
The Significance of Affectors and Affectees
Correlations for Branch Prediction

Yiannakis Sazeides1, Andreas Moustakas2,?, Kypros Constantinides2,?, and
Marios Kleanthous1

1 University of Cyprus, Nicosia, CYPRUS
2 University of Michigan, Ann Arbor, USA

Abstract. This work investigates the potential of direction-correlations
to improve branch prediction. There are two types of direction-correlation:
affectors and affectees. This work considers for the first time their im-
plications at a basic level. These correlations are determined based on
dataflow graph information and are used to select the subset of global
branch history bits used for prediction. If this subset is small then affec-
tors and affectees can be useful to cut down learning time, and reduce
aliasing in prediction tables. This paper extends previous work explaining
why and how correlation-based predictors work by analyzing the prop-
erties of direction-correlations. It also shows that branch history selected
using oracle knowledge of direction-correlations improves the accuracy
of the limit and realistic conditional branch predictors, that won at the
recent branch prediction contest, by up to 30% and 17% respectively.
The findings in this paper call for the investigation of predictors that
can learn efficiently correlations from long branch history that may be
non-consecutive with holes between them.

1 Introduction

The ever growing demand for higher performance and technological constraints
drive for many years the computer industry toward processors with higher clock
rates and more recently to multiple cores per chip. Both of these approaches
can improve performance but at the same time can increase the cycle latency
to resolve an instruction, the former due to deeper pipelines and the latter due
to inter-core contention for shared on-chip resources. Longer resolution latency
renders highly accurate conditional branch prediction a necessity because branch
instructions are very frequent in programs and need to be resolved as soon as
they are fetched in a processor to ensure continuous instruction supply.

Today, after many years of branch prediction research and the two recent
branch prediction championship contests [1, 2], the accuracies of the state of the
art predictors are high but far from perfect. For many benchmarks the GTL
predictor3 [3] has more than five misses per thousand instructions. Such a rate

? The author contributed to this work while at the University of Cyprus
3 The winner predictor of the limit track of the 2006 branch prediction contest

of misprediction, depending on the average branch resolution latency and other
execution overheads, can correspond to a substantial part of the total execution
time of a program. Consequently, we believe there is still a need to further
improve prediction accuracy. The challenge is to determine how to achieve such
an improvement.

In the seminal work by Evers et al. [4] it is shown that choosing more selec-
tively the correlation information can be conducive for improving branch pre-
diction. In particular, using an exhaustive search is determined for a gshare [5]
predictor that only a few, not necessarily consecutive, of the most recent branches
are sufficient to achieve best prediction accuracy. Furthermore, is demonstrated
that a correlation may exist between branches that are far apart. The same
work, introduces two reasons for why global history correlation exists between
branches: direction and in-path correlation, and divides direction-correlations
into affectors and affectees.4 These various types of correlations can mainly be
derived by considering the data and control flow properties of branches. These
causes of correlation are only discussed qualitatively in [4] to explain what makes
two-level branch predictors work, no measurements of their frequency or quan-
tification of their importance are given.

The work by [4] motivated subsequent prediction research with goal the selec-
tive correlation from longer global history. One of the most notable is perceptron
based prediction [7] that identifies, through training, the important history bits
that a branch correlates on. The success of perceptron based prediction pro-
vides a partial justification for the claims by [4] for the importance of selective
correlation. However, it was never established that the dominant perceptron
correlations correspond to direction or in-path correlation and therefore remains
uncertain if indeed such correlations are important or whether predictors exploit
them efficiently.

One other interesting work by [6] investigated the usefulness of affectors
branches, one of the types of direction-correlation introduced by [4] . In [6] the
affector branches are selected dynamically from the global history using data de-
pendence information and are used to train an overriding tagged predictor when
a baseline predictor performs poorly. The experimental analysis, for specific mi-
croarchitectural configurations and baseline predictors, show that this idea can
potentially improve both prediction accuracy and performance. This work also
provides the first concrete evidence that the direction-correlation is an impor-
tant information for prediction. However, [6] did not examine the importance of
affectees.

In this paper we investigate the significance for improving branch prediction
accuracy using the two types of direction-correlation: affectors and affectees. Our
analysis is done at a basic level because we assume oracle knowledge of affectors
and affectees with different degrees of precision for detecting the correlations
and without regard to implementation issues. The primary objectives of this
paper is to establish the extent that state of the art predictors learn direction-
correlations, and determine how precise the selection of direction-correlations

4 In [6] the two types of direction-correlation are referred to as affectors and forerunners

needs to be for best accuracy. Our evaluation uses the two winning predictors
of the limit and realistic track of the recent championship prediction [2] and
considers their accuracy when they use the global history as is versus the global
history packed [6] to “ignore” the positions with no direction-correlation.
Contributions
The key contributions and findings of this paper are:

– A framework that explains why some branches are more important than
others to correlate on. The framework can be used to precisely determine
these branches based on architectural properties.

– An experimental analysis of the potential of direction-correlations for branch
prediction based on oracle knowledge of the correlations.

– An investigation of the position and the number of direction-correlations
reveals that their behavior varies across programs. Also, is very typical for
programs to have branches with the number of correlations ranging from few
branches to several hundreds. The correlations can be clustered together but
also be very far apart, i.e. correlations may not be consecutive and can have
holes between them. Affectees are found to be more frequent than affectors.

– Demonstrate that for best accuracy both affectors and affectees correlations
are needed. Their use can provide accuracy improvements of up to 30% for
the limit predictor, and 17% for the realistic predictor

– Show that it is crucial to consider direction-correlations that are detectable
by tracking dependences through memory.

– Establish a need to further study predictors that can learn correlation pat-
terns with and without holes from long branch history.

The remaining of the paper is organized as follows. Section 2 defines what af-
fectors and affectees correlations are and discusses parameters that influence
the classification of a branch as correlating. Section 3 presents the experimental
framework. Section 4 discusses the experimental results of this study and estab-
lishes the significance of affectors and affectees. Section 5 discusses related work.
Finally, Section 6 concludes the paper and provides directions for future work.

2 Affectors and Affectees

This section defines what affector and affectee branches are and provides intu-
ition as to why these are important branches to select for correlation. It also
discusses how the treatment of memory instructions influence the classification
of a branch as an affector or affectee of another branch. Finally, a discussion is
presented on how this correlation information can be used for prediction. Part
of this discussion is based on earlier work [4, 6].

2.1 Definitions and Intuition

Affectors: A dynamic branch, A, is an affector for a subsequent dynamic branch,
B, if the outcome of A affects information (data) used by the subsequent branch

BB5

 Branch

 BB0

 R7 != 0

BB1

 Branch

BB2

 LW R2, (R1)
 R1 = R2+4
 R6 > 0

BB3

 R3 = R1+R2
 R7 > R6

BB4

 R2 == 1

 BB6

 R4 = R5+4
 R3 > 10

BB7

 R3 == R4

N T

N T

N T

N T

N TN T

N T

N T

Affector

Affector

Affector

Affectee

Affectee

R5

R3==R4

R4=R5+4

R3=R1+R2

R1=R2+4

LW
R2,(R1)

(R1)

R3==R4

R5

R3==R4

R4=R5+4

R3=R1+R2

R1=R2+4

LW
R2,(R1)

(R1)

R3>10
FALSE

R2==1
TRUE

R3>10
FALSE

R2==1
TRUE

Fig. 1. (a) Example control flow graph, (b) affector graph, (c) affectee graph and (d)
affector plus affectee graph

B. Affectors are illustrated using the example control flow graph in Fig. 1.a.
Assume that the (predicted) program order follows the shaded basic blocks and
we need to predict the branch in the basic block 7. The affector branches are
all those branches that steer the control flow to the basic blocks that contain
instructions that the branch, in basic block 7, has direct or indirect data depen-
dence. Effectively, the selected affector branches can be thought of as an encoding
of the data flow graph leading to the branch to be predicted (this affector data
flow graph is shown in Fig. 1.b). Predictors may benefit by learning affector
correlations because when branches repeat with the same data flow graph they
will likely go the same direction. Furthermore, affector correlations use a more
concise branch history to capture the data flow graph leading to a branch and
thus reduce learning time and table pressure for training a predictor.
Affectees: A dynamic branch, A, is affectee of a subsequent dynamic branch, B,
if A is testing the outcome of an instruction C that can trace a data dependence
to an instruction D in the data flow graph leading to B.5 The direction of an
affectee branch encodes, usually in a lossy manner, the value produced or yet
to be produced by D. In the example in Fig. 1.a there are two affectees. One
of the affectees is also an affector. In effect, affectees provide an encoding for
values consumed or produced in the dataflow graph leading to the branch to
be predicted. For example, the affectee branch in BB 4 tell us whether or not

5 C and D can be the same instruction.

the value loaded from memory in BB2 is 1. The affectee data flow graph for the
example in Fig. 1.a is shown in Fig. 1.c.
Combo: It is evident that the combination of affectors and affectees can be
more powerful than either correlation alone since affectees can help differentiate
between branches with the same data affector data flow graphs but different in-
put values. Similarly, affectors can help distinguish between same affectee graphs
that correspond to different affector graphs. The combined affector and affectee
data flow graph of our running example is shown in Fig. 1.d.

Section 4 investigates how the above types of correlations affect branch pre-
diction accuracy. We believe that existing predictor schemes are able to learn
data flow graphs, as those shown in Fig. 1, but they do this inefficiently using
more history bits than needed. Therefore, they may suffer from cold effects and
more table pressure/aliasing. Our analysis will establish how much room there
is to improve them.

2.2 Memory Instructions

An important issue that influences whether a branch is classified as having a
direct-correlation to another branch is the handling of memory instructions. For
precise knowledge of the direct-correlations data dependences need to be tracked
through memory. That way a branch that has a dependence to a load instruc-
tion can detect correlation to other branches through the memory dependence.
Although, tracking dependences through memory is important for developing a
better understanding for the potential and properties of affectors and affectees
correlations, it may be useful to know the extent that such precise knowledge is
necessary. Thus may be interesting to determine how well predictors will work
if memory dependences correlations are approximated or completely ignored.

We consider two approximations of memory dependences. The one tracks
dependence of address operands ignoring the dependence for the data. And the
other does not consider any dependences past a load instruction, i.e. limiting a
branch to correlations emanating from the most recent load instructions leading
to the branch. These two approximations of memory dependences need to track
register dependences whereas the precise scheme requires maintaining depen-
dences between stores and load through memory. We will refer to the precise
scheme of tracking dependences as Memory, and to the two approximations as
Address, and NoMemory. In Section 4 we will compare the prediction accuracy
of the various schemes to determine the importance of tracking accurately cor-
relations through memory.

For the Memory scheme we found that is better to not include the address
dependences of a load when a data dependence to a store is found (analysis
not presented due to limited space). This is reasonable because the correlations
of the data encode directly the information affecting the branch whereas the
address correlations are indirect and possibly superfluous

Recall that our detection algorithm of correlations is oracle. It is based on
analysis of the dynamic data dependence graph of a program. The intention of
this work is to establish if there is potential from using more selective correlation.

2.3 How to use Affectors and Affectees for Prediction

Based on the findings of this paper one can attempt to design a predictor
grounds-up that exploits the properties exhibited by affectors and affectees cor-
relations. That is also our ultimate goal and hopefully this paper will serve as a
stepping stone in that direction. This is however may be a non-trivial task and
before engaging in such a task may be useful to know if it is a worthwhile effort.

Therefore, in this paper we decided to determine the potential of affectors and
affectees using unmodified existing predictors. We simply feed these predictors
with the complete global history and with the history selected using our oracle
affectors and affectees analysis and compare their prediction accuracy. If this
analysis reveals that the selective correlations have consistently and substantially
better accuracy then may be worthwhile to design a new predictor.

The only predictor design space option we have is how to represent the se-
lected bits in the global history register. In [6] they were confronted with a
similar problem and proposed the use of zeroing and packing. Zeroing means
set a history bit to zero if it is not selected while branches retain their original
position in the history register. Packing moves all the selected bits to the least
significant part of the history register while other bits are set to zero. Therefore,
in packing selected branches lose their original position but retain their order.
Our experimental data (not shown due to space constraints) revealed that pack-
ing had on average the best accuracy and is the representation we used for the
results reported in Section 4.

Our methodology for finding the potential of affectors and affectees may be
suboptimal because it uses an existing predictor without considering the prop-
erties exhibited in the global history patterns after selection. Another possible
limitation of our study has to do with our definition of affectors and affectees.
Alternative definitions may lead to even more selective and accurate correla-
tions. For instance by considering only affectees that trace dependences to load
instructions. These and other limitations to be found may lead to increased po-
tential and thus the findings of this study should be view as the potential under
the assumptions and constraints used in the paper.

3 Experimental Framework

To determine the potential of affectors and affectees to increase branch prediction
accuracy we used a functional simulation methodology using a simplescalar [8]
derived simulator. A subset of SPEC2000 and SPEC95 benchmarks, listed in
Table 1, are used for our analysis. For the SPEC2000 benchmarks the early
regions identified by sim-point [9] are used, whereas for SPEC95 complete runs
of modified reference inputs are executed.

The eight integer benchmarks were chosen because they exhibited the higher
misprediction rates in the two suites for a 32KB L-Tage predictor. We did not
include the gzip benchmark because the memory requirements of this benchmark
to track dependences, affectors and affectees were very large. The FP benchmarks

Table 1. Benchmarks

SPECINT CPU2000 bzip200, crafty00, mcf00, twolf00, vpr00

SPECFP CPU2000 ammp00, fma3d00, mesa00

SPECINT CPU95 gcc95, go95, ijpeg95

are included as typical representatives of benchmarks with low misprediction
rates to ensure that selective correlations does not hurt these benchmarks and
to analyze if their correlation patterns are any different from integer or more
difficult to predict benchmarks.

Two predictors are used in the experimentation: a 32KB L-TAGE [10] pre-
dictor with maximum history length of 400 bits, and the GTL [3] predictor with
400 maximum history length for the GEHL component and 100000 maximum
history length for the TAGE component.

For the experiments where selective correlation is used, the selection is ap-
plied to the 400 bit global history of the L-TAGE predictor and to the 400 bit
history used to access the GEHL component of the GTL predictor. Selection
was not used for the TAGE component of GTL because the memory require-
ments required to track affectors and affectees for a 100000 global history were
extremely large and beyond the memory capacities of todays servers.

The detection of affectors and affectees is oracle using the dynamic data
flow graph of a program. For memory instructions, unless stated otherwise, the
default policy is to track correlations past memory dependences.

The algorithm used to determine affectors is the simple approximation pro-
posed in [6]. A dynamic branch is an affector, of a branch to be predicted, if
it is the last, in the dynamic program order, branch that executed before an
instruction in the dataflow graph of the branch to be predicted. The algorithm
used for detecting affectees is not presented due to space limitations.

4 Results

We present three sets of results, the first analyzes the properties of affectors and
affectees, the second discusses the accuracy of the GTL predictor, and the third
shows the accuracy of the L-TAGE predictor

4.1 Characterization of Affectors and Affectees

Fig. 2 and 3 show the cumulative distribution of dynamic branches according
to the number of affector and affectee correlations they have. The number of
correlations can not exceed 400 since we consider only correlations from the
400 most recent branches. We decided to analyze the behavior for the 400 most
recent branches since the two predictors used in the study use a 400 entry global
branch history register.

0

10

20

30

40

50

60

70

80

90

100

0 16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

27
2

28
8

30
4

32
0

33
6

35
2

36
8

38
4

40
0

Number of Correlations (affectors)

C
um

ul
at

iv
e

D
yn

am
ic

 B
ra

nc
he

s
(%

)
ammp00
bzip200
crafty00
fma3d00
gcc95
go95
ijpeg95
mcf00
mesa00
twolf00
vpr00

mcf

Fig. 2. Affectors distribution

0

10

20

30

40

50

60

70

80

90

100

0 16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

27
2

28
8

30
4

32
0

33
6

35
2

36
8

38
4

40
0

Number of Correlations (affectees)

C
um

ul
at

iv
e

D
yn

am
ic

 B
ra

nc
he

s
(%

)

ammp00
bzip200
crafty00
fma3d00
gcc95
go95
ijpeg95
mcf00
mesa00
twolf00
vpr00

mcf

Fig. 3. Affectees distribution

The results reveal that branches usually have much fewer affectors than af-
fectees. For most benchmarks 90% of the branches have at most 30 affectors.
According to the definition of affectors, this means that the computation that
determines the outcome of a branch can be found in less than 30 out of the most
recent 400 basic blocks preceded by a conditional branch. The outlier is mcf
where many branches have large number of affectors. The data about affectees
correlations show clearly that for most programs 50% of the branches have 30
or more affectees. This means that a branch frequently checks information that
partially or fully has been tested by at least 30 other out of the 400 most recent
branches. The data also show few benchmarks, bzip, ijpeg, vpr to have 300 or
more affectee correlations. It is noteworthy that mcf00, that has branches with
many affectors, has also many branches, about 50%, with 0 affectees. This oc-

100% 75% 50% 25% 0% 100% 75% 50% 25% 0% 100% 75% 50% 25% 0%

(a) (b) (c)

Fig. 4. Most frequent correlation patterns for (a)twolf00, (b)bzip00 and (c)ammp00

curs because mcf loads and tests data from many memory locations where no
correlation to the producers can be found within the least 400 branches. The
graph (not shown due to space) for the distribution of the branches when we
consider both affectors and affectees is very similar to the one for the affectees.

Overall the data show that for ALL benchmarks there are many branches
that have much less than maximum number correlations. Provided: (a) affectors
and affectees are the dominant types of correlation that predictors need to learn,
and (b) existing predictors are unable to use only the relevant part of history,
then these data suggest that there may be room for improving prediction.

In Fig. 4 we attempt to give more insight by presenting the dominant pat-
terns of correlation when we consider the combination of affectors and affectees.
The figure shows for three benchmarks, twolf, bzip and ammp what are the most
frequent 1000 patterns of correlations. To help the reader we present these top
patterns sorted from top to bottom according to the oldest position with a cor-
relation (i.e. the most recent correlation position is to the right). The curve that
cut-across each graph represents from top to bottom the cumulative branch dis-
tribution of the patterns. This line is not reaching 100% since we only display
the top 1000 patterns. A given pattern has a gray and white part representing
the bit positions with and without correlations. To help the reader we present
patterns with 100 positions where each position corresponds to 4 bits (a position

is set to one if any of its corresponding four bits is set). These three graphs are
representative of 10 of the 11 benchmarks we considered in this paper. Bench-
mark twolf is representative of crafty, vpr, mesa, gcc and go, bzip of mcf and
ijpeg, and both ammp and fma3d have distinct behaviors. We define the length
of a correlation pattern to be the oldest position with a correlation.

One of the main observation from these data is that branch correlations
are not always consecutive, there are holes between correlated branches. These
holes can be of any size and a given correlation pattern can have one or more
holes. The hole behavior varies across benchmarks, for twolf like benchmarks is
dominant whereas for bzip like benchmarks they occur less frequently. Within a
benchmark there can be both sparse and dense patterns.

More specifically, the results indicate that virtually always correlation pat-
terns include at least few of the most recent branches (for each benchmark almost
all patterns have at the right end - most recent branches - few positions set).
Also, it is observed across almost all benchmarks that for a given correlation
length the pattern with all positions set is very frequent. However, for twolf like
benchmarks many patterns have correlations that occur at the beginning and at
the end of the pattern with all the branches in the middle being uncorrelated.
Another remark for bzip and ammp like benchmarks, is that many branches
with correlations distributed over all 100 positions (bottom pattern in Fig. 4 for
bzip and ammp accounts for over 40% of the patterns). Provided it is important
to predict by learning precisely the above correlations, the results suggest that
there is a need for predictors that can learn efficiently patterns with holes.

Another key observation from Fig. 4 is that correlation patterns occur usually
across all history lengths. These underlines the need for predictors to be capable
of predicting with variable history length. The distribution of patterns according
to length (not shown due to space limitations) is similar to the affectees distri-
bution in Fig. 3 with a slight shift toward the bottom right corner. Assuming is
important to learn precisely the correlation patterns, the exponential like cumu-
lative distributions of correlation lengths, for most benchmarks, suggests that
most prediction resources should be devoted to capture correlations with short
history length and incrementally use less resources for longer correlations. This
observation clearly supports the use of geometric history length predictors [11].

The above observations may represent a call for predictors that can handle
both geometric history length and holes. As far as we know no such predictor
exists today. In the next section we attempt to establish the potential of such a
predictor using two existing geometric history length predictors that are accessed
with selected history, with holes, using oracle affectors and affectees correlations.

4.2 GTL Results

Fig. 5 shows the accuracy of the GTL predictor when accessed with full global
history, only with affectors correlations, only with affectees, and with the combi-
nation of affectors and affectees. The data show that the combination of affectors
and affectees provides the best performance. It is always the same or better than
GTL and almost always better than each correlation separately. The exception is

0

1

2

3

4

5

6

7

ammp00 bzip200 crafty00 fma3d00 gcc95 go95 ijpeg95 mcf00 mesa00 twolf00 vpr00

M
is

se
s/

K
I

GTL
Affectees
Affectors
Combo

Fig. 5. GTL accuracy with selective correlation

0

1

2

3

4

5

6

7

ammp00 bzip200 crafty00 fma3d00 gcc95 go95 ijpeg95 mcf00 mesa00 twolf00 vpr00

M
is

se
s/

K
I

GTL
NoMemory

Address

Fig. 6. Significance of memory dependence

vpr00 where the combination does slightly worse than using only affectors. This
can happen when the one type of correlation is sufficient to capture the program
behavior and the use of additional information is detrimental. The improvement
provided by combining affectors and affectees is substantial for several bench-
marks and in particular for crafty, gcc, go, ijpeg, twolf, and vpr it ranges from
15% to 30%. For the remaining paper we present results for experiments that
combine affectors and affectees since they provide the best overall accuracy.

The data clearly support the claim by [4] that direction-correlation is one of
the basic types of correlations in programs that predictors need to capture.

Fig. 6 shows the prediction accuracy when we combine affectors and affectees
but with no correlations through memory. For each benchmark we present three
results, the GTL predictor with full history, the affectors and affectees with no

0

1

2

3

4

5

6

7

8

9

10

11

12

ammp00 bzip200 crafty00 fma3d00 gcc95 go95 ijpeg95 mcf00 mesa00 twolf00 vpr00

M
is

se
s/

K
I

L-TAGE
Combo

Fig. 7. L-TAGE accuracy with selective correlation

correlations past load instructions (NoMemory), and with correlations past load
instructions using their address dependences (Address). The data show that
there is very little improvement to be gain when we do not consider correla-
tions through memory dependences. The data indicate that an approximation
of memory dependences using addresses dependences offers very little improve-
ment. This underlines that important correlations from the data predecessors of
load instructions are needed for improved accuracy.

The data show that selective correlation using the combination of affectors
and affectees can provide substantial improvement in prediction accuracy. The
results also show that correlations past memory instructions are important and
that address dependences provide a poor approximations of the data dependence
correlations. Overall, we believe the data suggest that may be worthwhile inves-
tigating the development of a predictor that is capable of learning correlations
from long history with holes. These conclusions are true for GTL an unreal-
istically large predictor that demonstrate that the improvements are not mere
accident but due to basic enhancements in the prediction process. However, we
are interested to know if these observations hold for a realistic predictor. Next
we consider selective correlation for a 32KB L-TAGE predictor.

4.3 L-TAGE Results

Fig. 7 shows the prediction accuracy for a 32KB L-TAGE when accessed us-
ing the complete global history (L-TAGE) and with selective history using the
combination of affectors and affectees (Combo). The results show that selective
correlation with affectors and affectees can also improve the accuracy of the L-
TAGE predictor at a realistic size. The amount of improvement is significant for
several benchmarks. In particular, for gcc, ijpeg, and vpr is above 15% (for vpr

17%). We believe that these improvements call for the design of a predictor that
can exploit direct-correlations.

The amount of improvements for L-TAGE are smaller as compared to GTL.
However, one should recall that GTL is a completely different predictor not
simply a bigger L-TAGE predictor. We also performed analysis of the importance
of correlations through memory and the data suggest, similarly to GTL, that it
is necessary to include such correlations for better accuracy.

5 Related Work

Since Smith [12] proposed the first dynamic table based branch predictor, inno-
vation in the field of prediction has been sporadic but steady. Some of the key
milestones are: correlation-based prediction [13] that exploits the global and or
local correlation between branches, hybrid prediction [5] that combines different
predictors to capture distinct branch behavior, variable history length [14] that
adjusts the amount of global history used depending on program behavior, the
use of perceptrons [7] to learn correlations from long history, geometric history
length prediction [11] that employs different history lengths that follow a geo-
metric series to index the various tables of a predictor, and partial tagging [15]
of predictor table entries to better manage their allocation and deallocation. The
above innovations have one main theme in common: the correlation information
used to predict a branch is becoming increasingly more selective. This facilitates
both faster predictor training time and less destructive aliasing. Our paper ex-
tends this line of work and shows that there is room for further improvement if
we could select correlations with holes out of long history.

In two recently organized branch prediction championships [1, 2] researchers
established the state of the art in branch prediction. In 2006, the L-TAGE global
history predictor [10] was the winner for a 32KB budget. L-TAGE is a multi-table
predictor with partial tagging and geometric history lengths that also includes
a loop predictor. In the 2006 championship limit contest the GTL predictor [3]
provided the best accuracy. GTL combines GEHL [11] and L-TAGE predictors
using a meta-predictor. The GEHL global history predictor [11] employs multiple
components indexed with geometric history length. Our paper uses the L-TAGE
and GTL predictors to examine our ideas to ensure that observations made are
not accidental but based on basic principles. The use of longer history is central
to these two predictors and the analysis in this paper confirmed the need and
usefulness for learning geometrically longer history correlations.

Several previous paper explored the idea of improving prediction by encoding
the data flow graphs leading to instructions to be predicted. They use informa-
tion from instructions in the data flow graph [16–20], such as opcodes, immediate
values, and register names, to train a predictor. Effectively these papers are im-
plementing variations of predictors that correlate on affector branches. In [20],
they consider using the live in values of the dataflow graphs when they become
available and in [17] they examined the possibility of predicting such values. The
inclusion of actual or predicted live-in values is analogous to the correlation on

affectee branches of such values, since the predicted or actual outcome of affectee
branches represents an encoding of the live-in values.

Mahlke and Natarajan [21] use static dataflow information to determine vari-
ables that may influence the outcome of a branch and then performed profiling
analysis on these variable to determine simple correlation functions between the
values of the variables and the branch outcome. Instructions are inserted in the
code to compute the branch direction. In our view, this work also attempts
to implement a variation of affectors and affectees correlation since a function
supplies analogous information to what can be provided by affectee branches.

A return-history-stack [22] is a method that can introduce holes in the branch
history. In broad terms, a return history stack pushes in a stack the branch
history register on a call and recovers it on a return, thus introducing holes in the
history. A return history stack was shown to be useful for a trace predictor [22]
and offered modest improvements for a direction branch predictor [23]. This
suggests that there are many cases where branches executed in a function are
often no significant correlators to branches executed after the function return.

6 Conclusions and Future Work

In this paper we investigate the potential of selective correlation using affectors
and affectees branches to improve branch prediction. Experimental analysis of
affectors and affectees revealed that many branches have few correlations and
often the correlations have holes between them. Prediction using selective cor-
relation, based on oracle selection of affectors and affectees, is shown to have
significant potential to improve accuracy for a both a limit and a realistic pre-
dictor. The analysis also shows that correlations past memory instruction are
needed for best accuracy. Overall, our study suggests that may be worthwhile
to consider the design of a realistic predictor that can exploit the properties
exhibited by affectors and affectees correlation patterns by learning correlations
with and without holes from long history. Another possible direction of future
work, is to apply the findings of this paper to static branch prediction, and to
other types of predictors, such as values and dependences.

Acknowledgments This work is partially supported by an Intel research grant.

References

1. WIlkerson, C., Stark, J.: Introduction to JILP’s Special Edition for Finalists of
the Championship Branch Prediction (CBP1) Competition. Journal of Instruction-
Level Parallelism 7 (2005)

2. Jiménez, D.A.: The Second Championship Branch Prediction Competition. Jour-
nal of Instruction-Level Parallelism 9 (2007)

3. Seznec, A.: The Idealistic GTL Predictor. Journal of Instruction-Level Parallelism
9 (2007)

4. Evers, M., Patel, S.J., Chappel, R.S., Patt, Y.N.: An Analysis of Correlation
and Predictability: What Makes Two-Level Branch Predictors Work. In: 25th
International Symposium on Computer Architecture. (June 1998)

5. McFarling, S.: Combining Branch Predictors. Technical Report DEC WRL TN-36,
Digital Western Research Laboratory (June 1993)

6. Thomas, R., Franklin, M., Wilkerson, C., Stark, J.: Improving Branch Prediction
by Dynamic Dataflow-based Identification of Correlated Branches from a Large
Global History. In: 30th International Symposium on Computer Architecture.
(June 2003) 314–323

7. Jimenez, D.A., Lin, C.: Dynamic Branch Prediction with Perceptrons. In: 7th In-
ternational Symposium on High Performance Computer Architecture. (Feb. 2001)

8. Burger, D., Austin, T.M., Bennett, S.: Evaluating Future Microprocessors: The
SimpleScalar Tool Set. Technical Report CS-TR-96-1308, University of Wisconsin-
Madison (July 1996)

9. Perelman, E., Hamerly, G., Biesbrouck, M.V., Sherwood, T., Calder, B.: Using
SimPoint for Accurate and Efficient Simulation. In: International Conference on
Measurement and Modeling of Computer Systems. (2003)

10. Seznec, A.: The L-TAGE Branch Predictor. Journal of Instruction-Level Paral-
lelism 9 (2007)

11. Seznec, A.: Analysis of the O-GEometric History Length branch predictor. In:
32nd International Symposium on Computer Architecture. (2005)

12. Smith, J.E.: A Study of Branch Prediction Strategies. In: 8th International Sym-
posium on Computer Architecture. (May 1981) 135–148

13. Yeh, T.Y., Patt, Y.N.: Two-Level Adaptive Branch Prediction. In: 24th Interna-
tional Symposium on Microarchitecture. (November 1991) 51–61

14. Juan, T., Sanjeevan, S., Navarro, J.J.: Dynamic History-Length Fitting: A third
level of adaptivity for branch prediction. In: 25th International Symposium on
Computer Architecture. (June 1998) 155–166

15. Michaud, P.: A PPM-like, Tag-based Predictor. Journal of Instruction-Level Par-
allelism 7 (2005)

16. Farcy, A., Temam, O., Espasa, R., Juan, T.: Dataflow analysis of branch mis-
predictions and its application to early resolution of branch outcomes. In: 31st
International Symposium on Microarchitecture. (December 1998) 59–68

17. Thomas, R., Franklin, M.: Using Dataflow Based Context for Accurate Value
Prediction. In: 2001 International Conference on Parallel Architectures and Com-
pilation Techniques. (September 2001) 107–117

18. Sazeides, Y.: Dependence Based Value Prediction. Technical Report CS-TR-02-00,
University of Cyprus (February 2002)

19. Constantinidis, K., Sazeides, Y.: A Hardware Based Method for Dynamically
Detecting Instruction Isomorphism and its Application to Branch Prediction. In:
2nd Value Prediction Workshop. (2004)

20. Chen, L., Dropsho, S., Albonesi, D.H.: Dynamic Data Dependence Tracking and
its Application to Branch Prediction. In: 9th International Symposium on High
Performance Computer Architecture. (February 2003) 65–76

21. Mahlke, S., Natarajan, B.: Compiler Synthesized Dynamic Branch Prediction. In:
29th International Symposium on Microarchitecture. (December 1996) 153–164

22. Jacobson, Q., Rottenberg, E., Smith, J.E.: Path-Based Next Trace Prediction. In:
30th International Symposium on Microarchitecture. (December 1997) 14–23

23. Gao, F., Sair, S.: Exploiting Intra-function Correlation with the Global History.
In: SAMOS. (2005)

