconfigurable atomic memory ser@ifor dynamic networks,” CSAIL,MIT, Tech. Rep., 2008.

[4] C. Georgiou, P. Musial, and A. Shvartsman, “Long-livedN\®BO: Trading knowledge for communicationTheoretical
Computer Sciengevol. 383(1), pp. 59-85, September 2007.

[5] N. Lynch and M. Tuttle, “Hierarchical correctness predbr distributed algorithms,” irProceedings of the 6th ACM
Symposium on Principles of Distributed Computiag87, pp. 137-151.

[6] N. Lynch, Distributed Algorithms Morgan Kaufmann Publishers, 1996.

[7] P. Musial and A. Shvartsman, “Implementing a reconfitleaatomic memory service for dynamic networks,” in
Proceedings of 18th International Parallel and Distribdt&ymposium2004.

[8] D. Gifford, “Weighted voting for replicated data,” iRProceedings of 7th ACM Symp. on Oper. Sys. Prit®79, pp.
150-162.

[9] R. Thomas, “A majority consensus approach to concugrerantrol for multiple copy databasesXCM Transactions on
Database Systemsol. 4(2), pp. 180-209, June 1979.

[10] E. Upfal and A. Wigderson, “How to share memory in a disited system,Journal of the ACMvol. 34(1), pp. 116-127,
January 1987.

[11] B. Awerbuch and P. Vitanyi, “Atomic shared register esg by asynchronous hardware,” Pnoceedings of 27th IEEE
Symposium on Foundations of Computer Scied@€86, pp. 233—243.

[12] H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing memory nadtly in message passing systenigurnal of the ACMvol.
42(1), pp. 124-142, January 1995.

[13] B. Englert and A. Shvartsman, “Graceful quorum recanfigion in a robust emulation of shared memory,Proceedings
of International Conference on Distributed Computer Syste€2000, pp. 454—-463.

[14] N. Lynch and A. Shvartsman, “Robust emulation of sharegmory using dynamic quorum-acknowledged broadcasts,” in
Proceedings of 27th International Symposium on Fault{Bslie Computing 1997, pp. 272-281.

[15] K. Birman and T. Joseph, “Exploiting virtual synchroimydistributed systems,” iRroceedings of the 11th ACM Symposium
on Operating Systems PrincipleBecember 1987.

[16] “Special issue on group communication servic&jdmmunications of the ACMol. 39(4), 1996.

[17] L. Lamport, “The part-time parliamentACM Transactions on Computer Systemal. 16(2), pp. 133-169, 1998.

30

