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ABSTRACT
As the number of transistors on a chip doubles with ev-
ery technology generation, the number of on-chip cores also
increases rapidly, making possible in a foreseeable future
to design processors featuring hundreds of general-purpose
cores. However, though a large number of cores speeds up
parallel code sections, Amdahl’s law requires speeding up
sequential sections too. We argue that it will become pos-
sible to dedicate a substantial fraction of the chip area and
power budget to achieve high sequential performance. Cur-
rent general-purpose processors contain a handful of cores
designed to be continuously active and run in parallel. This
leads to power and thermal constraints that limit the core’s
performance. We propose removing these constraints with a
sequential accelerator (SACC). A SACC consists of several
cores designed for ultimate sequential performance. These
cores cannot run continuously. A single core is active at
any time, the rest of the cores are inactive and power-gated.
We migrate the execution periodically to another core to
spread heat generation uniformly over the whole SACC area,
thus addressing the temperature issue. The SACC will be
viable only if it yields significant sequential performance.
Migration-induced cache misses may limit performance gains.
We propose some solutions to mitigate this problem. We also
investigate a migration method using thermal sensors, such
that the migration interval depends on the ambient temper-
ature and the migration penalty is negligible under normal
thermal conditions.

1. INTRODUCTION
The continued doubling of transistor density with every

technology generation has been leading to a rapid increase
in the number of on-chip cores. So far, general purpose mul-
ticores are symmetric, i.e., all cores are identical. But future
manycores will likely be asymmetric, with some cores spe-
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cialized for certain tasks. In particular, since performance
on sequential applications and on sequential sections in par-
allel applications will remain a major issue, future many-
cores may feature some cores for providing high sequential
performance.

On current multicores, the power and temperature walls
forbid aggressive design and very high clock frequencies.
However, as the number of on-chip cores increases, each core
will consume a smaller fraction of the total chip power and
area. For example if, in ten years from now, technology af-
fords the silicon area and the power budget for 1000 EV6-like
cores on the same chip, then it might be performance effec-
tive to implement only 900 of those cores and to dedicate
the rest of the silicon area and power budget to any microar-
chitecture providing very high sequential performance.

In this paper, we propose a new direction for utilizing a
large fraction of the chip area and power budget to achieve
high sequential performance. We refer to our approach as
sequential accelerator, or SACC. A SACC consists of several
large power-hungry cores (LPH) designed for ultimate in-
stantaneous sequential performance by using aggressive mi-
croarchitecture, circuits and technology, high voltage and
clock frequency. In the design of the LPH, the fundamen-
tal thermal constraint that a core should be able to run
continuously is removed. Only a single LPH is active at
any time. The inactive LPHs are power-gated. The over-
all SACC power can be directed to the active LPH. Having
several cores makes possible to spread the heat generation
on the whole SACC area by migrating the execution period-
ically to another LPH, thus solving the temperature issue.

Activity migration for temperature has already been con-
sidered in the framework of small scale multicores [33, 13,
30]. Our thesis is that sacrificing the possibility of paral-
lel execution in the SACC will allow us to specifically design
an LPH able to consume a large instantaneous power, which
will facilitate unprecedented levels of instantaneous sequen-
tial performance. We will also point out that migrating ac-
tivity from one LPH to another LPH in the SACC is simpler
than in a conventional multicore.

The detailed implementation of the LPH is beyond the
scope of this paper. We mostly focused on the global SACC
architecture and on thermal aspects. In particular, even if
the LPH achieves very high instantaneous performance, the
SACC approach will be viable only if the SACC achieves
high long-range performance. Migrations, especially migration-
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Table 1: Area of some cores, normalized to that of
a 256K L2 cache

core core caches core area

IBM Cell SPE 256K local store 1.9
DEC Alpha 21064 (EV4) 16K+16K 0.7
DEC Alpha 21164 (EV5) 16K+8K 1.1
DEC Alpha 21264 (EV6) 64K+64K 2.4

Intel Pentium III 16K+16K+256K 3.4
Intel Atom 32K+32K 3.5
Intel Core 2 32K+32K 8.1

Intel i7 (Nehalem) 32K+32K+256K 14

induced cache misses, may incur a significant performance
penalty. We propose some solutions for alleviating this im-
pact. In particular, since only a single LPH is active at
a time, we propose to use a write-back level-1 (L1) data
cache and a write-through level-2 (L2) cache in each LPH.
We show that the number of migration-induced L2 misses
can be reduced by warming-up the L2 of next-to-be-active
LPHs, which increases performance significantly when im-
plementing a sensor-less migration scheme with a fixed mi-
gration interval. We also propose a migration method us-
ing thermal sensors that adapts the migration interval to
the thermal conditions, while ensuring it cannot be shorter
than a predefined value. The migration interval can vary
with the ambient temperature, and we show that the per-
formance loss due to migrations is negligible as long as the
ambient temperature does not exceed the nominal value.

The paper is organized as follows. In Section 2, we argue
that future manycores may use a substantial fraction of the
chip area to implement one very large unit providing high
sequential performance. We describe in this section the se-
quential accelerator, our proposition for such unit. Related
work is mentioned in Section 3. In Section 4, we propose sev-
eral schemes to mitigate the impact of migration-induced L2
misses. Our simulation results are presented and analyzed
in Section 5. Finally, Section 6 concludes this study.

2. A CASE FOR SEQUENTIAL ACCELER-
ATORS

2.1 Implications of Amdahl’s law in the many-
core era

Some researchers have advocated for asymmetric many-
cores featuring many “small & slow” (SS) cores and a few
(e.g., a single) “big & fast” (BF) cores [23, 2, 1, 28, 14, 36].
Hill and Marty made the following fundamental observation
[14] : ”Increasing core performance, even if it appears lo-
cally inefficient, can be globally efficient by reducing the idle
time of the rest of the chip’s resources.” In particular, Hill
and Marty exhibit some examples of asymmetric manycores
whose optimal configuration features one BF core using sev-
eral hundred times the silicon area of one SS core. To cor-
roborate their finding, we define a simple model where all
area numbers are normalized to the area of a 256K L2 cache
built in the same technology. More precisely, we consider the
256K L2 cache of the Intel Pentium III Coppermine, whose
area was approximately 31 mm2 in 180 nm technology. For
information, Table 1 gives the approximate normalized areas
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Figure 1: Speedup as a function of the BF core area
b for a parallelizable fraction f = 0.9 and f = 0.99 and
a small core area s = 1, 4, 16. The core performance
vs. area model is assumed to be p(x) = x1/4.

of some known processing cores. 1 We consider a 256 mm2

multicore in 11 nm technology, i.e., four technology gener-
ations ahead. The chip normalized area is a = 2114. We
assume that half of this area is used for implementing cores,
and the other half is used for a large shared cache and the
on-chip network. Moreover, we assume that the multicore
is asymmetric and features one big core of normalized area

b, and k small cores of normalized area s, with k = a/2−b
s

.
We define p(x) as the performance of a core of area x in the
considered technology, with normalization p(1) = 1. We
consider a program (or set of programs) with a fraction
f ∈ [0, 1] of the execution that is perfectly parallelizable,
and we assume that the parallel fraction is executed on the
small cores. The speedup σ relative to the execution of the
program on a single core of normalized area 1 is

σ =
1

1−f
p(b)

+ f
(a/2−b)p(s)/s

Hill and Marty modeled performance as p(x) =
√

x, follow-
ing Pollack’s rule [3]. We use the more conservative model

p(x) = x1/4. Figure 1 shows the speedup as a function of

b for different values of f and s. Notice that p(x) = x1/4

corresponds to a locally quite inefficient use of silicon area
(doubling sequential performance requires 16 times larger
area). Yet, on these examples, the optimal BF core area is

1We obtained areas from die photos and from published die
areas, and we assume that areas are divided by two on each
technology generation.
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Figure 2: On this example, the SACC consists of 16
LPHs. Only a single LPH can be active at any time.
The inactive LPHs are power-gated. The execu-
tion migrates periodically to another LPH to spread
the heat generation uniformly over the whole SACC
area.

several hundreds units.
Computer architects define new general-purpose microar-

chitectures several technology generations ahead, at a time
when the characteristics of the applications that will be run-
ning on that microarchitecture are not known. Considering
the current state of the software ecosystem, dimensioning a
general-purpose manycore on the assumption that all the ap-
plications running on that manycore will be embarrassingly
parallel would be overly optimistic. 2 Without knowing the
actual value of f , it is a safe choice to use about half of the
silicon area for the BF core. On our example, this means
a BF core normalized area of 528, i.e., about 38 times the
area of an Intel i7 core (Table 1). The sequential accelerator
we present in the following is our proposition for such BF
logical core.

2.2 The sequential accelerator
So far, we assumed that it will be possible to build a

BF core several tens of times bigger than the biggest cores
existing today, yet delivering higher performance. A simple
way to make bigger cores is to enlarge core caches, which
benefits some applications. But once the working set fits
in, enlarging a cache further brings no performance gain. It
may even decrease performance because of the longer cache
access time. Another possible way to make bigger cores
would be to exploit more instruction-level parallelism (ILP).
ILP techniques that were deemed too power hungry in the
past could become viable in the manycore era. Yet, ILP
alone is unlikely to suffice. A new approach is required.

Our proposition is to implement one BF logical core con-
sisting of several large power hungry (LPH) physical cores,
where a single LPH can be active at any time, and the in-
active LPHs are power gated [37, 22]. We assume that the
LPH circuit and technology parameters will be specialized
for high clock frequencies, which will yield high sequential
performance at the cost of a high power density. In order to
tolerate a high power density and keep temperature below
an acceptable value, when needed, the execution is migrated
to another LPH [13, 30]. We call such BF logical core a se-
quential accelerator (SACC). Figure 2 shows an example
of SACC consisting of 16 LPHs on one fourth of the total
chip area. If the power density in the inactive LPHs can

2The situation is different for specialized processors like
GPUs.

be kept low, the majority of the power budget allocated to
the whole SACC can be concentrated in one LPH at a given
time, which will make possible a very aggressive LPH de-
sign. Actually, the power budget instantaneously available
for one LPH increases with the number of valid LPHs 3 in
the SACC. There are several possible ways to use this large
power budget and increase sequential performance. A pos-
sible way is to overclock the LPH by increasing the supply
voltage Vdd. For instance, the IBM POWER6 clock fre-
quency can increase from 4 GHz to 6 GHz by rising Vdd

from 0.9V to 1.3V [35]. Similar trends were observed for
the IBM Cell [29]. Increasing Vdd is not the only way to
increase the clock frequency. The LPH microarchitecture
can be specifically designed for high clock frequency by im-
plementing long pipelines and by shortening critical paths,
using latches and flip-flops optimized for speed, dynamic
logic, low-Vt transistors, low-voltage swing logic [7], etc. 4

ILP techniques will be important too, especially for latency
tolerance (large instruction window, complex branch predic-
tor, complex cache prefetcher, etc.). Several questions must
be answered, among which : (1) How much power can the
supply grid deliver to the active LPH ? (2) How effective
will power-gating techniques be ? (3) What will be the mi-
croarchitecture of the LPH, and how much sequential perfor-
mance will be gained through aggressive yet reliable design
? (4) How frequently the execution should be migrated,
and should we implement special support to decrease the
migration penalty ?

The first two questions, and to some extent the third one,
will be tackled at the technology and circuit levels. We leave
these questions for future studies. In the following, we focus
on the last question.

3. RELATED WORK

3.1 Increasing sequential performance
Many methods for exploiting more instruction-level par-

allelism (ILP) have been proposed by researchers in the last
two decades. These include methods for making the instruc-
tion pipeline wider, methods for enlarging the instruction
window, better branch predictors, cache prefetch mecha-
nisms, etc. Beyond ILP, researchers have explored specula-
tive multithreading, where several processing units or cores
are used to accelerate programs that cannot be parallelized
by conventional means [34, 21, 12]. More recently, some re-
searchers have proposed to aggregate several narrow-issue
physical cores to form a wide-issue core [17, 19]. Over-
clocking is another method for increasing sequential per-
formance. On the Intel i7 processor, when some cores are
inactive and in low-power mode, the frequency and voltage
of the active cores increases automatically [15]. The Bub-
bleWrap manycore proposition is also based on overclock-

3Because of transistor variability, there may be some mal-
functioning LPHs detected at manufacturing time. The
SACC control must be programmed at manufacturing time
so that invalid LPHs are removed from the migration path.
When this happens, the effective SACC area for dissipating
heat is reduced, which requires lowering the power envelope
hence voltage and clock frequency.
4For instance, the IBM POWER6 and Cell processors have
been designed to have a short clock cycle in FO4 delays, and
they use high-speed circuit techniques [35, 29], whereas the
Intel i7 core was optimized for performance per watt [22].
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ing [18]. To make overclocking more effective, the Bub-
bleWrap manycore features some expendable cores whose
lifetime is relatively short because of the high voltage and
high temperature, and expendable cores are consumed one
by one. Constant-voltage overclocking is possible using a
leader-checker core pair where the leader core is overclocked
and the checker core detects and repairs errors [10]. It was
shown recently that the benefits of conventional overclock-
ing and constant-voltage overclocking are additive and that
combining them yields substantial performance gains [9].

The SACC differs from previous propositions in that LPHs
are specifically designed not to be active simultaneously,
which should yield higher sequential performance that can
be obtained by just overclocking standard cores.

3.2 Activity migration
The idea of having spare execution resources to continue

the execution in case of a thermal emergency was proposed
in [24, 33]. The idea of activity migration as a general way
to decrease time-averaged power density was introduced and
explained by Heo et al. [13]. In particular, they have em-
phasized the fact that higher power densities require smaller
migration intervals. They also considered having a spare
core identical to the main core. Spare cores are naturally
present in chip multiprocessors when there are fewer run-
ning threads than cores. Some studies have considered activ-
ity migration in the context of chip multiprocessors running
multiprogrammed workloads, with thread migration meth-
ods using thermal sensors [30, 8, 27, 5]. Constantinou et al.
quantified the migration penalty for a single thread migrat-
ing periodically on a chip multiprocessor [6]. They show that
for migration intervals exceeding 40,000 cycles, microarchi-
tectural structures with a relatively small number of entries,
like registers, L1 caches and TLBs, incur a very small migra-
tion penalty. On the other hand large structures like con-
ditional branch predictors and L2 caches may have a large
impact. They propose to keep the branch predictor warm by
putting it in a “drowsy” low-power state [20] that preserves
the branch predictor content after the thread leaves the core,
until it comes back to that core. They show that keeping
the branch predictor state decreases significantly the num-
ber of migration-induced branch mispredictions. However,
most of their study was based on the assumption of a shared
L2. They did present a few results for private L2s, empha-
sizing the impact of L2 misses on the migration penalty, but
they considered an optimistic configuration where all the
L2s are powered. Moreover they did not consider thermal
effects. Shayesteh et al. proposed to decrease the migration
penalty on a dual-core by sharing some structures, like the
L2 [32]. However, as the number of cores increases, so does
the RC delay of the L1-L2 bus and the L2 access latency.
Moreover, the L2 cache and L1-L2 bus would not benefit
from activity migration and would have to be underclocked.
Some mechanisms for quickly transferring architectural reg-
ister values between cores have been proposed [4, 31]. In
particular, it was noted in [31] that, on x86 processors, exe-
cution migration is easier to implement at the boundary of
a macro-instruction.

4. MIGRATION SCHEMES FOR A SEQUEN-
TIAL ACCELERATOR

As each LPH has a local L2 for maximum performance,

migrations incur some extra L2 misses. The goal of this
section is to propose solutions for decreasing the impact of
migration-induced L2 misses.

The SACC is not a multiprocessor, i.e., LPHs are never
active simultaneously. This is what makes an aggressive
LPH design possible. It also means that the SACC does not
have the same requirements as a multiprocessor concern-
ing communication bandwidth and cache coherency. As the
SACC is not a multiprocessor, it is possible to use a shared
bus between the LPHs and the shared level-3 cache (L3).
At a given time, only a single LPH executes the program.
This LPH is the active LPH. All the other LPHs are inac-
tive. We assume that most parts of the inactive LPHs are
clock-gated and power-gated. However, some microarchi-
tected tables may not be power-gated on all LPHs. In par-
ticular, we assume that the branch predictor of each LPH is
put in a drowsy low-Vdd state that preserves branch predic-
tion information when the LPH is inactive, as recommended
in [6]. Moreover, in some of the schemes we propose in this
section, some inactive LPHs may have their L2 powered and
accessed. To ease the discussion, we distinguish logical and
physical LPHs. The SACC has 16 physical LPHs denoted
P (0) to P (15). The number of logical LPHs is unlimited.
Logical LPHs are denoted L(n). The logical LPH L(n) is
mapped onto the physical LPH P (n mod 16). The migra-
tion path is as follows : if the current active LPH is L(n),
the next active LPH will be L(n + 1), i.e., the logical LPH
number keeps increasing. This means a circular migration
path on physical LPHs. Henceforth, we assume that the
L1 data cache uses a write-back policy because this reduces
power consumption. Unless specified otherwise, the L2 is
write-back too. Before migrating from L(n) to L(n + 1), we
flush the L1 data cache of L(n). That is, dirty L1 blocks on
L(n) are written back in the L2 (or directly in the L3 if the
block is not in the L2 or if the L2 is write-through). As the
L1 cache is small, this flushing can be done relatively quickly
and the impact on the migration penalty is small. Moreover,
we assume that the L2 of L(n + 1) is initially empty.

4.1 Flush-before-migration (FBM)
With a write-back L2, the simplest migration method

flushes the L2 of L(n) before migrating to L(n + 1). That
is, dirty blocks on L(n) are written back in the L3. Once
the flushing is done, the L2 of L(n) can be turned off and
the execution can resume on L(n + 1). Upon an L2 miss,
the miss request is fulfilled by the L3. We call this scheme
flush-before-migration (FBM).

4.2 Flush-after-migration (FAM)
With a write-back L2, another possibility is to migrate

the execution to L(n+1) without waiting for the L2 of L(n)
to be flushed, that is, the flushing is done in background.
In this case, some remote L2s (i.e., L2s of inactive LPHs)
may be powered and holding valid blocks. Actually, it is
possible that the only valid copy of a cache block lie in a
remote L2. Upon a miss in its local L2, the active LPH
accesses simultaneously the L3 and the remote L2s. In case
of a hit in a remote L2, the block from the L3 is dropped.
To simplify the hardware, we maintain an invariant which is
that at most one LPH can have a copy of a block. This way,
we avoid having to select between several hitting L2s. To
maintain this invariant, when a L2 miss request is fulfilled
by a remote L2, the block copy on the remote L2 is invali-
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Table 2: Migration schemes (k > 0 and j > 0).
scheme L2 cache number of L2 hits on L2 LPHs compete

powered L2s past LPHs coherency for bus

FBM write back 1 0 no no
FAM-0 write back ≥ 1 ≤ 1 block migration yes
FAM-k write back ≥ k + 1 ≤ 1 block migration yes

FBM WU-j write back j + 1 0 update on L2 WB no
Lag-0 WU-0 write through 1 0 no no
Lag-0 WU-j write through j + 1 0 update on L1 WB no
Lag-k WU-0 write through k + 1 ≤ 1 block migration no
Lag-k WU-j write through k + j + 1 ≤ k update on L1 WB no

dated. We call this a block migration. For a block migration
on write-back L2s, the dirty bit of the remote block is prop-
agated along with the block and its value is preserved when
storing the block in the L2 of the active LPH. It should be
noted that the invariant guarantees that all the blocks on
inactive LPHs are up-to-date. Indeed, if a block is on an in-
active LPH, it means that it has not been requested by the
active LPH, so it has not been modified. Depending on how
aggressively we want to save power, we may start flushing
the L2 as soon as possible, or with some delay. For instance,
we may start flushing the L2 of L(n), block by block, just af-
ter having migrated the execution from L(n) to L(n+1). In
this case, the shared-bus bandwidth is time-shared between
the LPHs using a fair arbitration. We call this scheme flush-
after-migration (FAM). Once the L2 of L(n) is completely
flushed, it can be turned off. 5

If we want to take advantage of the smaller latency of
L2-to-L2 transfers compared with L3-to-L2 ones, we may
choose to start flushing the L2 of L(n) only when migrating
from L(n + k) to L(n + k + 1) This is a generalization of
flush-after-migration, which we denote FAM-k (FAM-0 is
the same as FAM).

4.3 L2 warm-up (WU)
A possible way to decrease the number of migration in-

duced L2 misses is to warm up the L2 of LPHs on which we
are going to migrate next. Upon an L2 miss on the active
LPH L(n), the missing block can be snooped on the shared
bus by LPHs L(n + 1) to L(n + j) and stored in their L2s.
This requires to power up the L2 of L(n+j+1) when migrat-
ing from L(n) to L(n+1). The j LPHs L(n+1) to L(n+ j)
are called the future LPHs. We denote such scheme WU-
j. L2 warm-up can be combined easily with FBM : when a
dirty block is evicted from the L2 and written back to the
L3, future LPHs snoop the bus and update their block copy.
However, combining L2 warm-up with FAM is more com-
plex. Upon an L2 miss on the active LPH L(n), we access
simultaneously the L3 and the L2s of past LPHs L(i), i < n.
But there are some complications that must be addressed.
If we update future LPHs only on L2 write-backs, L2 hits
on blocks resulting from warm-up may return stale data.
Also, on a L2 miss, there may be several hitting past LPHs.
Moreover, blocks on past LPHs may not be up-to-date.

Actually, these problems can be solved with a write-
through L2. A write-through L2 generates more write traf-
fic on the shared bus, but this effect is somewhat mitigated

5It is also possible to switch off L2 banks one by one once
they are flushed.

Table 3: Sequential accelerator baseline.
LPHs : 16 ; LPH freq. : 8 GHz ; shared bus :
500 MHz, 64 bytes/bus cycle ; pipeline : 10 stages,
2 inst/cycle (x86) ; branch predictor : 12 Kbyte
YAGS, 25 bit global hist ; instruction window : 64
instructions (x86) ; load/store queue : 32 entries
; max pending misses : 20 L2 and 20 L3 misses
; cache block : 64 bytes ; IL1 : 32 Kbytes, 4-way
LRU, 2 cycles ; DL1 : 32 Kbytes, 4-way LRU, 2 cy-
cles, write back, write allocate ; L2 : 1 Mbytes, 8-way
LRU, 12 cycles, write back, no write allocate ; L3 : 64
Mbytes, 16-way LRU, 7 ns lat., write back, write allo-
cate ; memory : 70 ns lat., 32 Gbytes/s ; prefetch :
±1 stride prefetch in L2/L3

by the L1 write-back policy. When a dirty block is evicted
from the L1 data cache, the block is written to the L3, and
also in the L2 if the L2 has an older copy. Past and future
LPHs snoop the bus and update their copy of the block. In
case of a L2 miss, and if there are some hits on several past
LPHs, we select among hitting past LPHs L(i) the one with
the largest i, i.e., the one that has been active most recently.
It should be recalled that we flush the L1 data cache prior
to migrating. It should also be noted that the L2 of L(n)
can now be turned off instantaneously when migrating from
L(n + k) to L(n + k + 1). We denote such scheme using
a write-through L2 Lag-k, to distinguish it from FAM-k.
Schemes characteristics are summarized in Table 2. Note
that Lag-k WU-0 schemes use block migration, so we have
at most a single hit on past LPHs for these schemes.

5. SIMULATIONS
Our simulator is trace driven. We model the LPH ap-

proximately : when there are no cache misses and no branch
mispredictions, the LPH executes two x86 instructions per
cycle. 6 Instructions are fetched and retired in program or-
der. Loads and stores are pipelined and non blocking. We
model caches, request queues, and bandwidth contention.
Upon a branch misprediction, we wait until the instruction
window is completely drained before resuming instruction
fetching. The branch predictor is never turned off and keeps
its information even when the LPH is inactive. The main
parameters of the simulated microarchitecture are listed in
Table 3. We assume that the shared bus is clocked at a low

6This is a rough approximation, but our qualitative conclu-
sions are largely independent of a precise ILP value.
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no migration), assuming a fixed migration interval
of 200,000 cycles (8 GHz).
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Figure 4: Arithmetic mean over all benchmarks of
the shared-bus activity in blocks per LPH cycle. The
two leftmost bars are for the baseline with migration
disabled, with a write-back (WB) and write-through
(WT) L2.

frequency because of its long RC delay. For the configura-
tion listed in Table 3, the minimum latency for a L2-to-L2
miss is about 40 clock cycles at 8 GHz, which is roughly half
the minimum latency for a L3-to-L2 miss.

Unless specified otherwise, the baseline configuration uses
a write-back L2. The flushing of a write-back L1 or L2
is done by scanning the cache entirely. Only blocks whose
dirty bit is set are written back, with a maximum rate of
one block per cycle. So the number of cycles necessary to
flush the cache cannot be less than the cache size in blocks.
Moreover, the L2 flushing rate is limited by the shared bus
bandwidth. When a migration is triggered, we stop fetch-
ing instructions and we wait until the instruction window
is completely drained. Then we start flushing the L1 data
cache. Once the L1 data flushing is finished and the L1-
to-L2 write-back queue is drained, we resume the execution
immediately on the new active LPH except for FBM and
FBM WU schemes. We did not model the time necessary
to transfer the architectural register values, as this time is
negligible compared with the migration intervals considered
in this study. When LPHs compete for the shared-bus band-
width (FAM-k schemes), we simulate an arbitration mecha-
nism that allots bandwidth equally among competing LPHs.
Traces were generated with Pin [25] for the SPEC CPU 2006
benchmarks. For each benchmark, we skip the first 30 bil-
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Figure 5: Harmonic mean of the normalized perfor-
mance as a function of the migration interval.

lion instructions, and the trace represents the next 1 billion
instructions.

5.1 Sensor-less migrations
In this section, we consider the case where the migration

interval is fixed, i.e., the execution is forced to migrate at
regular intervals whatever the ambient thermal conditions.
This solution is simple to implement and does not rely on
thermal sensors. 7 However, the migration interval value
must be fixed carefully. Temperature on a given LPH in-
creases when this LPH is active and decreases when it is
inactive. Consequently, temperature on the LPH oscillates
around an average value which is a function of the total
SACC power. The peak temperature, though, increases with
the migration interval. If the migration interval is too long,
temperature on the active LPH may exceed the limit. On
the other hand, if the migration interval is too short, migra-
tions incur a large performance penalty. Using ATMI [26]
and assuming a power density of 8 W/mm2, we found that
the migration interval must be a few tens of microseconds in
order to keep the amplitude of the temperature oscillation
within a few degrees. Unless stated otherwise, we have as-
sumed a migration interval of 25 µs, i.e., 200,000 clock cycles
at 8 GHz.

The baseline performance is the performance of the base-
line configuration (Table 3) when migration is disabled, i.e.,
when the execution keeps executing on the same LPH, ignor-
ing temperature issues. We simulated 12 different schemes
of varying complexity. The normalized performance, for a
scheme X on a particular benchmark, is the baseline exe-
cution time divided by the execution time of X (the nor-
malized performance rarely exceeds 1). Then, we compute
the harmonic mean of the normalized performance over all
benchmarks. Performance numbers are shown in Figure 3.
We also show the performance of a core with the same char-
acteristics as the baseline, but with the LPH clock frequency
and the shared bus frequency both at 4 GHz. Figure 4 shows
the arithmetic mean, on all benchmarks, of the number of
blocks transiting through the shared bus per LPH cycle (8
GHz). This measures the bus activity. Everything else be-
ing equal, we want the bus activity to be as small as possi-
ble as it represents some dynamic power consumption, from
the bus itself, from the L3, and from the remote L2s that

7We still need sensors to throttle power consumption in case
of higher-than-nominal thermal conditions.
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are accessed (reads on past LPHs, writes on future LPHs).
Note that L2 warm-up is very effective : not only does it
increase performance, but it also decreases bus activity, de-
spite a write-through L2. We conclude from these results
that Lag-0 WU-j schemes are the most attractive, for the
reasons explained below.

From our results, FBM WU-j is not competitive compared
with Lag-0 WU-j. Indeed, the performance of Lag-0 WU-
j is higher than that of FBM WU-j. The saving on the
shared-bus traffic thanks to the write-back L2 is not that
large. The problem with the write-back L2 is that the lim-
ited shared-bus bandwidth sometimes makes the L2 flush
time relatively long compared with the migration interval,
hence there is a large migration penalty. The performance
of FBM ranges from 0.57 to 0.91. On some benchmarks, it
is even outperformed by the 4 GHz core. Even though the
write-back L2 generates less bus traffic, this traffic is more
bursty. The problem could be solved by clocking the bus at
a higher frequency, but this would make the implementation
more complex and would increase the power consumption,
possibly making the shared bus a thermal hot spot.

The performance of FAM-k is higher than that of FBM.
The performance gain comes both from not having to wait
for L2 flushing before migrating (FAM-0) and from the smaller
latency of L2-to-L2 misses compared to L3-to-L2 ones. How-
ever, the performance of FAM-2 is barely better than that
of FAM-1, because few benchmarks have blocks with a reuse
distance between 200k and 400k cycles. Nevertheless, FAM-
k does not look like an interesting design point. Indeed,
FAM-k is more complex than Lag-0 WU-k (cf. Table 2).
Moreover, its performance is slightly less than that of Lag-0
WU-k, and FAM-1 and FAM-2 schemes access the shared
bus more often than Lag-0 WU-1 and Lag-0 WU-2. Lag-
k WU-0 is less attractive than Lag-0 WU-k, because it is
slightly more complex to implement, because its performance
is slightly lower, and because it generates more bus activity
(Figure 4). As for Lag-1 WU-1, it is not an interesting de-
sign point, because Lag-0 WU-2 offers the same performance
and is simpler to implement (cf. Table 2). Moreover, Lag-0
WU-2 generates less bus activity than Lag-1 WU-1.

Figure 5 shows the harmonic mean over all benchmarks of
the normalized performance as a function of the migration
interval. L2 warm-up improves performance significantly,
even for relatively long migration intervals. For instance,
with an interval of 500k cycles, Lag-0 WU-2 is on average
5% more performant than Lag-0 WU-0 (18% on 473.astar,
16% on 435.gromacs). The migration interval and the degree
of L2 warm-up should be programmable and set at manu-
facturing time based on the number of valid LPHs and on
the LPH power consumption.

In the next section, which presents a sensor-based migra-
tion method, we consider only Lag-0 WU-0 and Lag-0 WU-
1 schemes. Lag-0 WU-0 consumes on average more power
than Lag-0 WU-1 in the shared bus (Figure 4). But Lag-0
WU-1 consumes more power than Lag-0 WU-0 in the L2.
Overall, it is not clear whether one scheme will consume sig-
nificantly more power than the other. In our simulations,
we assumed that both schemes consume the same power.

5.2 Sensor-triggered migrations
Sensor-less migration keeps the migration interval fixed

even under mild thermal conditions. For instance, when the
ambient temperature is low, or when running a “cold” appli-

Table 4: Thermal and physical parameters
heatsink thermal resistance : 0.4 K/W ; copper
plate : 7 cm × 7 cm × 5mm ; silicon thickness :
500 µm ; interface material : 100 µm, 3 W/(mK) ;
total SS cores area : 64 mm2 ; number of LPHs :
16 ; LPH size : 2 mm×2mm ; local ambient Tamb :
variable ; temperature limit Tmax : 90 °C ; sensor
cycle : 20000 LPH cycles ; SS cores power density :
≤ 0.5 W/mm2 ; LPH power density : active on :
8W/mm2, active off : 0.8 W/mm2, inactive : 0

cation, it may be possible to have a longer migration interval
without exceeding the temperature limit. This would de-
crease the performance loss due to migrations. If we trigger
migrations based on thermal sensor information instead of
having a fixed migration interval, we can adjust the migra-
tion interval dynamically depending on thermal conditions.
For our simulations, we assume that each LPH features a
single thermal sensor located at the LPH center. A sensor
gives a temperature measurement every 2.5 µs (i.e., every
20,000 LPH cycles at 8 GHz), which we call a sensor cycle.
A simple yet inapplicable strategy would be to trigger a mi-
gration as soon as temperature on the active LPH exceeds
the temperature limit Tmax. Such strategy is inapplicable
because the migration interval may become extremely short
when the average temperature in LPHs is close to Tmax.
Actually, activity migration does not preclude the necessity
of throttling power consumption under higher-than-nominal
thermal conditions. The solution we propose relies on a lin-
ear on/off throttling mechanism (aka stop-go) similar to the
one used in the Intel Pentium 4 [11]. More precisely, we pro-
pose the following method. As long as temperature stays
below Tmax, we keep executing on the same LPH. When
temperature exceeds Tmax, and if the time t − tmig elapsed
since the last migration is longer than a fixed value tmin, the
execution migrates to a another LPH. When temperature ex-
ceeds Tmax but t < tmig + tmin, a migration is scheduled to
happen at tmig + tmin, but in the meantime the active LPH
enters a low-power state for one sensor cycle (and possibly
several sensor cycles if temperature exceeds Tmax several
times between tmig and tmig + tmin). This method forces
the migration interval to be longer than tmin.

Simulation hypotheses.
We used the migration path corresponding to the LPH

numbering shown in Figure 2. However, as far as tempera-
ture is concerned, 8 the impact of the migration path is neg-
ligible. With a shared bus, this particular migration path
is as good as any other. We assume that the SACC is de-
signed for an ambient temperature not exceeding a nominal
value of 40°C, i.e., we have chosen the nominal power and
heatsink thermal resistance so that, when the migration in-
terval is short enough, the average temperature in LPHs
is approximately 90 °C with a local ambient 9 at 40 °C.
For simulating temperature, we used the ATMI model [26].
Our simulation parameters are listed in Table 4. We mod-
eled LPHs as squares with a uniform power density. The

8The migration path might impact inductive noise.
9The local ambient temperature is the temperature inside
the computer case, at the CPU fan inlet. It is typically
several degrees Celsius above the room temperature [16].
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Figure 6: Harmonic mean of the normalized per-
formance for Tamb = 40, 45, 50 °C and tmin =
50k, 100k, 200k, 500k, 1M, 10M LPH cycles.

nominal power density in the SS cores is 0.5 W/mm2 (when
necessary the SS cores are throttled, with the same throt-
tling factor). The nominal power allocated to the SACC
is equal to that allocated to the SS cores, i.e., 32 W . We
assume that this power is concentrated in the active LPH,
which means a power density of 8 W/mm2. Note that if
we disable migration and keep executing on the same LPH
at nominal ambient, temperature in the active LPH exceeds
170 °C. We assumed that the drowsy state of the branch pre-
dictor is effective and we neglected the power consumption
of inactive LPHs. While in a low-power off state, the active
LPH consumes some static power in the microarchitected
tables (registers, caches, TLBs,...). Moreover, the sensor cy-
cle is relatively short and power gating may not be effective
instantaneously [37]. Consequently, we assumed that the
power density of the active LPH in the off state is 1/10 the
power density in the on state.

When simulating the impact of thermal throttling, the
initial thermal state may have a large impact. Because our
simulations are short, we want the initial thermal state to
be as close as possible to the steady state. In the ATMI
model, the initial thermal state is set indirectly : it is the
steady-state corresponding to some specified power densi-
ties. To set the initial thermal state, we must determine
approximately the power densities generated by long-term
thermal throttling. We start from a uniform power density
of 0.5 W/mm2 in all cores (including SS cores, modeled as a
single big core), and we compute the corresponding steady-
state temperatures. If the hottest core is hotter than Tmax,
we decrease the power density in that core by a tiny amount.
We iterate this process (the hottest core may change as we
iterate) until the steady-state temperature is less than or
equal to Tmax in all cores. We use the resulting power den-
sities to set the initial thermal state.

Performance depends on ambient temperature.
With sensor-less migrations and under normal thermal

conditions, performance does not depend on the ambient
temperature. This is no longer the case with sensor-triggered
migrations. The migration interval depends not only on the
ambient temperature but also on the heatsink temperature,
i.e., what applications have been running previously. Of
course, we expect migrations to have little impact under

Table 5: Average migration interval in LPH cycles.
tmin Tamb = 40 °C Tamb = 45 °C Tamb = 50 °C

5 × 104 9.25 × 105 2.09 × 105 6.15 × 104

105 9.25 × 105 2.11 × 105 1.09 × 105

2 × 105 9.26 × 105 2.74 × 105 2.10 × 105

5 × 105 9.34 × 105 5.34 × 105 5.04 × 105

106 1.17 × 106 1.02 × 106 1.00 × 106

107 1.00 × 107 1.00 × 107 1.00 × 107
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Figure 7: Normalized performance for Lag-0 WU-1
and various values of tmin when Tamb = 50 °C, on a
subset of the benchmarks.

normal thermal conditions. But it will be almost impossible
to replay the same program and get exactly the same exe-
cution time. Note however that this is already very difficult
to achieve on existing platforms.

Results.
Our simulation results are summarized in Figure 6 and Ta-

ble 5. When Tamb = 40 °C, performance is within 10% of the
baseline performance for most benchmarks, provided tmin

does not exceed a few hundred thousand cycles. Lag-0 WU-
1 is only 3% better than Lag-0 WU-0 on average because
the migration interval is relatively long. It must be noted
that tmin = 107 cycles gives a very low performance, even at
Tamb = 40 °C. In this situation, the thermal limit is underex-
ploited because the time till the execution revisits the same
LPH again is long enough for temperature to drop signifi-
cantly below Tmax. Hence the time-averaged temperature is
significantly lower than Tmax. Time-averaged temperature
relative to Tamb being proportional to power, the total power
that can be dissipated is smaller for larger values of tmin,
and throttling triggers more often. As the ambient temper-
ature increases above 40 °C, the migration interval tends to
decrease and the difference between Lag-0 WU-0 and Lag-
0 WU-1 becomes more significant. At Tamb = 50 °C and
for tmin = 100k, Lag-0 WU-1 is on average 7% faster than
Lag-0 WU-0 (up to 24% on one benchmark). For very small
values of tmin and Tamb above 40 °C, the migration interval
is small, so the temperature oscillation on each LPH has a
small amplitude and the time-averaged temperature is close
to Tmax. However, in this case, it is the migration penalty
that limits performance. Consequently, for a given value of
Tamb, there exists an optimal value for tmin. For instance,
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for Tamb = 50 °C, the optimal tmin is around 100k cycles
on average. Actually, if we look at benchmarks individually,
the optimal tmin is variable and depends on the migration
penalty, which depends on application characteristics. Fig-
ure 7 shows normalized performance for Lag-0 WU-1 on a
few benchmarks when Tamb = 50 °C. Setting tmin to 100k
cycles provides a good tradeoff overall, but it is sub-optimal
on a per-application basis.

In summary, the SACC will deliver maximum performance
as long as the ambient temperature does not exceed the nom-
inal value. However, above the nominal ambient tempera-
ture, each extra degree Celsius will decrease performance
significantly. This problem can be solved by using dynamic
voltage/frequency scaling (DVFS). It is not clear to what
extent it will be possible to use fine-grained DVFS in the fu-
ture. The advantage of linear throttling is that it reacts
quickly, which is important for a sensor-triggered migra-
tion scheme because the high power density in the active
LPH makes temperature increase very fast. Nevertheless,
coarse-grained DVFS can be combined with linear throt-
tling, i.e., voltage and frequency are adjusted automatically,
but slowly, to maintain the fraction of linear throttling be-
low a threshold. This should be an effective approach, as the
ambient and heatsink temperatures vary slowly in general.

Unlike the case of sensor-less migration, where Lag-0 WU-
1 brings a clear performance benefit, Lag-0 WU-0 may be
considered enough for sensor-triggered migrations. Lag-0
WU-1 brings a performance gain only when the ambient
temperature is close to or higher than the nominal value.

5.3 Remarks about simulation hypotheses
We have assumed a 8 GHz clock frequency for the LPH in

11 nm technology. However, our qualitative conclusions are
largely independent of a precise frequency value. We also ran
some simulations assuming a 16 GHz clock frequency (with
the bus still at 500 MHz). We observed a higher average
performance, but our qualitative conclusions still hold.

We assumed that the power consumption of inactive LPHs
is much smaller than the power consumption of the active
LPH. We also assumed that the power grid could deliver sev-
eral tens of watts to the active LPH. In practice, constraints
may limit the power allocated to the active LPH. A smaller
power budget for the active LPH means a less aggressive
LPH design and/or a lower voltage/frequency setting. It
also means a lower power density, hence longer migration
intervals.

In our simulations, we assumed the same nominal power
density for all the applications. Actually, power density de-
pends on the application characteristics. The design, voltage
and frequency setting of the LPH will be based on typical
”hot” applications. With sensor-triggered migration, ”cold”
applications will experience longer migration intervals be-
cause of their lower power density.

6. CONCLUSION
In future general-purpose manycore processors, a large

part of the chip area and power budget will likely be ded-
icated to high sequential performance. Microarchitecture
and circuit design solutions that are deemed too power hun-
gry today may help maximize the instantaneous sequential
performance of a core, provided the core is not required to
be continuously active. Based on this assumption, we pro-
posed a sequential accelerator (SACC) consisting of several

large power-hungry cores (LPHs), where a single LPH is ac-
tive at a given time and other LPHs are power-gated. When
needed, the execution is migrated to another LPH in order to
spread the heat generation uniformly over the whole SACC
area.

The effectiveness of a SACC may be significantly impaired
by the migration penalty. We pointed out the potential im-
pact of migration induced L2 misses on performance. We
proposed and evaluated some schemes for decreasing this
impact. We made a case for write-through L2 caches and
write-back L1 data caches. We showed that warming-up the
L2 of future LPHs on which we will migrate next is more in-
teresting than fetching blocks from past LPHs. We showed
that L2 warm-up may bring a significant performance gain
for a sensor-less migration scheme with a fixed migration
interval. We also defined a migration policy using thermal
sensors which forces the migration interval to be longer than
a predefined value. With this policy, the migration interval
is variable and depends on the ambient temperature. As
long as the ambient temperature stays below the nominal
value, the migration interval is long and migrations incur
little performance loss. However, when the ambient tem-
perature exceeds the nominal value, performance degrades
significantly if linear throttling is the only throttling method
implemented.

Our study tackled only some of the questions that must
be answered to make the sequential accelerator a viable so-
lution. This work points to several new directions for future
work, including microarchitectural design of LPHs, effective
power-gating techniques, and effective power delivery to the
active LPH.
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