
Correct Alignment of a Return-Address-Stack after Call and Return

Mispredictions

Veerle Desmet∗ Yiannakis Sazeides+ Constantinos Kourouyiannis+ Koen De Bosschere∗

∗Dept. of Electronics and Information Systems +Department of Computer Science

Ghent University, Belgium University of Cyprus, Nicosia

veerle.desmet@elis.UGent.be yanos@cs.ucy.ac.cy

koen.debosschere@elis.UGent.be cs01kc1@cs.ucy.ac.cy

Abstract

It is accepted that the alignment of a return-address-
stack can be preserved by checkpointing on branches
and recovering on branch mispredictions the top-of-
stack pointer. However, virtually all published litera-
ture, is vague or proposes sub-optimal algorithms on
how to repair the alignment of a return-address-stack
on call and return mispredictions. Possible manifesta-
tions of this ambiguity are lower performing implemen-
tations of return-address-stack mechanisms in proces-
sors and simulators. This paper suggests that on call
and return mispredictions the recovered top-of-stack
pointer should point to the next and previous stack po-
sition respectively relative to the checkpointed top-of-
stack pointer.

It is established experimentally that the proposed
method can improve the performance, over an other-
wise identical processor configuration, on the average
by 2% and by as much as 10%. This corresponds
to a drop in return-address mispredictions by 40%,
from 11.3% downto 6.7%. This work also consid-
ers whether the performance of one of the best known
return-address-stack methods, proposed several years
ago, is satisfactory with increasing pipeline depth. The
results show that the average performance of the method
is still satisfactory, but for some benchmarks appears
insufficient. This may suggest a need for better return-
address predictors.

1. Introduction

Deeply-pipelined superscalar processors rely on an
aggressive fetch mechanism to provide several useful
instructions every cycle. Central to any modern fetch

mechanism is a branch predictor that can quickly pro-
vide the target address of a branch. Performance can
be improved by fetching instructions from a predicted
path and entering them speculatively in the pipeline.
However, to maintain correctness, predicted instruc-
tions need to be verified against their actual target ad-
dress. This verification is typically performed several
cycles after the prediction, when the actual branch tar-
get is known.

In most cases predictions are correct and specula-
tive work is useful. Nevertheless, mispredictions occur
and speculation inevitably results in executing some
instructions along a mispredicted path. These mis-
speculated instructions affect the processor state, in-
cluding registers, caches and branch prediction struc-
tures, in a variety of ways [7]. Once a misprediction is
detected, it is sufficient for correctness to recover the
architectural state as if no mis-speculated instruction
was executed [6, 14]. It is also useful, for better per-
formance, to recover some microarchitectural state to
limit the detrimental effects of wrong path updates.
Recovery is facilitated by checkpointing, at the time of
a branch prediction, the information that needs to be
recovered in the case of a misprediction [6, 7, 14].

Branch prediction structures are probably the most
critical microarchitectural structures that need recov-
ery following a misprediction [3, 7, 13, 19]. High per-
formance processors employ a variety of branch pre-
dictors each aimed at a different type of branch and/or
branch behavior. As a consequence, different check-
point/recovery strategies may be required depending
on the branch type and branch predictor.

This paper is concerned with return-address pre-
dictors. Return instructions are executed frequently
in programs to steer the control flow at the end of
routines and several predictors have been proposed to



predict the return address of a routine [2, 4, 5, 7, 8,
9, 10, 13, 15, 16, 18]. Most of these predictors rely
on a return-address-stack (RAS) that is accessed us-
ing a top-of-stack pointer (TOS) [8]. Call instruc-
tions push addresses and return instructions pop them.
Such an algorithm ensures, with an infinite RAS, that
any balanced sequence of pushes and pops will lead
always to correct return address prediction.1 Alas,
mis-speculation can lead to incorrect updates of the
TOS and the RAS content [13]. Incorrect updates of
the TOS may result in a RAS that is not-aligned, i.e.
the TOS points to a wrong entry in the RAS, whereas
incorrect updates of RAS content may lead to a cor-
rupted RAS content. Therefore, most schemes employ
a repair mechanism to checkpoint parts of the RAS on
each branch instruction, so that when a branch mispre-
diction is detected the RAS alignment and/or content
is restored.

Most published work about return-address predic-
tors clearly states the procedure for recovering the
alignment from a conditional branch misprediction.
However, almost all previous literature, with the ex-
ception of one patent [18], is vague or proposes low-
performing algorithms for recovering the alignment of a
return-address predictor after a call/return mispredic-
tion. Possible manifestations of this ambiguity are low-
performing implementations of return-address predic-
tors in processors and simulators. Although, we have
no evidence for the former, for the latter we have ex-
amined several public domain processor simulators and
we have found some that implement the RAS alignment
recovery sub-optimally.

This paper presents a method for preserving align-
ment of a RAS after call and return mispredictions.
Specifically, it is suggested that on call and return mis-
predictions the recovered TOS should point to the next
and previous stack position respectively relative to the
checkpointed TOS pointer. This is the same recov-
ery method as the one proposed by [18]. However,
our paper quantifies, as far as we know for the first
time, the performance implications with and without
this alignment method. The paper also investigates
whether one of the best known return-address predic-
tors, proposed several years ago, still provides satisfac-
tory performance with increasing pipeline depth size.

The remainder of this paper is organized as follows.
Section 2 further motivates this paper and precisely de-
scribes how to correct the alignment of a RAS after a
call and return misprediction. After discussing related
work in Section 3, Section 4 details on the simulation
methodology. Section 5 evaluates the performance im-

1setjmps and longjumps lead to unbalanced push and pop
sequences, and can result in return mispredictions.

pact of correct–alignment and considers its significance
in combination with an uncorruption technique. Sec-
tion 5, also examines the effect of pipeline depth on
the RAS misprediction rate. Section 6 concludes the
paper.

2. Correct–Alignment after Call and Re-

turn Mispredictions

Let us assume a RAS-based return-address predic-
tor with a repair mechanism that checkpoints the TOS
before executing each branch. Figure 1 illustrates
for different types of branches where a checkpointed
TOS points when its corresponding branch gets mis-
predicted.

For a conditional branch, and other branch types
that do not update the RAS, the checkpointed TOS is
aligned. I.e. it points exactly to the position it was be-
fore the mispredicted branch entered the pipeline, thus
as if no wrong path TOS updates were performed. For
a mispredicted call, however, the checkpointed TOS is
not aligned because a call correctly pushes its return
address in the RAS even if its target address is mis-
predicted. Therefore, a mispredicted call should repair
the TOS to point to the next position of the check-
pointed TOS. I.e. to point to the mispredicted call’s
return address so that when the return, correspond-
ing to the call, is predicted it can get the right return
address. Similarly, if a return is mispredicted—actual
return address does not correspond to the predicted
address popped from RAS—the restored TOS should
point to the position previous to the mispredicted re-
turn address and not to the checkpointed TOS. This
aims to prevent a subsequent return prediction to get
the same address as a previously executed and mispre-
dicted return.

Henceforth, we refer to the above method that keeps
the RAS aligned as correct–alignment and the not-
aligned scheme as incorrect–alignment. We note that
the not-aligned approach is not incorrect but may be
lower performing in the case of call and return mispre-
dictions. It may be useful to also note that the restora-
tion of the correct alignment, after a misprediction, is
not sufficient for correct prediction since the stack’s
content may have been corrupted by mis-speculated
calls.

We describe two ways for implementing correct–
alignment. The first checkpoints the TOS before a
branch enters the pipeline, and depending on the type
of a mispredicted branch it recovers the TOS as dis-
cussed above: (i) to the checkpointed position for
branches that do not affect the RAS, (ii) to the po-
sition next to the checkpointed TOS for a call mis-



Correct Alignment
TOS

(a) Mispredicted conditional
branch

Correct Alignment return address for
mispredicted call

TOS

(b) Mispredicted call

Correct Alignment

TOS mispredicted
return address

(c) Mispredicted return

Figure 1. Correct–alignment. TOS = top-of-stack before the branch enters the pipeline. The recovered
top-of-stack should point to: the initial position after a mispredicted conditional branch (left); the
next position after a mispredicted call (center); the previous position after a mispredicted return
(right).

prediction, (iii) to the position previous to the check-
pointed TOS for a return misprediction. Alternatively,
we can checkpoint the TOS after a branch has specu-
latively updated the predictor structures and possibly
the RAS, and later simply restore the TOS to its check-
pointed position. The first method is the one suggested
by [18] and probably it is easier to implement because
it does not require knowing the type of a branch prior
to checkpointing.

We have examined several public domain processor
simulators and we have found the widely used Sim-
pleScalar simulator [1] and many of its derivatives to
implement the incorrect–alignment. This may indicate
that previous work may have drawn inaccurate conclu-
sions by understating or overstating the importance of
mechanisms that their significance is influenced by the
RAS performance. In Appendix A we describe how
to implement the correct–alignment of a RAS in Sim-
pleScalar. We note that HydraScalar [12] used in the
seminal work on return-address prediction by Skadron
et al. [13] model a RAS with correct–alignment.

In the remainder of this paper we attempt to
quantify empirically the importance of correct over
incorrect–alignment.

3. Related work

In this section we discuss previously proposed
return-address prediction techniques. These works are
categorized into RAS for performance and RAS for se-
curity and reliability. The fundamental difference be-
tween these two categories is that the former does not
have to guarantee the semantic correctness of the pre-

dicted return address whereas the latter does. The
discussion is mainly concerned with the branch mis-
prediction recovery strategy proposed by each of the
methods.

3.1. Return-Address-Stack for performance

Webb [16] pioneered a call/return stack that pre-
vents stack desynchronization due to false subroutine
return addresses by tagging each potential return ad-
dress with its associated call target.

Kaeli and Emma [8] explored a call/return detection
scheme with two stacks to solve target mispredictions
of moving target branches due to subroutine returns.

Steely et al. [15] use a ring buffer structure to pro-
vide return addresses. A ring pointer counter provides
a backup for recovering after a misprediction.

Eickemeyer [2] presents a call-return-stack and
tracks the number of calls in progress by a prediction
counter and an update counter. Whenever a mispre-
diction is detected, the update counter is copied into
the prediction counter. The recovery method proposed
in this work can preserve alignment after mispredicted
conditional and call branches, but is unclear if it can
after return mispredictions.

Hoyt et al. [4] claim a method with several pointer
checkpoints for recovering from branch mispredictions
as soon as possible. Although different actions are con-
sidered for verifying different branch types, it is not
clear that correct–alignment is preserved on call/return
mispredictions.

McMahan [10] uses distinct global stack pointers for
three pipeline stages in order to repair the TOS af-



ter mispredicted branches. The difference between the
handling of conditional and call/return mispredictions
is not considered.

Jourdan et al. [7] proposed a sophisticated list-like
return prediction mechanism, which is capable of elim-
inating return address corruption while on the mis-
speculated path. Their scheme as described can suffer
from incorrect–alignment.

Skadron et al. [13] evaluate a repair mechanism for a
RAS that restores the TOS pointer and the TOS con-
tent. This mechanism eliminates almost all effects of
stack corruption. However, this work did not consider
the effects of pipeline depth on RAS accuracy.

An Intel patent by Yeh [18] proposes a mechanism
that restores the TOS depending on the branch mis-
prediction type. The recovery algorithm implements
correct–alignment. However, it does not provide a
quantification of the importance of correct–alignment.

McDonald [9] describes a roll-back mechanism to re-
cover from a corrupted RAS when multiple calls and/or
returns have been speculatively executed prior to re-
solving a mispredicted conditional branch.

Hummel et al. [5] introduce a return address stack
mechanism where reads/writes are done at a fixed po-
sition while adjusting the entire stack content up or
down. This alternative stack mechanism also tracks
the relative number of call/return movements in order
to ensure correct recovery.

We note that almost all of the above proposals did
not discuss recovery from call and return mispredic-
tions.

3.2. Return-Address-Stacks for Reliability

Park and Lee [11] describe a technique for RAS over-
flow protection, and Ye and Kaeli [17] introduce a re-
liable return address stack for security purposes. The
aim of these works is to detect and recover from stack
smashing attacks, and therefore they rely on an (ad-
ditional) uncompromised RAS which is maintained by
updating the RAS during commit. Due to their dif-
ferent nature, these defense techniques cannot benefit
from correct–alignment.

4. Methodology

We use SimpleScalar’s cycle accurate simulator sim-
outorder to implement both correct and incorrect–
alignment. The fix required to model correct–
alignment in SimpleScalar is described in Appendix A.
Table 1 summarizes the parameters for our baseline
setup.

Parameter description Setting

RAS 32 entries
Pipeline depth 20 stages
Instruction-window 128
Fetch/Decode/Issue/
Commit width

up to 4 instructions per
cycle

Functional Units 4 INT ALU’s, 1 INT
mult/div, 4 FP ALU’s, 1
FP mult/div

Memory ports 2
Branch Predictor hybrid: 16 KiB meta,

16 KiB bimodal, 32 KiB
gshare (16 bits history)

BTB 2048-entry, 2-way
Misprediction penalty 2 cycles on misfetch
L1 data-cache 8 KiB, 4-way, 64 B blocks,

LRU, 2-cycle latency
L1 instruction-cache 16KiB, 2-way, 64B blocks,

LRU, 2-cycle latency
L2 unified: 2 MiB, 8-way,

256B blocks, LRU, 7-cycle
latency

Table 1. Baseline configuration.

For representative return-address behavior we se-
lected the benchmarks from SPEC95 and SPEC2000
with more than one-million committed returns. All
benchmarks were compiled using the gcc compiler ver-
sion 2.6.3 with optimizations flag -O3. For the SPEC95
programs we consider complete execution with train in-
puts, while for SPEC2000 we measure for a fixed num-
ber of committed instructions after fast-forwarding us-
ing reference inputs. Table 2 shows the basic statistics
of the benchmarks used in this study.

5. Evaluation

In this section, we first evaluate the effect of correct–
alignment and then consider the effects of pipeline
depth on RAS performance.

The performance metric used to compare different
RAS mechanisms is RAS misprediction rate, i.e. the
number of incorrectly predicted return address predic-
tions per committed return. Moreover, we provide
speedup—measured in IPC (Instructions Per Cycle)
improvement over a baseline configuration—to stress
the importance of correct–alignment on overall perfor-
mance.



0%

5%

10%

15%

20%

25%

30%

c
o
m

p
re

s
s
9
5

g
c
c
9
5

g
o
9
5

ijp
e
g
9
5

li9
5

m
8
8
k
s
im

9
5

v
o
rt

e
x
9
5

m
c
f0

0

p
a
rs

e
r0

0

v
o
rt

e
x
0
0

m
e
s
a
0
0

a
v
e
ra

g
e

R
A

S
m

is
p
re

d
ic

ti
o
n

ra
te

Incorrect-Alignment

Correct-Alignment

(a) Return address misprediction rate

0,94

0,96

0,98

1,00

1,02

1,04

1,06

1,08

1,10

1,12

c
o
m

p
re

s
s
9
5

g
c
c
9
5

g
o
9
5

ijp
e
g
9
5

li9
5

m
8
8
k
s
im

9
5

v
o
rt

e
x
9
5

m
c
f0

0

p
a
rs

e
r0

0

v
o
rt

e
x
0
0

m
e
s
a
0
0

a
v
e
ra

g
e

S
p
e
e
d
u
p

Incorrect-Alignment

Correct-Alignment

(b) Speedup over incorrect–alignment

Figure 2. Correct–alignment versus incorrect–alignment.

Benchmark Fast Comm Call Ret Call Ret
fwd Inst Misp Misp

compress95 0 443 2.8 2.8 0.0 3.8
gcc95 0 177 1.4 1.4 0.5 6.9
go95 0 133 1.0 1.0 0.0 18.5
ijpeg95 0 553 0.2 0.2 1.4 11.7
li95 0 202 3.0 2.9 2.3 7.4
m88ksim95 0 241 4.0 4.0 0.0 0.1
vortex95 0 101 2.0 2.0 0.0 1.0
mcf00 2,000 100 1.3 1.3 0.0 9.5
parser00 400 100 2.5 2.5 0.0 9.1
vortex00 100 100 2.0 2.0 0.0 0.4
mesa00 350 350 1.2 1.2 0.0 5.8
average 1.9 1.9 0.4 6.7

Table 2. Benchmark summary: number of
fast-forwarded and committed instructions in
millions, fraction of instructions that are calls
and returns, and the call/return mispredic-
tion rates in the baseline setup with correct–
alignment.

5.1. Correct–Alignment

Figure 2(a) compares the RAS misprediction rate
between incorrect–alignment and correct–alignment
for the different benchmarks. Obviously, correct–
alignment is better over all benchmarks. Recall that
this improvement is without any apparent additional
hardware cost. On average, the misprediction rate for
return-addresses is decreased from 11.3% downto 6.7%,
or a reduction by 40%. In terms of speedup (see Fig-
ure 2(b)), correct–alignment improves overall perfor-
mance by 2% on average, and up to 10% for li95.

Thus far, we assumed a repair mechanism that re-
covers only the TOS. Skadron et al. [13] demonstrate
that the additional checkpointing of the TOS content
eliminates almost all return address mispredictions be-
cause it solves some forms of stack corruption.

Figure 3 illustrates that uncorruption (rightmost bar
for each benchmark), as proposed by Skadron et al., is
effective for decreasing misprediction rate and increas-
ing speedup. Misprediction rate is reduced from 6.7%
downto 1.4% on average. Figure 3 also shows that
the potential of the RAS content repair mechanism
can be understated significantly, often by more than
10%, when the stack is incorrectly-aligned. Specifi-
cally, Skadron’s content-recovery reduces by 63% the
mispredictions in a processor with incorrect–alignment,
whereas the reduction is 78% with correct–alignment.

5.2. Call-Uncorruption Optimization

An additional optimization that we considered, on
top of correct–alignment, is on a call misprediction to
re-write the call’s return address into the RAS entry
pointed by the recovered TOS. This way, we ensure
that after a call misprediction the return address is
uncorrupted. Importantly, the call-uncorruption opti-
mization is available without additional checkpointing
hardware overhead since the return address for a call
can easily be computed using the call’s address.

Simulations show, however, that the call-
uncorruption optimization does not affect the
misprediction rate (only gcc95 and li95 have a slight
improvement) since RAS corruptions after a call
misprediction are rarely observed in our setup. A
possible reason for this, is the relatively small refetch



0%

5%

10%

15%

20%

25%

30%

c
o
m

p
re

s
s
9
5

g
c
c
9
5

g
o
9
5

ijp
e
g
9
5

li9
5

m
8
8
k
s
im

9
5

v
o
rt

e
x
9
5

m
c
f0

0

p
a
rs

e
r0

0

v
o
rt

e
x
0
0

m
e
s
a
0
0

a
v
e
ra

g
e

R
A

S
m

is
p
re

d
ic

ti
o
n

ra
te

Incorrect-alignment

Correct-alignment

Skadron et al. with incorrect-alignment

Skadron et al. [13]

0,90

0,95

1,00

1,05

1,10

1,15

1,20

c
o
m

p
re

s
s
9
5

g
c
c
9
5

g
o
9
5

ijp
e
g
9
5

li9
5

m
8
8
k
s
im

9
5

v
o
rt

e
x
9
5

m
c
f0

0

p
a
rs

e
r0

0

v
o
rt

e
x
0
0

m
e
s
a
0
0

a
v
e
ra

g
e

S
p
e
e
d
u
p

Incorrect-alignment

Correct-alignment

Skadron et al. with incorrect-alignment

Skadron et al. [13]

Figure 3. Other repair mechanisms: uncorruption can be understated if the RAS is not correctly-
aligned. Left: return address misprediction rate. Right: Speedup over incorrect–alignment.

penalty for direct call mispredictions. In a different
setup with larger refetch penalty, the call-uncorruption
optimization might be useful for restoring part of the
RAS content.

5.3. Effects of Deeper Pipelines

One of the best performing return-address predic-
tors was proposed in [13]. However, the evaluation of
that predictor did not consider the effects of increas-
ing pipeline depth which has grown considerably in re-
cent years. As pipelines deepen, the penalty associ-
ated with a branch misprediction increases and more
(mis-)speculative instructions—including branches—
enter the pipeline. This increase in mis-speculated in-
structions per misprediction may corrupt more severely
the content of a RAS. Figure 4 presents the effects of
the pipeline depth and RAS size for the repair mecha-
nism in [13].

Fig. 4(a) shows the average RAS misprediction rate
and the IPC relative to a scheme with full RAS content
checkpointing/recovery. The results show that these
two metrics get slightly worse with deeper pipelines.
This behavior is observed irrespective of the RAS size.
This may be perceived as satisfactory, however, a closer
examination, shown in Figure 4(b), reveals that for
some benchmarks, such as li95 and parser00, the RAS
misprediction rate increases significantly with deeper
pipelines and the IPC relative to full RAS recovery
drops seriously. Note that the results in Figure 4(b)
were obtained using a 32-entry RAS.

Overall the results in Figure 4 suggest that for some
benchmarks with increasing pipeline depth a RAS suf-
fers from more corruption and that there is a need for

more efficient RAS content recovery mechanisms.

Impact of Pipeline Depth on RAS Corruption

The remainder of this section analyzes the impact
of pipeline depth on RAS corruption. More specifi-
cally, after each misprediction recovery we determine
the distance to the RAS entries, relative to the recov-
ered TOS, that are corrupted. These RAS corruptions
are detected by comparing the speculatively updated
RAS against an uncorrupted RAS. Figure 5 shows the
distribution of the corruption distances for a RAS with
32 entries. A corruption distance of 0, i.e. the TOS
data is corrupted, is denoted as tos. The largest pos-
sible corruption distance with a 32 entry RAS is 31.
It is important to note that the RAS entries at dis-
tance 1 and 31 are the two neighboring entries of the
recovered TOS in the backward and forward direction
respectively.

The data in Fig. 5(a) show that the average num-
ber of RAS corruptions per kilo instructions increases
with deeper pipelines but not the corruption distance.
Clearly, corruption is concentrated around the recov-
ered TOS, both in the backward and forward direction.
This concentration of corruption around the TOS sug-
gests that the corruption in the backward direction oc-
curs mainly when there are more pops than pushes in
the mis-speculated path, whereas the corruption in the
forward direction is due to more pushes than pops. An
important difference between forward and backward
corruption is that the forward corruption is usually not
detrimental to performance because correct path exe-
cution will overwrite the forward corrupted entries with
useful information. In contrast, backward RAS corrup-



0%

1%

2%

3%

4%

5%

6%

5 10 15 20 25 30

pipeline stages

R
A

S
m

is
p
re

d
ic

ti
o
n

ra
te

(a
v
e
ra

g
e
) 8-entry RAS

16-entry RAS

32-entry RAS

64-entry RAS

8192-entry RAS

0,88

0,90

0,92

0,94

0,96

0,98

1,00

1,02

5 10 15 20 25 30

pipeline stages

re
la

ti
v
e

IP
C

to
fu

ll
R

A
S

re
c
o
v
e
ry

8-entry RAS

16-entry RAS

32-entry RAS

64-entry RAS

(a) Average influence of RAS size

0%

1%

2%

3%

4%

5%

6%

c
o
m

p
re

s
s
9
5

g
c
c
9
5

g
o
9
5

ijp
e
g
9
5

li9
5

m
8
8
k
s
im

9
5

v
o
rt

e
x
9
5

m
c
f0

0

p
a
rs

e
r0

0

v
o
rt

e
x
0
0

m
e
s
a
0
0

a
v
e
ra

g
e

R
A

S
m

is
p
re

d
ic

ti
o
n

ra
te

5 stages
10 stages
15 stages
20 stages
25 stages
30 stages

0,88

0,9

0,92

0,94

0,96

0,98

1

1,02

c
o
m

p
re

s
s
9
5

g
c
c
9
5

g
o
9
5

ijp
e
g
9
5

li9
5

m
8
8
k
s
im

9
5

v
o
rt

e
x
9
5

m
c
f0

0

p
a
rs

e
r0

0

v
o
rt

e
x
0
0

m
e
s
a
0
0

a
v
e
ra

g
e

re
la

ti
v
e

IP
C

to
fu

ll
R

A
S

re
c
o
v
e
ry

5 stages

10 stages

15 stages
20 stages

25 stages

30 stages

(b) Per benchmark behavior for a 32-entry RAS

Figure 4. Influence of deeper pipelines.

tion can not be cured unless the corrupted RAS entries
are restored. The above indicates that the evaluated
RAS predictor [13] can recover most of the backward
corruption because it is capable of restoring the TOS
content.

Fig. 5(b) presents the breakdown of RAS corrup-
tion distance with a 20-stage pipeline for all bench-
marks. For most programs the corruption behavior
is similar to the average shown in Fig. 5(a). However,
li95 and parser00 have substantial corruption at larger
distances. This illuminates why only recovering the
TOS content is not sufficient for these two benchmarks
and thus the large performance degradation observed
in Fig. 4.

6. Conclusion

This paper presents a method for preserving the
alignment of a RAS after different types of branch mis-
predictions. Specifically it is argued that if the TOS
is checkpointed before each branch then the recovered
TOS should point to: (i) its checkpointed position after
a mispredicted conditional or other branch type that
does not update the RAS; (ii) the next position af-
ter a mispredicted call; (iii) the previous position after
a mispredicted return. We demonstrate that correct–
alignment improves average speedup by 2%, and up
to 10%. It is also shown that the significance of a
previously proposed RAS repair mechanism can be un-
derstated significantly, often by more than 10%, when
the stack is incorrectly aligned. This, demonstrates
that by relying on an incorrectly–aligned RAS, previ-



tos tos tos tos tos tos1 1 1 1 1 130
30 30 30 30 30

31
31 31 31 31 31

0

1

2

3

4

5

6

7

8

5 10 15 20 25 30

pipeline s tages

R
A

S
c
o

rr
u

p
ti
o

n
s

p
e

r
k
il
o

in
s
tr

u
c
ti
o

n
s

31
...dis tance relative to recovered TOS
1
tos

(a) Average influence of pipeline depth

tos tos

tos

tos
tos tos

tos

tos

1

1

1

2

2
3
28
29

30 30

30

31
31

31

31

31

31

31

tos

1

1 1

29
30

30

3131

0

1

2

3

4

5

6

7

8

c
o
m

p
re

s
s
9
5

g
c
c
9
5

g
o
9
5

ijp
e
g
9
5

li9
5

m
8
8
k
s
im

9
5

v
o
rt

e
x
9
5

m
c
f0

0

p
a
rs

e
r0

0

v
o
rt

e
x
0
0

m
e
s
a
0
0

R
A

S
c
o
rr

u
p
ti
o
n
s

p
e
r

k
ilo

in
s
tr

u
c
ti
o
n
s 31

... dis tance relative to recovered TOS
1
tos

(b) Per benchmark behavior for a 20-stage pipeline

Figure 5. RAS corruptions per kilo instructions: break down for a 32-entry RAS. Label ’x’ marks the
contribution of RAS corruptions at distance ’x’ relative to the recovered TOS.

ous work may have drawn inaccurate conclusions. We
further propose an optimized recovery scheme—call-
uncorruption—which is able to eliminate some RAS
corruptions without requiring additional hardware. Fi-
nally, we evaluate the effect of increasing pipeline depth
on one of the best known RAS predictors and conclude
that on average its performance is satisfactory, but not
for all programs. This may indicate a need for new
return-address predictors that can recover more con-
tent after misprediction.

Acknowledgments

Veerle Desmet is supported by a grant from the
Flemish Institute for the Promotion of the Scientific-
Technological Research in the Industry (IWT) and
by the Fund for Scientific Research-Flanders (FWO).
Yiannakis Sazeides research activity is supported by
Intel, University of Cyprus and HiPEAC.

Appendix A

To preserve correct–alignment in SimpleScalar [1]
as well as in some derived simulators, a small fix is
needed in bpred.c in the function bpred lookup() as in-
dicated in Figure 6. We like to note that this code
purely models correct–alignment as stated in section 2.
It provides neither top-of-stack content repair nor the
call-uncorruption optimization discussed in section 5.2.

/* record pre-pop TOS; if this branch is executed speculatively

* and is squashed, we'll restore the TOS and hope the data

* wasn't corrupted in the meantime. */

if (pred->retstack.size)

*stack_recover_idx = pred->retstack.tos;

else

*stack_recover_idx = 0;

/* if this is a return, pop return-address stack */

if (is_return && pred->retstack.size)

{

md_addr_t target = pred->retstack.stack[pred->retstack.tos].target;

pred->retstack.tos = (pred->retstack.tos + pred->retstack.size - 1)

% pred->retstack.size;

pred->retstack_pops++;

dir_update_ptr->dir.ras = TRUE; /* using RAS here */

*stack_recover_idx = pred->retstack.tos; /* Correct—Alignment */

return target;

}

#ifndef RAS_BUG_COMPATIBLE

/* if function call, push return-address onto return-address stack */

if (is_call && pred->retstack.size)

{

pred->retstack.tos = (pred->retstack.tos + 1) % pred->retstack.size;

pred->retstack.stack[pred->retstack.tos].target =

baddr + sizeof(md_inst_t);

pred->retstack_pushes++;

*stack_recover_idx = pred->retstack.tos; /* Correct—Alignment */

}

#endif /* !RAS_BUG_COMPATIBLE */

Figure 6. Changes needed in SimpleScalar’s
bpred lookup() to preserve correct–
alignment.

References

[1] D. Burger, T. M. Austin, and S. Bennett. Evalu-
ating future microprocessors: The SimpleScalar Tool
Set. Technical report, Computer Sciences Department,
University of Wisconsin-Madison, July 1996.



[2] J. Eickemeyer. International Business Machines Cor-
poration. Computer system branch prediction of
subroutine returns. United State Patent Number

5,313,634. May 1994.

[3] E. Hao, P.-Y. Chang, and Y. N. Patt. The effect
of speculatively updating branch history on branch
prediction accuracy, revisited. In Proceedings of the

27th Annual International Symposium on Microarchi-

tecture, pages 228–232, Nov. 1994.

[4] B. D. Hoyt, G. J. Hinton, D. B. Papworth, A. K.
Gupta, M. A. Fetterman, S. Natarajan, S. Shenoy, and
R. V. D’Sa. Intel Corporation. Method and apparatus
for implementing a four stage branch resolution sys-
tem in a computer processor. European Patent Number

661,625. July 1995.

[5] V. E. Hummel and H. Sharangpani. Intel Corporation.
Return register stack target predictor. United State

Patent Number 6,560,696. May 2003.

[6] W.-M. W. Hwu and Y. N. Patt. Checkpoint repair
for high-performance out-of-order execution machines.
IEEE Transactions on Computers, 36(12):1496–1514,
Dec. 1987.

[7] S. Jourdan, J. Stark, T.-H. Hsing, and Y. N. Patt.
The effects of mispredicted-path execution on branch
prediction structures. In Proceedings of the 5th In-

ternational Conference on Parallel Architectures and

Compilation Techniques, pages 58–67, Oct. 1996.

[8] D. R. Kaeli and P. G. Emma. Branch history table
prediction of moving target branches due to subrou-
tine returns. In Proceedings of the 18th Annual Inter-

national Symposium on Computer Architecture, pages
34–42, May 1991.

[9] T. C. McDonald. IP-First, LLC. Method and ap-
paratus for correcting an internal call/return stack
in a microprocessor that speculatively executes call
and return instrcutions. United State Patent Number

6,314,514. Nov. 2001.

[10] S. C. McMahan. Cyrix Corporation. Branch pro-
cessing unit with a return stack including repair us-
ing pointers from different pipe stages. United State

Patent Number 5,706,491. Jan. 1998.

[11] Y.-J. Park and G. Lee. Repairing return address stack
for buffer overflow protection. In Proceedings of the

first conference on Computing Frontiers, pages 335–
342, Apr. 2004.

[12] K. Skadron and P. S. Ahuja. HydraScalar: A
multipath-capable simulator. Newsletter of the IEEE

Technical Committee on Computer Architecture, Jan.
2001.

[13] K. Skadron, P. S. Ahuja, M. Martonosi, and D. W.
Clark. Improving prediction for procedure returns
with return-address-stack repair mechanisms. In Pro-

ceedings of the 31st Annual International Symposium

on Microarchitecture, pages 259–271, Nov. 1998.

[14] J. E. Smith and A. R. Pleszkun. Implementing precise
interrupts in pipelined processors. IEEE Transactions

on Computers, 37(5):562–573, May 1988.

[15] S. C. Steely and D. J. Sager. Digital Equipment Cor-
poration. Subroutine return prediction mechanism us-
ing ring buffer and comparing predicated address with
actual address to validate or flush the pipeline. Unites

States Patent Number 5,179,673. Jan. 1993.
[16] C. F. Webb. Subroutine call/return stack. IBM Tech-

nical Disclosure Bulletin, 30(11):221–225, Apr. 1988.
[17] D. Ye and D. Kaeli. A reliable return address stack:

microarchitectural features to defeat stack smash-
ing. ACM SIGARCH Computer Architecture News,
33(1):73–80, Mar. 2005.

[18] T.-Y. Yeh. Intel Corporation. Return address pre-
dictor that uses branch instructions to track a last
valid return address. United State Patent Number

6,253,315. June 2001.
[19] T.-Y. Yeh and Y. N. Patt. A comprehensive instruc-

tion fetch mechanism for a processor supporting spec-
ulative execution. In Proceedings of the 25th Annual

International Symposium on Microarchitecture, pages
129–139, Nov. 1992.


