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Abstract. Virtually all previous work on processor reliability addresses
problems due to faults in architectural structures, such as the register
file or caches. However, faults can happen in non-architectural resources,
such as predictors and replacement bits. Although non-architectural faults
do not affect correctness they can degrade overall processor performance
significantly and, therefore, may render them as important to deal with
as architectural faults.
In this work we quantify the performance impact of faults in several non-
architectural array structures found in a high-end processor. The analy-
sis reveals that performance can degrade significantly, up to 53%, even
with a small fraction—0.5%—of faulty bits. Also, it is shown that not
all structures are equally vulnerable to faults. In particular, for the pro-
cessor configuration used in this study, the return-address-stack and the
conditional branch predictor are found to be the most sensitive whereas
the replacement arrays of the instruction and data cache are the most
resilient.

1 Introduction

As technology scaling trends are leading us toward smaller feature sizes and
larger transistor budgets per chip, faults are becoming more frequent [3]. These
developments present to the processor designer both opportunities and chal-
lenges. One of these challenges is to provide reliable operation with little or no
performance degradation in the presence of faults. Feature miniaturization and
narrower design margins are increasing the vulnerability of chips to faults. For
instance, process variation is known to result in as much as 30% variation in
maximum frequency and 20x variation in leakage power [3]. Process variation
also increases performance unpredictability and heterogeneous performance in
multicores.

In the past, because faults were more rare, it was acceptable for low-end sys-
tems to offer little or no protection against faults. As a result, mainly processors
used in high availability systems employed advanced fault-tolerance techniques,
such as using redundant and spare units [1,12,15,18]. With future technology
projections pointing to increased process variability and faults, a more general
need for fault-tolerance techniques is emerging. Furthermore, some of the known
fault-tolerance techniques relevant to high-end systems may not be applicable to
processors targeting markets where volume dictates profit and cost requirements
are stringent.

Previous microarchitectural studies on processor reliability and yield im-
provement aim to solve the problem for architectural resources such as a cache
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or an execution unit [5,8,16]. Faults in non-architectural resources, such as a
predictor or a replacement array, received little attention because they do not
affect correctness.

However, faults in these structures can affect performance, due to more
mispredictions and misses, and may need to be addressed to ensure accept-
able performance levels, in particular for applications where performance is of
paramount importance, e.g. real time systems that can not afford missing dead-
lines. Also, non-architectural faults can result in energy inefficiency for the extra
work needed due to the additional mispredictions and/or cache misses they cause.

Let us also stress that if architectural resources are well-protected and the
frequency of faults keeps increasing eventually non-architectural resources, if left
unprotected, will become the performance bottleneck.

In this paper we investigate the significance of protecting non-architectural
arrays from faults. We quantify the performance implications of faults in six dif-
ferent non-architectural array-based units of a high-end out-of-order processor:
LRU array for the level-1 instruction cache, LRU array for the level-1 data cache,
line-predictor, memory dependence predictor, conditional branch predictor and
the return-address-stack. The results show that performance can degrade signif-
icantly even with a small fraction of faulty bits. Also, it is shown that not all
units are equally vulnerable to faults.

The remainder of this paper is organized as follows. Section 2 discusses fault
modeling of non-architectural array structures and further motivates the need
for protection of non-architectural structures from faults. Section 3 overviews the
used methodology, Section 4 discusses the experimental results, and Section 5
points at related work before Section 6 concludes the paper.

2 Faults in Non-Architectural Structures

Non-architectural structures can be divided into arrays, such as prediction ar-
rays, and random logic, such as an adder used for computing the address of
prefetched data. The focus in this paper is on faults in non-architectural arrays.
A fault in an array may occur in several places like bit-line, word-line, cell, driver,
decoder etc. This work considers only faulty cells.

A large number of non-architectural array units can be found in modern pro-
cessors: arrays used for prediction, such as a branch direction predictor, LRU
arrays useful for guiding replacement in various set-associative tables, and hys-
teresis arrays used to control updates of various predictors.

The study focuses on the impact of permanent faults, such as those due
to manufacturing imperfections and wear-out, and faults caused by process-
variability. Transient faults, with short duration, are not an issue for non-architec-
tural resources, because they occur very infrequently and when they occur they
can be corrected as soon as the structure gets updated.

The impact of faults in non-architectural structures can vary widely depend-
ing on the fault-model, the microarchitecture, and the architectural properties
of programs.

2.1 Fault Model

The choice of the model used to study the effects of faults in non-architectural
arrays can have a significant bearing on our observations. There are several
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parameters that need to be considered: (i) the number of faults, (ii) the location
of the faults in the array, and (iii) the fault model of each fault. The more faults
the more potential for degradation. Also, a fault in a frequently used entry
is likely to have a bigger performance impact than a fault in an infrequently
accessed entry. Similarly, a cell stuck-at-1 may have more impact if the bit stored
in the cell is more biased toward zero.

The physical principles that will determine the value of the above parameters
in the future are poorly understood and difficult to predict accurately. So we
make the following assumptions about them.

Regarding the number of faults it is important to consider scenarios covering
a range of faults from small to large. In this work we will consider scenarios where
0.125% and 0.5% of the cells of non-architectural arrays are faulty. Although
currently, manufacturers do not expect to ship chips with 1,000’s of faults, in
the future power constraints may require operating circuits with voltage below
Vcc-min at the expense of a larger number of unreliable entries [22].

As far as the physical fault distribution, it is generally known that faults,
at least due to manufacturing [12] and process variation [20], are distributed
according to a random component—expressing the non-determinism of fault
locations—and a spatial component—expressing the clustering of faults. In this
work we consider faults at random locations where the fault cluster size is one
cell. The effects of multi-cell fault clusters will be investigated in subsequent
work.

It is understood that various faulty behaviors can be observed in arrays and
several fault models have been proposed in the literature to capture them, such
as random, inverse, stuck-at, etc [7]. We assume stuck-at faults with each faulty
cell assigned randomly either 0 or 1.

2.2 Non-architectural Arrays and their Fault Semantics

Today’s high end processor employ several non-architectural arrays for improving
performance. Such arrays are used to predict: next instruction line, direction
for conditional branches, target for branches (especially for return and indirect
branches), dependence between load and store instructions, cache hit/miss, cache
way and cache bank etc. In addition, non-architectural arrays are used to guide
replacement in set associative caches (LRU bits) or to guide the updating of
predictors (hysteresis bits).

Although faults can occur in any of these arrays, the semantics of a faulty
cell varies depending on how the value in a faulty cell is used in a pipeline
and in particular on how a faulty cell influences performance. For example, a
faulty cell in a conditional predictor, a return-address-stack and an indirect-jump
predictor can cause a misprediction and a pipeline flush and, therefore, have a
large misprediction penalty. In contrast, a faulty line-predictor cell has a smaller
misprediction penalty because a line-predictor is usually corrected by a more
accurate predictor within one or two cycles.

Faults in LRU replacement arrays may cause the LRU block not to be re-
placed. For example, for a 2-way cache the LRU can be implemented using a
single bit. The sets with faulty LRU bit are effectively converted from 2-way
to a direct-mapped sets. This can lead to an increase in the cache misses. How-
ever, cache miss latency, especially for level-one, can be hidden with out-of-order
execution.
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Fig. 1. Fault Semantics of a 2-bit saturating counter used for update hysteresis

A fault can have different implications even within a given array. A faulty
cell in a memory dependence predictor, such as the one used in [11], may force
an independent load to wait until all previous stores commit. This is a significant
penalty but not as serious as a pipeline flush since independent instruction in
an out-of-order processor can proceed to execution and may hide some of this
delay. On the other hand, a fault that allows a load with a dependence to a store
in the instruction window to proceed to execution causes a pipeline flush.

In the same vein, a fault in a 2-bit hysteresis array mainly results in two
behaviors, always replace on a misprediction or never replace. Both behaviors
can degrade performance but the second can be more grave. This is illustrated
in Fig. 1. The two-bit saturating counter is shown Fig. 1(a) while Fig. 1(b)-(c)
show how the state machine is transformed with different combinations of stuck-
at values. For example, if the most significant bit is stuck-at-0 then the machine
can only transition between states 00 and 01. Assuming that the most significant
bit signifies whether to replace or not, then for the stuck-at fault cases shown
in Figure. 1(b) a fault causes on a misprediction to (almost)always replace. As
a result, the hysteresis counter is not protecting its corresponding entry from
spurious update. Whereas the reduced states in Fig. 1(c) do not permit the
entry to get updated.

The above discussion reveals that performance is not equally vulnerable to
faults across non-architectural units and even within a unit. Asymmetry, also
exists due to the inherent higher accuracy of some units, like the return address
stack. Furthermore, there is variation due to differences in the dynamic behavior
between programs, such as the instruction mix and predictability. For example,
a program with no return instructions or with low branch predictability will
not suffer significantly from faults in the return-address-stack or the conditional
branch predictor. Consequently, to assess the performance impact of faults in
non-architectural arrays and determine which arrays are more vulnerable to
faults we perform simulation studies that we will present in Section 6.
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Parameter description Setting

Pipeline depth 15 stages
Superscalarity 4
Line Predictor 6.5 KB, 4096 entries, 11 bit prediction + 2 bit hysteresis/entry
RAS 16 entries
Branch Predictor 8 KB gshare (15 bits history)
Fetch/Decode/Issue/Commit up to 4/4/6/4 instr. per cycle
Branch Resolution In-order
Issue Queue 40 INT entries, 20 FP entries
Functional Units 4 INT ALUs, 4 INT mult/div, 1 FP ALUs, 1 FP mult/div
Reorder buffer 128
L1 instr. cache 64 KB, 2-way, 64 B blocks, 1-cycle, LRU
L1 data cache 64 KB, 2-way, 64 B blocks, 3-cycle, LRU
L2 unified cache 2 MB, 8-way, 64 B blocks, 12-cycle hit latency, 255 cycles miss

latency, LRU

Table 1. Baseline Processor

3 Methodology

We extended the validated cycle accurate simulator sim-alpha [9] to measure
the performance implications of faults in non-architectural arrays of a high per-
formance out-of-order superscalar processor for which key parameters are sum-
marized in Table 1. We simulated all the SPEC CPU 2000 benchmarks using
reference inputs and report each time results for 100M committed instructions.
An in-house SimPoint-like tool is used to select the regions to simulate.

All performance numbers are always normalized to the baseline performance
obtained with the same configuration but without faults and no remapping. The
normalized performance is a higher-is-better metric with results below 100%
meaning performance degradation.

The experiments study the impact of randomly injected faults in six non-
architectural structures, namely conditional branch predictor, line-predictor,
return-address-stack, store-wait predictor, and replacement arrays for the L1 in-
struction and L1 data cache. We consider scenarios where the fraction of faulty
cells is 0.125% and 0.5%.

For each non-architectural array and for each of these fractions, we randomly
generate 50 different fault maps which are used throughout this study. The
number of faulty bits for each fraction is dependent on the size of the array and
shown in Table 2.

Entr.xBits/Entry TotBits 0.125% 0.5%

Gshare Direction Predictor [14] 32768x2 65,536 bits 82 328
Line Predictor Array [6] 4096x11 45,056 bits 56 225
Line Predictor Hysteresis Array [6] 4096x2 8,192 bits 10 41
Memory dependence predictor [11] 1024x1 1,024 bits 1 5
Return address stack [21] 16x31 496 bits 1 3
LRU array for 2-way I$ 512x1 512 bits 1 3
LRU array for 2-way D$ 512x1 512 bits 1 3

Table 2. Faults injected per structure (in number of bits).
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(a) 0.125% faults
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(b) 0.5% faults

Fig. 2. Performance degradation per benchmark for various percentage of faults.

4 Results

In this section we present our results starting with the performance degradation
due to faults in non-architectural arrays, then ranking the non-architectural
structures according to their vulnerability to faults.

4.1 Performance Degradation with All Non-Architectural Units
Faulty

Fig. 2 shows the average, as well as the minimum and maximum performance
per benchmark when all arrays are faulty. The fraction of faults in the non-
architectural arrays ranges from 0.125% faulty bits in Fig. 2(a) to 0.5% in
Fig. 2(b). The data for each benchmark and fraction of faults is obtained over
runs with 50 different random fault-maps.

Results reveal that most of the benchmarks, both INT and FP, can suffer from
substantial degradation. Even with a small fraction of faulty bits, some programs
experience up to 39% (art) degradation with 0.125% faults and 53% (galgel) with
0.5% of faults. The average degradation over all benchmarks is 1% and 3.5%
when the fraction of faults is 0.125% and 0.5%, respectively. Few benchmarks
remain insensitive even with 0.5% faults. This is due to their instruction mix
that does not include many instructions, like returns and indirects, that access
faulty non-architectural units or have very slow execution dominated by memory
accesses.

One might argue that 3.5% average performance degradation is not signif-
icant and does not motivate protecting non architectural structures. However,
Fig. 2 shows that it is possible, albeit more rare, to have much more severe per-
formance degradation. At 0.125%, for ten benchmarks, performance drops below
10%. At 0.5% ten benchmarks see their performance drop below 20%. Also, for
both 0.125% and 0.5% there are are cases where performance drops more than
30%. This behavior can be explained by examining the access patterns of the
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predictor arrays. Due to locality effects, some benchmarks only use only a small
fraction of a given predictor array’s entries. For example, in the case of galgel,
14 entries are responsible for 90% of all gshare accesses. For a program with this
behavior, a single fault may cause severe performance degradation. We believe
that this will be a likely senario since it happened 10 times in our 50 runs for
0.5% faults.

These observations lead us to believe that dealing with faults in non ar-
chitectural structures might become a necessity in future generation processor
design.

Next we will try to determine which of the non-architectural units are more
sensitive to faults.

4.2 Criticality of non-architectural Arrays

In Fig. 3 we report the performance degradation when only one non-architectural
array is faulty at a time. This can help isolate the vulnerability of each non-
architectural array to faults. Like in Fig. 2 we report results for 0.125% and
0.5% faults. Each graph is divided into 6 regions, one for each structure we
examine. The x-axis in the graph omits the benchmark names, which for each
region are in the same order as in Fig. 2.

The results clearly show that, for the processor configuration used in this
study, the various non-architectural units are not equally vulnerable to the same
fraction of faults.

The most critical non-architectural array is the return-address-stack which
degrades performance even with a single faulty bit (0.125%). The branch direc-
tion predictor becomes critical as soon as 0.5% faults are present. However, even
at 0.125% it is possible for performance to drop more than 35%. Line-predictor
and memory-dependence predictor may require protection when there are more
faults, whereas the LRU arrays from the 2-way associative data and instruction
caches seems not sensitive even with more faults. The latter suggests that having
a fraction of the sets for the two L1 caches being direct mapped it does not affect
the performance. Section 2 offers several causes that can lead to the observed
diverse vulnerability among units.

5 Related work

As stated in the introduction most of previous fault research has concentrated
on the impact of correctness. However, a few papers touched on performance
implications before. Sohi [19] studied the performance impact of cache organi-
zation with disabled portions, such as ways and sets. The goal of that work was
to improve yield without noticeable performance degradation. Related research
was performed by Pour and Hill [17] to study the performance impact of manu-
facturing faults in caches. The work by [17] quantified the performance impact
in an isolated way through the cache miss ratio. Lee et al. [13] also explored
various masking strategies for manufacturing hard-faults in caches. The authors
measure performance degradation by disabling cache lines, sets, ways, ports or
even the complete cache. In our work, we go beyond architectural structures,
and quantify the degradation of performance in non-architectural structures,
and propose a generic technique to minimize the detrimental effect of faults.
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Fig. 3. Performance Vulnerability of the various Non-Architectural Structures.

Bower et al. [5] investigate the performance effects of up to 8 faulty entries in a
branch history table. Their conclusion is that it is not worthwhile protecting this
table against hard faults as performance degradation is negligible. Also, Makris et
al. [2] evaluated the effect of a single fault in the most frequently accessed entry
of a conditional branch predictor. Our paper considers the performance impact
for several structures, and ranks them according to the level of protection they
may require in the near future where more faulty bits are expected.

In a recent paper, Wilkerson et al. [22] present a way to trade off power for
reliability by reducing voltage while giving up 25-50% of the cache capacity.

Hamdioui et al. overview in detail the various models for fault types that
can occur in memory cells [10]; we have presented a technique that can protect
a non-architectural structure against any of these fault types.

A direction of relavant work is concerned with the testing and validation of
mechanisms aiming to enhance performance [4]. This underlines the importance
of mitigating faults in prediction arrays. However, these ealrier works did not
evaluate the performance implications of faults.
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6 Conclusions

This paper argues that it may be important to consider the protection of non-
architectural structures against faults in the future because they can significantly
degrade performance. While there is a plethora of research on protecting the ar-
chitectural units to guarantee correctness, non-architectural units received little
attention. We quantify the performance implications of faults for six different
non-architectural units and showed trends in the presence of a small to mod-
erate fraction of faulty bits. The analysis of the data shows that performance
can degrade considerably even with a small fraction of faults. The results also
indicate that the least vulnerable structures, are the LRU arrays in 2-way asso-
ciative L1-caches, and the most sensitive to faults are the return-address-stack
and branch direction predictor.
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