
CBFD: A Count-Based Fault Detection Scheme for
Memory Arrays

Yiannakis Sazeides∗, Bushra Ahsan∗, Isidoros Sideris∗, Lorena Ndreu∗, Sachin Idgunji† and Emre Özer†
∗University of Cyprus †ARM

Abstract—1 The performance-cost benefits enjoyed for decades
due to the scaling of device area are challenged by power and
reliability constraints. Fixed power envelopes and increases in
static and dynamic variations have lead to higher probability of
parametric and wear-out failures. This is particularly true for
processor memory arrays, such as caches, that dominate the area
of modern processors and are built with minimum sized SRAM
cells that are prone to failure. It is, therefore, becoming essential
to develop scalable cost-effective fault-tolerant techniques for
processor memory arrays.

Our attempt, presented in this paper, to address scalable
memory array fault tolerance is a novel error detection scheme
that relies on a count-based method, called CBFD (count-based-
fault-detection), that provides the number of 1s(0s) in an array at
any given time. The state overhead of the method is (log2k) + 1
bits for an array with k bits. For fault-free array operation a basic
invariance is maintained by the method: the number of 1s(0s)
never exceeds the array size or becomes negative. This invariance
can be violated when there is a fault. The paper introduces the
count-based method and explain its detection latency, overheads,
and fault coverage. It also discusses how it can be used to detect
soft and hard errors both in array cells and peripheral logic.

I. INTRODUCTION

For the past several decades, technological developments
have facilitated the continuous miniaturization of devices on
silicon chips. The resulting increase in device density has been
offering designers the opportunity to place more functionality
per unit area and recently has allowed the integration of large
caches and many cores into the same chip. Unfortunately, the
scaling of other key design parameters has not followed suit.
In particular, voltage [1], [2] and silicon circuits probability of
failure [3] are scaling slower and faster rate respectively than
area scaling.

These distressing trends are leading to projections that the
semiconductor industry may hit a scaling wall unless cost-
effective techniques are developed to address the power and
reliability challenges. In particular, it will be impossible to
operate all on-chip resources, even at the minimum voltage
for safe operation, due to power constraints, and the grow-
ing design and operational margins used to provide silicon
primitives with resiliency against static [4] and dynamic [5]
variations will consume the scaling benefits.

A recently published resilience roadmap underlines the
magnitude of the reliability problem we are facing [3]. Table I
shows the pfail (probability of failure) predicted in [3] for
inverters, latches and SRAM cells due to random dopant

1The research leading to this paper is supported by the European Com-
mission FP7 project ”Energy-conscious 3D Server-on-Chip for Green Cloud
Services (Project No:247779 ”EuroCloud”)”

fluctuations as a function of technology node (the trends
for negative-bias-temperature- instability [6] are similar). The
trends clearly show that for all types of circuits the pfail
increases at a much faster rate than the scaling rate. However,
not all circuits are equally vulnerable, SRAM cells that are
usually built with minimum sized devices are highly more
likely to fail. What is more is that if we resort to voltage
operation below safety margins the SRAM pfail increases
exponentially [7].

TABLE I
PREDICTED pfail FOR DIFFERENT TYPES OF CIRCUITS AND

TECHNOLOGIES [3].

Technology Inverter Latch SRAM
45nm ≈ 0 ≈ 0 6.1e-13
32nm ≈ 0 1.8e-44 7.3e-09
22nm ≈ 0 5.5e-18 1.5e-06
16nm 2.4e-58 5.4e-10 5.5e-05
12nm 1.2e-39 3.6e-07 2.6e-04

These trends render paramount the development of reliabil-
ity techniques that are both scalable and performance effective.
This is especially important for processor memory arrays, such
as caches, that take most of the real-estate in processors and
contain numerous vulnerable to failure SRAM cells.

Existing techniques used in current processors such as ECC
codes [8], sparing [9], larger more resilient cell [10] can help
mitigate the problem with typical area costs in the range of
12-25% but are not scalable solutions because with higher
parametric and wearout pfail stronger and more expensive
codes, additional spares and larger cells will be needed.

In this paper we present a scalable memory array fault-
detection scheme called CBFD (count-based-fault-detection).
The state overhead of this scheme is a counter with (log2k)+1
bits for a memory array with size k bits. The proposed scheme
requires the read-write memory array invariance: every write
to a location is preceded by a read. This enables the CBFD
counter to keep track of the number of 1s(or 0s) in the array
at any given time. For a fault-free memory array the number
of 1s(0s) can not exceed the array size or become negative.
However, this invariance can be violated when there is faulty
operation that CBFD detects to report a faulty memory array.
The paper presents the operation as well the properties of the
count-based method. It also discusses how CBFD can be used
to detect soft and hard-errors in array cells and peripheral
logic.

The remainder of the paper is organized as follows: the
functionality and properties of the CBFD scheme are discussed
in Section II. Section III examines the CBFD’s fault coverage

Access

W
rite

Read Array

Cnt = Cnt - X

Write

Y 1's

Cnt = Cnt + Y

Read

F

Read_2_count

X 1's

T

Access

W
rite

Read Array

Cnt = Cnt – X

Check Cnt < 0

Write

Y 1's

Cnt = Cnt + Y

Check Cnt > Max

Read

T

Read_2_count

X 1's

(a) (b) (c)

F

Read X 1's

T

(RW)+

Access Pattern

Cnt = Cnt – X

Check Cnt < 0

Write

Y 1's

Cnt = Cnt + Y

Check Cnt > Max

T

Check Cnt < 0 or

Cnt > Max

T

Counter

Overhead
Read To Count

Overhead
Error Detection

ERROR

ERROR

ERROR

ERROR

ERROR

Fig. 1. (a) CBFD Mechanism Flow without error detection (b) CBFD Mechanism Flow with error detection (c)(RW)+ flow with error detection

and compares it to other protection schemes. We explain
the potential uses of this scheme in Section IV. Section V
discusses related work. Finally, we conclude in Section VI.

II. CBFD: COUNTER BASED FAULT DETECTION METHOD

This section presents discussion and analysis for the: (i)
functionality of the proposed method, (ii) its detection latency,
and (iii) overheads and ways to mitigate them depending on
access patterns.

Unless indicated otherwise, a faulty array is assumed to have
a single faulty cell to simplify presentation.

A. Method

Lets assume that it is desirable to track at any given time
the number of 1’s(or 0’s) stored in a memory array, array
henceforth, with N entries and B bits per entry using a
counter. Further, lets assume that always at initialization the
number of 1’s in the array is known and stored in the counter.

A generic method that achieves the above is to perform
before every write to an array entry a read from the entry and
increment the counter by the difference between the number
of bits with a 1 in the new and the old entry value. The counter
value is not updated during normal reads. We refer to a read
performed only for counter updating as read-to-count. The
flow diagram on how this method works is shown in Fig. 1.a.

The above method relies on the read-write array invariance:
before each write to an entry there is a read-to-count from that
entry. Consequently, the number of 1’s in different writes to
the same entry are not accumulated. Only the 1’s in the most
recent write to each entry contribute to the counter’s value.
This means that the counter can only take values in the range
of 0 to NB and the counter needs (log2NB) + 1 bits. When
the counter value is 0 it means all the cells in the array are 0,
and when the counter is NB all the cells are 1. In general when
the counter has value x, it means there are x 1s and NB − x
0s in the array. The method can be used to detect faults in a
memory array by performing the checks illustrated in Fig. 1.b

with an error detected (i) on a write whenever a counter gets
outside the correct range, and (ii) on a read when the counter
indicates the array contains all 0s(1s) and the output value
contains a 1(0).

It is important to note that the proposed method does not
require additional state to track which and the order of the
locations that are accessed.

We illustrate the CBFD operation in Fig. 2 assuming a 4x1
array that contains initially all zeros that is indicated in a
CBFD counter of 3 bits. Each write access is denoted by
a Wi[j] with i representing the write value and j the entry.
Similarly R[j] denotes reading from entry j. In order for the
counter to keep track of the values, a R2C[j] (read-to-count
from entry j) are added before every write.

The original access pattern in Fig. 2.a with five accesses, 2
reads and 3 writes, results in a fault-free CBFD value of ’0’.
Fig. 2.b and Fig. 2.c show how faults can be detected on a
write and a read respectively.

Fig. 2 highlights a subtle but important property of CBFD:
it can detect faults with a delay. For example, when an entry
with a faulty value is overwritten it causes the counter to be
updated incorrectly, but the value of the counter at this point
may be in the correct range and the fault is not detected. The
fault will be detected if subsequent array updates cause the
counter value to become <0(>maximum) or we read a 1(0)
from an array that, as indicated by the counter, contains all
0s(1s). This non-determinism in detection delay is discussed
next.

B. Fault Detection Latency

One important attribute of a fault detection method is its
detection latency. For protection schemes such as parity and
SECDED [8] the detection latency is mainly a function of the
logic used to generate syndrome for an information word. For
CBFD, however, the detection latency is non-deterministic and
it can even be unbounded. Several parameters can influence
CBFD’s detection latency: (i) the array size: the larger the

CNT --

0

0

0

0

000

Initial Values

CNT 001

W1[1]

0

1

0

0

R2C[1]

1

1

0

0

001

1

1

0

0

R[0]

001

W0[0]

0

1

0

0

R2C[0]

000

0

0

0

0

W0[1]

R2C[1]

(a)

(b)

(c)

Detect
Error

CNT ++ CNT --

CNT < 000

0

0

0

0

000

Initial Values

CNT 001

W1[1]

0

1

0

0

R2C[1]

1

1

0

0

001

1

1

0

0

R[0]

001

W0[0]

0

1

0

0

R2C[0]

000

0

1

0

0

R[1]

Detect
Error

CNT ++ CNT --

CNT == 0 and
Read a 1

CNT --

0

0

0

0

000

Initial Values

001

W1[1]

0

1

0

0

R2C[0]

0

1

0

0

001

0

1

0

0

R[0]

001

W0[0]

0

1

0

0

R2C[0]

001

0

0

0

0

W0[1]

R2C[1]

CNT ++

R[1]

CNT 000

Fig. 2. (a) Fault free accesses, (b) Fault and Write detection, and (c) Fault and Read detection

array size the larger the range of the CBFD counter and the
less likely for the counter to be at 0 or maximum values where
faults are more likely to be detected, (ii) the dynamic program
information used to access and write an array: this influences
whether and how often a CBFD counter returns to 0 or the
maximum value where faults are more likely to be detected,
and (iii) the type of error: an entry with a soft-error when it
is written contributes only once to an incorrect update of the
CBFD counter. On the other hand, an entry with a hard error
can potentially contribute every time the entry is written thus
moving faster the counter towards the edges of the correct
range and fault detection.

The implications of these observations is that the CBFD
counter can be updated incorrectly and this may eventually
lead to the detection of a fault but as long as the value of
the counter remains in the correct range the fault can not be
detected and its detection latency can be unbounded.

One approach to address the latency due to large counter
range is to reduce the size of the array for which a CBFD
counter is used for. One way to accomplish this is with array
partitioning. Assume that we divide a NxB bit array in P
partitions. P counters will need to track the number of 1’s in a
P smaller arrays each with size NxB/P bits. This is expected
to help reduce detection latency but still it does not address
completely unbounded detection latency.

A cursory analysis of the effects of dynamic program
behavior and partitioning on the CBFD counters is shown in
Fig. 3. This figure presents for different array structures and
for all SPEC2K benchmarks how often a counter is at 0 or

the maximum value 2. Each array configuration is listed in the
legend as 3-tuple: rows, columns, partitions.

The figure shows the average number of all same cycles for
the structures simulated. The structures fall into two categories.
For data caches (tag and data) and data TLB the number of all
same cycles are below 40%. This is because these structures
are heavily accessed and keeps getting filled up with blocks
that break the all same behavior. Similarly for conditional
predictor prediction bit, these cycles are low. For I$-tag and
ITLB this average is very high due to blocks being written
with mostly zeroe values. Also for IJUMPs and hysteresis bit,
the average is high. Overall, the data shows that the coverage
of reading from a same column is high but not sufficient for
accurate and fast fault detection.

CBFD with Sweeping. One possible approach to limit
CBFD’s detection latency is to perform at regular intervals
a sweep through an array and perform read-to-count of all
array entries. Previous work [11] has shown that reinitializing
core resources (flushing L1 caches and tlbs, resetting predic-
tors state while maintaining L2) has a negligible impact on
performance if it is done around 1 million or more cycles.
The reason for this is that usually the number of entries in
these structures is in the order of 100 to 1000 entries and
they can be warmed up relatively quickly as compared to the
interval length. This is particularly true for flushed L1 caches
that are backed-up by an inclusive L2. Furthermore, as we
explain above we do not need to perform a reinitialization but
rather a read-to-count through each array without modifying
the array content.

2The x-axis is not common between curves, i.e. a benchmark may corre-
spond to different x-points

G J F X Q C L A Z
W S E U M O B R Y H T K V

P

N
D

I

J M U
X T L Q Z G C

V S W F R
B

D N Y
A H P E O K

I

F G O Q I J T W A U C L X Z M B S
H R V N K E D Y

P

J U M
G L Q T X C Z

V
W B F S Y R

A I K
D E H N O P

F A G Q T U W K N P X Z E B O J I C L Y V H

R

M D
S

B J M
G L Q T U V

F R V
S

Y

K O

J M
B G L T V

F Q R S V W Y Z
C

D N U
H

E
I P

A

F E W M S P N

X

Q Y Z
R

V G T B A J
L

H I U
O C K D

F M W E S X P N
J

Q
L R T

G
A Y

B V C I
Z

H U D K O

N

0

10

20

30

40

50

60

70

80

90

100

(%
)a

ge
 o

f A
ll

Sa
m

e
C

yc
le

s

D$-Tag (128x80, #Seg: 20)
I$-Tag (128x80, #Seg: 20)
DTLB-Tag (32x128, #Seg: 16)
ITLB-Tag (32x128, #Seg: 16)
D$-Data (128x2048, #Seg: 2048)
IJUMP (512x31, #Seg: 31)
RAS (16x31, #Seg: 31)
HYS (128x256, #Seg: 256)
PRED (128x256, #Seg: 256)

A: ammp, B: applu, C: apsi, D: art, E: bzip, F: crafty, G: eon, H: equake, I: facerec, J: fma3d, K: galgel, L: gap, M : gcc, N: gzip,
O : lucas, P: mcf, Q :mesa, R : mgrid, S : parser, T : perlbmk, U : sixtrack, V : swim, W: twolf, X: vortex, Y: vpr, Z: wupwise

Fig. 3. Fraction of time an array partition has the same content for all cells

For a fault-free operation the counter after the sweep should
become zero. If it is zero we just restore the previous counter
value and resume operation, otherwise we have detected an
error. The combination of CBFD and sweeping represents a
low cost fault detection mechanism.

C. Overheads
A CBFD implementation incurs mainly the following over-

heads: the area for the counter, the energy for updating the
counter, the energy for the reads-to-count, and the performance
implications of the read-to-count accesses (due to potential
conflicts with normal accesses).

The relative area overhead of the counter for an array
with size k bits is (1+log2(k))/k, which becomes increasingly
smaller with larger values of k. For instance for 128bits,
1KB, 8KB tables the counter needs to be 7+1, 13+1 and
16+1 bits respectively corresponding to 6.25%, 0.2% and
0.025% overhead. Thus area overhead of the method should
be minimal as long as k is large enough. We also expect the
energy overhead for updating the counter to be relatively small
because the counter is small relative to the array size and
is only updated on writes. We do not consider further these
overheads in the paper.

Figure 4 shows the area overhead comparison of parity
codes with CBFD (ECC has the same overhead as Parity
for SECDED). For realistic number of partitions, the CBFD
mechanism always has less hardware than ECC and parity.
Partitioning the cache has no affect on ECC/parity overhead.

The remaining overheads are due to the read-to-count op-
erations: the dynamic energy overhead of the reads-to-count
and the potential performance degradation due to the delay
of write operations to perform a read to count. We consider
these two overheads in combination and we discuss next how
to reduce them depending on array access patterns.

D. Minimizing Read-to-Count Overhead depending on Array
Access Pattern

The above description of CBFD is for an array where any
combination of reads and writes to a location is possible.
However, certain processor arrays exhibit constrained access
patterns that facilitate a reduction of the read-to-count over-
head. For example, in several types of prediction arrays an
entry is always read at the front-end before written at the
back-end. Effects of wrong-path instructions can be eliminated
by doing the CBFD update when instructions commit. Such
access patterns, denoted using by (RW)+, have each write to a
location preceded by a read and, therefore, the read-to-count
overhead is eliminated. This is illustrated in Fig. 1.c.

The (RW)+ access pattern happens often [12], not always,
in data caches that are protected with error-correction-code
when the access datum is smaller than the ECC granularity.
In this case each write is preceded by read. Consequently,
if it is desired to have CBFD protection for a data cache,
enforcing the read-write invariance may incur small read-to-
count overhead. This overhead seems to become even smaller
when one considers that usually stores are less frequent than
loads. For data arrays, both for instruction and data caches,
a replaced block needs to be read-to-count even if it is not
dirty to preserve the read-write invariance. This extra read can
possibly be avoided if we can select the victim block on miss
instead on fill time.

Tag and TLB arrays are written on a miss. Therefore, on
a miss the tag of the victim block needs to be read-to-count.
Analogous to data-arrays the read-to-count can be avoided if
we can select the victim on a miss instead of on a fill.

We do not provide a full CBFD compliant data, tag and tlb
array design in this work, this will be the subject of future
work, we merely indicate that some of these arrays have

0

50000

100000

150000

200000

250000

300000

350000

1 2 4 8 16 32 64 128 512 1024 2048 4096 8192 16384 32768 65536

Number of Partitions

A
re

a
O

ve
rh

ea
d

(B
its

)
Parity
CBFD

Fig. 4. Area Overhead Comparison between CBFD and Parity for Different
Number of Segments (ECC has the same overhead as parity for SECDED)

properties that may make them amenable to CBFD protection.
One bit hysteresis arrays used to control update of pre-

dictions do not need a read before updating for a correct
prediction. A direct write to a strong state is sufficient. For
incorrect predictions the hysteresis needs to be read to decide
whether to replace prediction. So incorrect predictions exhibit
(RW)+ pattern whereas for correct a read-to-count is needed.

Hysteresis arrays with two or more bits per entry need to
be read before an update.Therefore, they exhibit (RW)+ access
pattern and do not need read-to-counts.

III. CBFD COVERAGE COMPARISON

Memory arrays are usually protected using information re-
dundancy techniques, that is error detecting or error correcting
codes (EDC or ECC) [8]. For n bits data words, k extra
bits can be used to map the original data words to n+k bits
data words. The minimum hamming distance (HD) between
each pair of valid target (n+k bits) data words, determines
the detection and correction capability of the used code. In
particular, an EDC code can detect up to HD-1 errors, while
an ECC code can correct up to (HD-1)/2 errors. A common
error detection/correction code is SECDED, which stands for
Single Error Correction Double Error Detection and has HD=4
(for 32bit data words needs 7 extra bits, while for 64bit 8 extra
bits). Parity is the simpler protection scheme and detects one
single error with the cost of 1 bit per data word (usually it is
applied per byte).

We compare CBFD with parity check and ECC. Since the
protection granularity of CBFD is different, we compare the
three schemes in three different scenarios to get a more broad
picture and show the summary in Table II.

(A) Scenario 1: Faults occur within group of bits protected
by parity bit or ECC. Since CBFD is not necessarily on 64
bit basis, we consider this group of bits to be any number of
bits with all faults occurring within these bits.

(i) Parity(assuming even parity): Detects all odd flips. It
does not detect even flips.

(ii) ECC: Detects all one and two bit errors. In some cases
more than two bit errors can be detected depending on the
pattern they change the checked word into. Some three bit
errors in ECC can be falsely reported as corrected errors if
the resulting pattern of the word is manifested as a two bit
error.

(iii) CBFD: detects more errors than parity since it is able to
detect all odd flips and all even unbalanced flips. It is however
not able to detect even balanced flips (We define balanced
flip in which the total number of ones remain the same).
This is because the counter value for such a case remains
valid although there has been errors. As compared to ECC,
no Hamming distance is required in CBFD to detect errors.

(B) Scenario 2: Comparing bursts of errors occurring in
consecutive bits.

(i)Parity: Parity handles bursts by interleaving the bits which
means that consecutive bits are checked by a different parity.
Thus if a burst of error occurs it will belong to bits of different
words and can be detected.

(ii) ECC: Similarly in ECC, consecutive bits are checked
by different parity codes to avoid bursts of errors to lie in the
same word and hence be detected by separate error checks.

(iii) CBFD: Interleaving the bits can be applied to CBFD as
well. We can have a counter for one logical column that could
span across several non consecutive physical columns. This
will allow bursts of errors in consecutive bits to be checked by
a different counter and hence detected. Interleaving counters
for CBFD can be done in multiple ways with different columns
or bit positions to be monitored by a separate counter.

(C) Scenario 3: Assuming multi bit errors occur in different
words (protected by different check bits).

(i) Parity: Since parity is for every 8 bits, if the errors are
spread in different check words, different parity codes can be
used to check them and hence more errors can be detected.

(ii) ECC: In ECC as well errors across ECC granularity can
be detected by different ECC codes.

(iii) CBFD: CBFD loses potential in this case if we do not
have any partitioning and have one counter for the entire array.
Every error will fall in the same array and will not be able
to catch all multiple errors (unless they are odd or even with
unbalanced flips). We can potentially solve this by partitioning
the array to have more counters.

IV. APPLICATIONS OF CBFD

CBFD intended application is for error-detection in memory
arrays but it may also be used to reduce energy. This section
describes some of the CBFD applications.

CBFD is capable of detecting both soft and hard-faults in
array cells as well as in the peripheral array logic (such as
address decoder, column multiplexers).

Any fault that causes a cell to flip after it has been written
correctly it has the potential to be detected because on the
next write to the cell it will cause an incorrect counter update.
Errors in peripheral logic can be detected because CBFD
protects all data in an array and when data are written to the
wrong location they can cause a cell flip. The per entry ECC
will not detect the problem because the data and their code
are correct but the address they are stored is not.

CBFD without sweeping represents a low-cost array fault
detection scheme but possibly with limited fault coverage.
Soft-errors are not likely to be detected but frequently oc-
curring hard-errors will be detected.

TABLE II
ERROR DETECTION CAPABILITIES OF DIFFERENT SCHEMES

Scheme Errors in One Word Error Bursts Errors in Different Words
Parity Odd flips detected Even flips not detected Through Column Interleaving Detected
ECC One and two flip detected Through Column Interleaving Detected

CBFD Odd and Unbalanced Even flips detected. Balanced Even flips not detected Through Column Interleaving Loses Potential

CBFD with sweeping provides a low-cost high coverage
fault detection method that can catch both soft and hard errors.
Combining CBFD with existing protection per entry schemes,
such as parity and SECDED, can improve the overall fault
detection coverage due to the extra faults CBFD detects, which
cannot be detected with the per-entry schemes alone.

Another application of CBFD is to combine it with a
checkpointing scheme to provide a low-cost symptom based
fault-tolerance.

The CBFD scheme can provide additional benefits beyond
error detection. For example, counters can be used to minimize
power dissipated in precharging bitlines. This can be accom-
plished when the counter is zero or is equal to the number
of bits in the bitline. When this occurs the bitline contains all
’0’s or all ’1’s. Thus, instead of precharging a bitline in the
array, the counter value can indicate the value that has to be
read.

V. RELATED WORK

In [13] a two-dimensional coding scheme is proposed,
which uses standard EDC/ECC per row along with EDC per
column, thus allowing for detection (and correction) of clusters
of faults. The method relies on read-before-writes, analogous
to read-to-counts, to maintain the column parity. One of our
key differences from this work is that we focus on low-
cost detection where this earlier work aimed to provide both
correction and detection.

It is common knowledge that most modern processors have
some form of protection for architectural arrays such as caches
and register files. What is less known, is that processors both
in high availability systems but also embedded processors
protect prediction arrays [14], [15]. This can be useful for
reducing unnecessary stalls when running in lockstep with
another processor.

Most EDC and ECC schemes have state overhead linear
to the size of the array (k). The proposed scheme has log2k
overhead, which render it very cost effective. What is more,
it can detect other types of errors, that standard parity codes
cannot (like errors in peripheral logic). Last, it can be used
complementary to other schemes and provide some more
protection.

VI. CONCLUSIONS AND FUTURE WORK

This paper introduces a count-based fault detection scheme
called CBFD that is based on the read-write invariance of
memory arrays: every write is mostly preceded by a read. The
method keeps track of the number of ones(zeros) in a memory
array using only a log2k+1 counter for an array with size k
bits. The paper presents the properties of CBFD as well as
some applications/uses.

The proposed scheme opens up several directions of work
including its more detailed evaluation/optimization for differ-
ent applications as well as its combination and interaction with
other error correction and detection techniques. One such line
of work is to consider its usefulness for online testing. Another,
interesting direction is to consider CBFD for detecting failures
in DRAM memory arrays. Finally, the proposed method may
have applications for power reduction, for example, it can be
used to prevent precharging bitlines that all their cells store
the same value.

REFERENCES

[1] S. Borkar, “Design Challenges of technology scaling,” IEEE Micro,
vol. 19, no. 4, pp. 23–29, Jul. 1999.

[2] Y. Taur, “CMOS design near to the Limit of Scaling,” IBM Journal of
Research and Development, vol. 46, no. 2/3, pp. 213–222, Mar./May
2002.

[3] S. R. Nassif, N. Mehta, and Y. Cao, “A resilience roadmap,” in DATE,
2010, pp. 1011–1016.

[4] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De,
“Parameter variations and impact on circuits and microarchitecture,” in
DAC ’03: Proceedings of the 40th annual Design Automation Confer-
ence. New York, NY, USA: ACM, 2003, pp. 338–342.

[5] K. Bowman, J. Tschanz, C. Wilkerson, S.-L. Lu, T. Karnik, V. De,
and S. Borkar, “Circuit techniques for dynamic variation tolerance,” in
DAC46. New York, NY, USA: ACM, 2009, pp. 4–7.

[6] S. Zafar, B. Lee, J. Stathis, A. Callegari, and T. Ning, “A model for
negative bias temperature instability (nbti) in oxide and high kappa,” in
VLSI Technology, 2004. Digest of Technical Papers. 2004 Symposium
on, 2004, pp. 208 – 209.

[7] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khellah, and
S.-L. Lu, “Trading off cache capacity for reliability to enable low voltage
operation,” in ISCA35, June 2008, pp. 203–214.

[8] R. W. Hamming, “Error detecting and error correcting codes,” The Bell
System Technical Journal, vol. 26, no. 2, pp. 147–160, 1950.

[9] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen,
B. J. Ronchetti, W. M. Sauer, E. M. Schwarz, and M. T. V aden, “Ibm
power6 microarchitecture,” IBM Journal of Research and Development,
vol. 51, no. 6, pp. 639 –662, 2007.

[10] J. P. Kulkarni, K. Kim, and K. Roy, “A 160 mv, fully differential, robust
schmitt trigger based sub-threshold sram,” in ISLPED ’07: Proceedings
of the 2007 international symposium on Low power electronics and
design, 2007, pp. 171–176.

[11] T. Constantinou, Y. Sazeides, P. Michaud, D. Fetis, and A. Seznec,
“Performance implications of single thread migration on a chip multi-
core,” in SIGARCH Computer Architecture News, 2005, p. 2005.

[12] K. M. Lepak and M. H. Lipasti, “Silent stores for free,” in Proceedings
of the 33rd annual ACM/IEEE international symposium on Microarchi-
tecture, ser. MICRO 33, 2000, pp. 22–31.

[13] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. Hoe, “Multi-bit error
tolerant caches using two-dimensional error coding,” in MICRO 40:
Proceedings of the 40th Annual IEEE/ACM International Symposium
on Microarchitecture, 2007, pp. 197–209.

[14] C. McNairy and R. Bhatia, “Montecito: a dual-core, dual-thread itanium
processor,” Micro, IEEE, vol. 25, no. 2, pp. 10 – 20, march-april 2005.

[15] “Cortex-a9 technical reference manual,” infocenter.arm.com, 2010.

