

Degradation Bubble

The aim of this tool is to cause specific performance degradation to the host application by
the collocation with “Bubbles”, which are stress test programs that contend on shared
resources, such as last level cache, memory bandwidth etc. Using “Bubbles” and collocation
with an application of interest, the main goal of this tool is to emulate the performance
degradation due to faults on real HW. The performance degradation due to periodic
appearance of faults with a given mean time to repair (MTTR) and mean time to failure is
emulated by co-running the host application with “Bubbles” which are tuned to periodically
stress the shared resources depending on the MTTR & MTTF values.

Basic Operation

The basic operation of this tool is based on “Bubbles” which are test programs used to
stress shared resources, such as last level cache, by allocating and performing random
memory accesses to an array, as defined in the Bubble Kernel module (BK), shown in Figure
1. The random array addresses to access, are produced by a fast random number generator
using linear shift registers (LFSR), in such a way that it prevents accessing the same address
twice before accessing all the allocated array entries once. The duration when “Bubble” is
performing memory accesses is defined in iterations, as shown in the main loop of the
Bubble Kernel module. The number of iterations “Bubble” will perform memory accesses, is
given as input and is defined as MTTR iterations. Another input is the number of iterations
bubble will not perform memory accesses, defined as MTTF iterations. The size of memory
that bubble will access is defined as bubble size as shown in Figure 1.

Bubble Kernel Characterization (BKC) module can be used on top of Bubble Kernel to
convert the MTTR and MTTF from milliseconds to the number of iterations where “Bubble”
of a given size is stressing or not stressing the memory subsystem while co-running a given
Host Application, as presented in Figure 2. In more detail bubble characterization is
explained in section Structure (Bubble_Kernel_Characterization).

aandre03
Typewritten Text

aandre03
Typewritten Text

aandre03
Typewritten Text

aandre03
Typewritten Text
The research leading to this tool is supported by the European FP7 project "Harnessing Performance Variability" (FP7‐ICT‐2013‐10‐612069, HARPA).

aandre03
Typewritten Text

Figure 1: Bubble Kernel

Figure 2: Bubble Kernel Characterization

Download & Installation

Requirements:
-bash version 4.1.2(1)-release, awk, gnuplot, perf version 2.6.32-358.6.1.el6.x86_64.debug,
linux taskset to pin jobs to a specific core

Note: gnuplot is used only in the validation phase (Section Wrappers)

Installation

The following steps describe how to install bubble tool and use the different scripts from
any directory.

a. Create a folder bin to your home directory in case that it doesn’t exist
1. cd $HOME
2. mkdir bin

b. Download bubble_tool_V1.tar.gz to $HOME/bin and decompress it using
1. tar -zxvf bubble_tool_V1.tar.gz

c. To install the tool first identify the start-up script on your shell doing ls -lart. It should
be either .bash_profile or .bashrc

d. In case that the start-up script doesn’t exists in your local $HOME directory create a
.bash_profile or .bashrc file

e. Once you have identified or created the start-up script, add the following line in your
script

1. export PATH=$PATH:$HOME/bin/bubble_tool_V1/bubble_kernel
2. export PATH=$PATH:$HOME/bin/bubble_tool_V1/bubble_kernel_characterization
3. export PATH=$PATH:$HOME/bin/bubble_tool_V1/wrappers
4. export

wrapper_config_file_dir="$HOME/bin/bubble_tool_V1/wrappers/wrapper_input_
configuration_file"

f. After adding the source files directories in your start-up script then log out and log
back in to use the script from any directory.

A sample of .bash_profile or .bashrc can be found in:

sample_bash_profile > $HOME/bin/bubble_tool_V1/

Use

To use the bubble tool first you need to compile the bubbleKernel.c. In the directory
bubble_tool_V1/bubble_kernel you can find the Makefile. Execute “Make all” to create the
bubbleKernel executable.

To use the rest of the bash scripts, you need once to change the permission to executable of
different scripts available in the tool. In the directory you can find the script bubble_tool_V1
change_scripts_mode.sh and by executing it you are making all the available scripts in the
tool executables.

> cd $HOME/bin/bubble_tool_V1

change_scripts_mode.sh $HOME/bin/bubble_tool_V1 > chmod +x

bash change_scripts_mode.sh $HOME/bin/bubble_tool_V1 >

After performing the previous steps the user can execute bubbleKernel,
bubble_kernel_characterization.sh and wrapper_periodic_stress from any directory. More
details on the input parameters needed to call each executable are presented in section
Structure.

An important constraint to use the bubble_tool is the isolation. You should run the tool in
isolation without running other processes. This is important to reduce the variations
induced by the other processes. Also variations can be induced by OS and can affect the
accuracy of the results the tool will produce. This can be reduced by performing multiple
confidence runs. Background processes or other process such as top running at the same
time the user is running the tool, can add some deviations on the results.

Structure

The tool is written in bash and C and is organized in the following subdirectories

+ bubble_kernel
+ bubble_kernel_characterizations
+ wrappers

A. Bubble Kernel

+ /bubbleKernel.c bubble_kernel

The directory consists of the bubbleKernel.c program written in C. bubble_kernel
bubbleKernel is a stress program which allocates an array and consist of a main loop where
it is performing random array accesses, as shown in Figure 1 and described in Basic
Operation Section.

A.1 Input parameters

bubbleKernel can be executed alone giving three arguments. It will be extended for more
parameters as discussed earlier.

1. bubble size in KB
2. MTTR iterations
3. MTTF iterations

An example on how to execute the Kernel alone is shown below
> bubbleKernel 12288 3000 50

Where:
bubble size = 12288KB
MTTF iterations = 3000
MTTR iterations = 50
Be careful the bubbleKernel does not terminate. To terminate the kernel, if you decide to
run it alone, you need to send termination signal such CTRL-C etc.

B. Bubble Kernel Characterization

+ /bubble_kernel_characterization.sh bubble_kernel_characterization

The directory consists of bubble_kernel_characterization.sh bubble_kernel_characterization
written in bash.

B.1. Functionality: Convert the MTTF & MTTR from milliseconds to MTTR
& MTTF iterations

The main goal of this module is to convert the MTTF and MTTR from milliseconds to the
corresponding number of iterations where bubble co-running with the host application is
stressing and not stressing the shared resources. The input parameters of BKC (bubble
kernel characterization) are shown in Table 1. The user should pass to the script the MTTF,
MTTR in milliseconds and the Host Application. The rest of the inputs are optional and in
case that they are not defined they are initialized with default values. To convert the MTTR
from milliseconds to iterations, the host application is co-running first with a bubble of a
given size which continuously is stressing memory, calling the bubble kernel passing as
parameter MTTF iterations = 0 and MTTR iteration a large integer number. From this step
we have the total time and the total number of iterations that bubble kernel passed
stressing memory, while co-running the host application, and then we calculate the time in
milliseconds per iteration. As previously mentioned the MTTR corresponds the time that
bubble should perform memory accesses and having the time of one iteration while bubble
is performing memory accesses, we can find the corresponding number of MTTR iterations
(MTTR iterations = MTTF (ms)/time per one iteration while stressing(ms)). To convert the
MTTF from milliseconds to the number of iterations that bubble should not perform
memory accesses , first we co-run the host application with a bubble (BK) that is not
accessing the array, passing as parameters the defined bubble size , MTTR iterations = 0 and
MTTF iterations a large integer number. In this step we conduct the total time and the total
number of iterations that bubble is not stressing memory, during the host application
runtime, and the time in milliseconds needed per iteration. To convert the MTTF from
milliseconds to iterations we divide the MTTF ms by the time needed for one iteration
(MTTF iterations = MTTF (ms)/time per iteration no stress bubble).
Another important step in the bubble kernel characterization module is to check if the Host
Application required performance degradation, specified by the MTTR (ms) and MTTF (ms),
can be reached by the co-location with the bubble of a given size. This can be done by
profiling the host application while running alone and co-running it with full stress bubble,
using performance counters monitoring tool (perf), to keep track on the IPC on both cases.
The slowdown on the host application IPC caused by bubble gives the maximum

performance degradation that can be reached to the host application from the co-location
with bubble.

B.2. Input Parameters

The user can run the bubble_kernel_characterization.sh from any directory by using the
input defined in Table 1. The first three parameter values MTTF (ms), MTTR (ms) and Host
Application should be defined to be able to use the bubble_kernel_characterization script.
The rest of the inputs are optional, in case that they are not defined default values are given
to them as shown in Table 1. The module will be extended to take as input the number of
bubble instances the user want to co-run with the host application and the type of bubble
(streaming vs random). In this version of the tool the bubble_kernel_characterization takes
only the first seven inputs defined in Table 1.

An example on how to run the bubble kernel characterization module giving as parameter
MTTF = 3000 (ms), MTTR = 50(ms) and host_application = “test_program input_file” is
shown below

> bubble_kernel_characterization.sh 3000 50 “test_program input”

Table 1: bubble_kernel_characterization input values

aandre03
Typewritten Text

aandre03
Typewritten Text
*

aandre03
Typewritten Text
*

aandre03
Typewritten Text

aandre03
Typewritten Text
* Not Implemented in this version

aandre03
Typewritten Text

B.3. Output

The output of the bubble_kernel_characterization.sh is saved in the file

The file is saved in the directory BKC.HostApplicationName.bubbleSize.out.
created in the current directory from where you run bubble_kernel_characterization_outdir

the script. An example of the output file is shown below:

C. Wrappers

+ wrappers/ wrapper_periodic_stress.sh
+ wrappers/ wrapper_input_configuration_file/default_config_file

The wrappers directory +wrappers consists of the wrapper_periodic_stress.sh script and
+wrapper_input_configuration_file directory where the default input parameters are passed
to the wrapper through the default_config_file. Be careful, do NOT REMOVE the
default_config_files, the wrapper is loading first the default values from it and the user can
change them by different options as presented in Table 2

C.1. Functionality: Cause a Specific Performance Degradation to the
Host Application defined by MTTF and MTTR
The main goal of this use case is to emulate the performance degradation that an
application can experience due to periodic appearance of faults. In presence of faults, with a
given MTTF and MTTR, during the host application run time, it is expected to suffer a
specific performance degradation, defined by MTTR/(MTTF + MTTR). During host
application run time, there are two phases, the faulty free phase, where the host application
is not accessing any faulty unit, defined by the mean time to failure (MTTF), and it is running
without experiencing any performance degradation. The next phase, referred as the faulty
phase, where the host application is accessing faulty units, defined by the mean time to
repair (MTTR), where extra overhead is added to repair from faults. This behaviour is
emulated by co-running the Host Application with a bubble (BK) which is stressing the
memory subsystem, contending periodically on the shared last level cache, based on the
MTTF and MTTR values. The phase where bubble is performing memory accesses emulates
the faulty phase and depends on the MTTR value. The phase where bubble is not

performing memory accesses emulates the faulty free phase and is defined by the MTTF
value. Both values are converted into iterations by the Bubble Kernel Characterization (BKC)
module as it is shown in Figure 3. Than the host application is co-running with the bubble
(BK) which takes as input the MTTR & MTTF number of iterations produced by the BKC
module and the bubble size. As have been mentioned before, the bubble kernel will be
extended to take as input the bubble type and number of instances, shown also in Figure 3.
The required performance degradation of the host application is reached by the co-location
with bubble by the sharing of the last level cache and the periodic stress that bubble
performs on this resource. The performance degradation that can be caused to the host
application is specified as the slowdown on the IPC of the host application while co-running
bubble compared to that of running alone (output from BKC module). At the end of this
procedure the required performance degradation is reached to the host application by co-
location with bubble, for more details refer to the subsection C.3. Output.

C.2. Input Parameters

Figure 3: Basic Functionality of wrapper_periodic_stress

The user can run the wrapper_periodic_stress.sh by giving different parameters through
different options. By default the input parameter values are the ones defined in the
default_config_file. The format of the file and different input options are presented below
with # presenting comments:

Wrapper Periodic Stress: default_config_file

The wrapper can be executed by giving different options through command line arguments
as presented in the help message below. To show the help message run
>wrapper_periodic_stress.sh
>wrapper_periodic_stress.sh –h or –help

To execute the wrapper you need to pass at least one option otherwise the help message
will be show. An example on how to run

>wrapper_periodic_stress.sh –MTTF 3000 –MTTR 50

-h | --help List the available command line
arguments of the
wrapper_periodic_stress

-host_application Follow the full command used to execute
the Host Application
Example -host_application "[full path to
executable] [options] [inputs] [etc]"
Host Application full command should be
given in " "

-v Selelct -v option in case that user want to
see a detailed report which includes
different statistics

-host_core Define the Processor Number to run the
Host Application
Example -host_core [number]
The number should be an existing
processor.

-bubble_core Define the Processor Number to run the
Bubble
Example -bubble_core [number]
The number should be an existing
processor.

-confidence_runs Define the total number of confidence
runs Example -confidence_runs [number].
Select an integer number.

-sampling Define the sampling interval in seconds to
keep perf statistics while co-running Host
Application with periodic bubble
This is used only for validation purpose in
the script produced at the end. (THIS
PART IS MISSING FROM THE TOOL AT
THIS VERSION)

-bubbleSize Define the size of memory that Bubble
will allocate and pressure.
Example -bubbleSize [size].
The [size] should be an integer number in
KB.

 -MTTF Select the MTTF of the periodic bubble in
ms.
MTTF corresponds to the time in ms
which is converted to iterations that
bubble will not stress shared resources

-MTTR Select the MTTR of the periodic bubble in
ms.
MTTR corresponds to the time in ms
which is converted to iterations where
bubble will stress shared resources

-config_file Define the full path of the configuration
file you want to use
Example -config_file
[/home/lndreu/configuration_file]
The configuration file should have the
format of the default_config_file as
shown in Bubble Tool
wrapper_input_configuration_file
directory
The default_config_file are the default
values of different parameters used in
Bubble Tool
Don't remove it. Change the default
values through command line options or
by selecting another configuration file.

Table 2: wrapper_periodic_stress input options

C.3. Output

The output of the wrapper_periodic_stress.sh is presented in the screen. If the user selected
to run the wrapper with the option –v (verbose) than a report is produced and is saved in
the file The file is saved in the directory HostApplicationName.bubbleSize.report.

created in the current directory from where you run the wrapper_periodic_stress_outdir
script. Examples of the results presented in the screen and in the report file are presented
below:

Wrapper_periodic_stress output in the screen

*****************Input Parameters selected to run wrapper_periodic_stress*********
Host Application:
/home/lndreu01/MemoryHierarchy/Threads_2/lfsr_bench/SPEC2006INST/benchspec/CPU2
006/403.gcc/exe/gcc_base.i386-m32-gcc42-nn
/home/lndreu01/MemoryHierarchy/Threads_2/lfsr_bench/SPEC2006INST/benchspec/CPU2
006/403.gcc/data/ref/input/166.i -o
/home/lndreu01/MemoryHierarchy/Threads_2/lfsr_bench/SPEC2006INST/benchspec/CPU2
006/403.gcc/data/ref/output/166.s
MTTF(ms): 3000
MTTR(ms): 50
Bubble Size selected to co-run host application: 12288(KB)
Core number to pin Host Application 6
Core number to pin Bubble 0
Total number of confidence runs 1
Verbose Mode Enabled

*************Wrapper called Bubble Kernel Characterization to convert MTTF & MTTR
from millisecons to iterations******

BKC Input parameters: MTTR = 50(ms) MTTF = 3000
BKC Output: MTTR iterations=223997.62456532145207460225(iterations) and MTTF
iterations=3562299484.88552369645531959950(iterations)
Host Application running alone average IPC and STDV: 1.12 0
Host Application co-running periodic stress bubbble average IPC and STDV: 1.09 0

*********************Wrapper_periodic_stress Output***************************
Host Application Required performance degradation:MTTR/(MTTF+MTTR) .016393
Host Application Performance Degradation caused by periodic Bubble: .026785

Wrapper periodic stress output: gcc_base.i386-m32-gcc42-nn.12288.report

