Using Grid for Micro-Architecture Research
Liqiang He, Christiana Ioannou, Marios Kleanthous, Yiannakis Sazeides
Σ – Computer Architecture Group
University of Cyprus/HiPEAC

cioannou@cs.ucy.ac.cy

ο – Computer Architecture Research Lab

- Conduct computer architecture research aiming to develop technology to address current and future challenges of Computer Systems
- Experimental Methodology
 - We perform thousands of simulation experiments weekly to investigate the potential of new techniques we develop
- EGEE infrastructure
 - Provides a high throughput and powerful computing infrastructure that matches our simulation computing needs

We use Grid for...

- Superscalar Out-of-Order Processor Simulation
 - Research on memory hierarchy optimizations
 - Research on reliability
- Thermal Aware Multi-Core Scheduler
 - Thermal simulator is used to compute temperature every 1 µs
 - Temperature estimation is computationally intensive
- Detailed Multi-Core Simulations
 - Multiple threads running parallel to simulate a multi-core processor
 - Relatively long simulation time
 - Requires powerful machines (memory size, CPU type, multithreading support, etc)

Our Experiences and Lessons with Grid

Using Storage Element (SE)

+ Allows to store input and output data on the SE
+ In case the user interface machine fails, it will not affect the jobs that are currently running on grid
- It requires to periodically delete unused files to avoid flooding SE

Using gLite

+ Multiple jobs can be submitted in less time than edg
- Usually only 80% of the jobs submitted were finished in less than 12 hours
- Redundant submission of the same job set can increase the percentage of finished jobs in 12 hours but it is an ad hoc solution

How to become more efficient

- Job Management
 - A good job manager is necessary for:
 - Job submission and Status checking
 - Resubmitting failed jobs and
 - Retrieving results
 - Currently we are developing scripts to manage our jobs
 - A more complete suit of such scripts/services can be very useful to increase efficiency
- Failures
 - A more detail report on the cause of failure will help to understand and deal with it
- Proxy
 - Initializing the proxy on every submission avoids any unexpected proxy expiration and job failures

Conclusions

- Grid has the potential to be a good match for our computational needs

Grid Wish List:

- Refinement of the job management scripts will improve the efficiency of grid usage
- 100% of the jobs submitted to finish on time

This research is supported by University of Cyprus and EGEE-II