
A Study of Thread Migration in
Temperature-Constrained Multicores

PIERRE MICHAUD, ANDRÉ SEZNEC, and DAMIEN FETIS

IRISA/INRIA

and

YIANNAKIS SAZEIDES and THEOFANIS CONSTANTINOU

University of Cyprus

Temperature has become an important constraint in high-performance processors, especially
multicores. Thread migration will be essential to exploit the full potential of future thermally con-
strained multicores. We propose and study a thread migration method that maximizes performance
under a temperature constraint, while minimizing the number of migrations and ensuring fairness
between threads. We show that thread migration brings important performance gains and that it is
most effective during the first tens of seconds following a decrease of the number of running threads.

Categories and Subject Descriptors: C.1.2 [Processor Architectures]: Parallel Architectures

General Terms: Performance, Reliability, Management

Additional Key Words and Phrases: Multicore processor, power density, temperature, thermal man-
agement, thread migration

ACM Reference Format:
Michaud, P., Seznec, A., Fetis, D., Sazeides, Y., and Constantinou, T. 2007. A study of thread mi-
gration in temperature-constrained multicores. Architec. Code Optim. 4, 2, Article 9 (June 2007),
28 pages. DOI = 10.1145/1250727.1250729 http://doi.acm.org/10.1145/1250727.1250729

1. INTRODUCTION

Temperature has become an important constraint for current high-performance
processors because of its detrimental effect on circuit timing, mean time to
failure, and leakage currents. High temperature is mostly a consequence of
high power density. Power density has increased relentlessly over technology
generations and will probably continue to increase. One of the reasons is that

Authors’ addresses: Pierre Michaud, André Seznec, and Damien Fetis, IRISA, Campus de Beaulieu,
35042 Rennes Cedex, France; email: {pmichaud,seznec,dfetis}@irisa.fr. Yiannakis Sazeides and
Theofanis Constantinou, Department of Computer Science, University of Cyprus, 75 Kallipoleos
Str, 1678 Nicosia, Cyprus; email: {yanos,theofanis}@cs.ucy.ac.cy.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1544-3566/2007/06-ART9 $5.00 DOI 10.1145/1250727.1250729 http://doi.acm.org/
10.1145/1250727.1250729

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 9, Publication date: June 2007.

2 • P. Michaud et al.

voltage is unlikely to scale proportionally to transistor dimensions, as it used
to in recent years [ITRS 2004].

Nonetheless, the reduction of the technology feature size allows several com-
puting cores to be placed on the same chip. This is particularly attractive for
server-class processors. Several dualcore processors are presently available on
the market and future server class processors will likely have more than two
cores (e.g., Sun’s eight-core UltraSPARC T1 [Kongetira et al. 2005]).

Power consumption and temperature are important design constraints for
existing multicores [Clabes et al. 2004; Poirier et al. 2005; Pham et al. 2005].
Yet, if the product power density × feature size increases with future technol-
ogy generations, temperature will be a stronger constraint than total power
consumption [Michaud and Sazeides 2006].

In future temperature-constrained multicores (TCMC), thread migration
will be essential for fully exploiting the thermal limit [Skadron et al. 2003;
Heo et al. 2003; Powell et al. 2004]. We propose a new thread migration method
that maximizes performance under a temperature constraint, while minimizing
the number of thread migrations and ensuring fairness between threads. Our
method is based on exchanging threads when detecting a pair of hot–cold cores.
We confirm previous studies on activity migration and show that thread migra-
tion brings important performance gains when performance is constrained by
temperature.

Our study brings new insights on thread migration. One of our findings is
that thread migration is most effective during the first tens of seconds following
a decrease of the number of running threads. We show that the thermal benefit
of thread migration depends on the number of threads, their characteristics, and
the ambient temperature. We also show that the proposed migration method
divides the power consumption among threads in a fair manner.

The paper is organized as follows. In Section 2, we define TCMCs and ther-
mal fairness. Our new migration method is introduced in Section 3. Section 4
presents some experiments that serve to validate our simulation methodol-
ogy, which we present in Section 5. In Section 6, we show that the thermal
benefit of thread migration may be significantly underestimated if one looks
only at steady-state behavior and not at transient behavior. Sections 7 and 8
present experimental results quantifying the steady-state and transient per-
formance benefit of thread migration, with a look at migration frequency and
fairness. Section 9 presents related work and compares our migration method
with HRTM [Powell et al. 2004]. Finally, Section 10 concludes this study.

2. TEMPERATURE-CONSTRAINED MULTICORE

Recent processors implement dynamic thermal management to prevent the
absolute temperature from exceeding a certain value. When temperature ap-
proaches this value, power and performance are throttled. However, power con-
sumption only impacts the relative temperature, i.e., the temperature rise over
the ambient. The absolute temperature is the sum of the ambient temperature
Tamb and the relative temperature. Hence, for a fixed temperature limit, a lower
ambient temperature allows a higher power consumption.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 9, Publication date: June 2007.

A Study of Thread Migration in Temperature-Constrained Multicores • 3

We define a temperature-constrained multicore (TCMC) as a multicore whose
power consumption increases when the ambient temperature Tamb decreases.
We say that a core is thermally saturated when temperature on the core is close
to the maximum allowed temperature Tmax. In a TCMC, the maximum temper-
ature Tmax is not an emergency temperature that may be occasionally reached.
It is a nominal temperature that the chip is likely to reach for a significant
fraction of its lifetime. Hence, the value of Tmax has an impact on the mean
time to failure.

The ambient temperature Tamb is the temperature of the inlet air to the heat
sink fan [Intel 2004], i.e., inside the computer box. The ambient temperature
depends on the box design and is strongly correlated with the room tempera-
ture. Hence, the value of Tamb is not fixed. For example, the air temperature
at different rack inlets in the same air-conditioned room can vary significantly
[Moore et al. 2004; Schmidt et al. 2005].

2.1 Thermal Fairness

All the threads running simultaneously on a TCMC contribute to the total
power consumption, which is limited by the temperature constraint. Hence,
the total power is a shared resource for which threads compete with each other.
We define thermal fairness as follows:

1. Threads having similar characteristics are given the same share of the total
power consumption,

2. A thread X is allotted a power consumption that is not smaller than that
allotted if all the other threads were similar to X .

We believe that a practical TCMC should ensure thermal fairness, at least
approximately. The operating system (OS) schedules threads according to their
respective priorities. In particular, the OS decides which threads should be
running at a given time and for how long. However, when threads with similar
characteristics are running simultaneously, there is no reason why one should
be favored against the other. Hence the first property.

The second property is for preventing a thread from taking up all the power
[Hasan et al. 2005]. It guarantees a minimum performance for each thread,
independent of other threads characteristics.

2.2 On–Off Thermal Management

A practical TCMC must be able to regulate its power consumption in order to
adapt to the ambient temperature and the workload. There exists several possi-
ble methods for power regulation, in particular, global clock gating, instruction
fetch throttling, and voltage/frequency scaling. Except voltage scaling, these
methods involve a linear relation between power and performance.

For this study, we have assumed one of the simplest linear methods, on–
off thermal management (OOTM), sometimes called global clock gating.1 This
method is implemented in the Intel Pentium 4 [Gunther et al. 2001]. When a

1But the term is not general enough, as it indicates a particular means. For instance, one may use
power gating during off periods.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 9, Publication date: June 2007.

4 • P. Michaud et al.

temperature sensor indicates that Tmax is exceeded, OOTM stops the execution
on the corresponding core for a fixed time toff, and tries to minimize power
consumption during this time. Power density in the region surrounding the
sensor is qoff. After time toff is elapsed, normal execution resumes for a certain
time ton, until the sensor indicates Tmax again. During this time, power density
in the region surrounding the sensor is qon.

Power density in the vicinity of the temperature sensor is a square wave of
period ton + toff. This power density oscillation generates a temperature oscilla-
tion whose amplitude is approximately [Michaud et al. 2005]:

A(γ) ≈ qon − qoff

k1
×

√
4α1toff

π
× √

γ (1)

where k1 and α1 are, respectively, the thermal conductivity and diffusivity of
silicon (cf. Table II) and the duty cycle γ ∈ [0, 1] is

γ = ton

ton + toff

The duty cycle γ , hence, ton (as toff is fixed), adjusts automatically as a function
of qon and ambient conditions. The time-average relative temperature is pro-
portional to the time-average power. Hence, for maximizing the time-average
power, we must minimize the amplitude of the temperature oscillation. The
value of toff must be chosen small enough for the amplitude of the temperature
oscillation to be much smaller than Tmax − Tamb, say less than 1◦C. This way,
the time-average temperature is close to Tmax. This requires toff to be much
smaller than a millisecond. However, toff must be chosen large enough for the
temperature sensor to have enough time to give a new temperature measure (if
temperature is still above Tmax at the end of the off period, an extra off period
is necessary). For example, in the Intel Pentium 4, toff is a few microseconds
[Gunther et al. 2001; Intel 2004]. Formula (1) can be used to set toff to an ap-
propriate value. For the experiments in this study, we assume toff = 10 μs.

Moreover, we assume that each core has its own OOTM mechanism. In this
context, we refine our definition of thermal saturation by considering that a
core (or a sensor) is thermally saturated when OOTM triggered recently for
that core (or sensor).

3. THREAD MIGRATION METHOD

Activity migration is a general technique that decreases temperature by spread-
ing the electric activity over a larger area [Skadron et al. 2003; Heo et al. 2003;
Powell et al. 2004]. At the level of a multicore, activity migration means mi-
grating threads from core to core.

We do not rely on thread migration to keep temperature below Tmax, but on
OOTM. Previous work [Heo et al. 2003; Powell et al. 2004; Shayesteh et al.
2005] proposes migration as an alternative to OOTM or voltage/frequency scal-
ing. However, the extent to which thread migration can decrease temperature
is limited, and thread migration cannot replace OOTM. For instance, let us
consider a dualcore processor and a single thread running. A simple thread
migration method would migrate the thread to the unused core whenever the

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 9, Publication date: June 2007.

A Study of Thread Migration in Temperature-Constrained Multicores • 5

active core reaches Tmax [Shayesteh et al. 2005], without any other form of ther-
mal management. In this case, if the thread power consumption is very high or
in case of very high ambient temperature, the following occurs. Initially, both
cores are below Tmax. As the thread executes and migrates, both cores get hot-
ter. As temperature on both cores approaches Tmax, the migration frequency
gets higher and higher. In theory, the migration frequency becomes infinite and
temperature ends up exceeding Tmax. However, in practice, the migration fre-
quency is limited by the migration performance penalty. In other words, the
only reason why temperature could be prevented from exceeding Tmax is that
the performance penalty from migrations will be sufficiently high to decrease
power density. This can be viewed as a form of thermal management, but a
very inefficient one, because migrations consume some energy without produc-
ing useful work.

With OOTM as our main thermal management mechanism, the goal of
thread migration is to increase performance when performance is throttled be-
cause of temperature. The total power, hence, the total performance, increases
with the spatial-average temperature (cf. Eq. (A4), appendix). Performance is
maximum when all cores are thermally saturated, i.e., when the spatial-average
temperature of the hottest sensor is approximately Tmax.

A good thread migration method should avoid situations where a core is
thermally saturated while another core is not. A simple way to achieve this
would be to migrate threads proactively and periodically, so that all cores “see”
the same time-average power density [Heo et al. 2003]. However, migrations
induce a performance penalty [Constantinou et al. 2005], so we would like to
minimize the number of migrations. The problem is that the optimal migration
frequency depends on several parameters. For example, we could imagine a
situation where putting the microprocessor in an air-conditioned room at 15◦C
keeps all cores below Tmax and does not require any migrations, while putting
the same processor running the same threads in a room at 25◦C requires a
certain migration frequency. Maybe, if the room temperature is even hotter, all
cores become thermally saturated and migrations are useless again. Actually,
the optimal migration frequency depends not only on the ambient temperature,
but also on packaging characteristics (which may vary during the processor
lifetime [Samson et al. 2005]) and threads characteristics.

A migration method that tries to minimize thread migrations should be based
on thermal sensor information, as noted in Heo et al. [2003]. We should migrate
threads only when there is a potential performance gain. In particular, if there
is a thread running on each core and if all cores are thermally saturated and
this concerns the same sensor, there is little to expect from migrations. Thread
migration is interesting whenever

� there is a thermal sensor that recently triggered OOTM,
� there exists a core on which the same corresponding sensor did not trigger

OOTM for a long time.

We propose the following method, which is based on threads exchanges. First,
we allow a new migration only after 1 ms has elapsed since the last migration.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 9, Publication date: June 2007.

6 • P. Michaud et al.

This is a safeguard for preventing migrations to occur too often. Periodically
(we assume every 1μs in this study), the centralized thermal management
unit (TMU) receives new temperature measures from all thermal sensors. We
assume that there is a counter associated with each sensor, giving the current
value of ton for that sensor, i.e., the time elapsed since the last off period.

A thread is considered hot at a sensor if the current value of ton is less than
20 × toff, that is, the sensor recently triggered OOTM. A sensor is considered
cold if its temperature is less than Tsat = Tmax − 5 K . If the TMU can find a
cold sensor such that there exists a thread that is hot at that sensor, the TMU
triggers a migration. If there are several possible cold sensors for which there
exists a hot thread, the TMU selects the coldest of these cold sensors. Once a
cold sensor is selected (hence, a cold core), if there exist several hot threads for
that sensor, the TMU selects the thread with the smallest ton. This thread is
running on a core, which we call the hot core. Once the TMU has identified such
a pair of cold–hot cores, the migration consists in moving the hot thread to the
cold core. If there was a thread previously running on the cold core, this thread
is moved to the hot core, that is, the two cores exchange threads. Eventually,
the TMU resets the counters measuring ton on both cores. After the migration,
no new migration can be performed before 1 ms has elapsed.

The value Tsat = Tmax − 5 K for triggering migrations has been chosen not
too far from Tmax, so that we stay close to thermal saturation and to maximum
performance, yet not too close to Tmax, so that cold sensors can be distinguished
from hot ones (although we assume perfect sensors in this study).

3.1 Thermal Fairness

The migration method proposed in Section 3 should respect thermal fairness,
for the following reasons. Let us consider threads with identical characteristics.
When a hot thread is migrated to a cold core, temperature on the new core in-
creases, until temperature at a sensor reaches Tmax and then oscillates because
of OOTM. Once OOTM triggers, the thermal state continues to evolve (heat
sources further from the sensor contribute to sensor temperature after a longer
time) and the duty cycle γ decreases progressively to a steady-state value. The
longer the thread stays on a core, the smaller the duty cycle. Since threads have
identical characteristics, the thread with the smallest duty cycle is the thread
that stayed for the longest time without migrating. When we have several pos-
sible choices for the hot thread, we select the thread with the smallest ton. This
method favors the thread with the smallest duty cycle. That is, the thread that
was not migrated for the longest time has a higher probability than the other
threads to be the next thread to be selected for migration. The longer the time,
the higher the probability. This tends to equalize the threads migration inter-
vals. Hence, identical threads consume approximately the same time-average
power.

Now let us consider threads that are not necessarily identical and let us focus
on thread X . Thermal fairness means that if we replace the other threads by
threads identical to X , the duty cycle of thread X should not increase. If OOTM
seldom triggers for thread X , thermal fairness is obviously respected. Thus, let
us consider the case when thread X power consumption is throttled. In this

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 9, Publication date: June 2007.

A Study of Thread Migration in Temperature-Constrained Multicores • 7

case, temperature at the throttling sensor lies between Tsat and Tmax on each
core. Let qsat be the time-average 2D power density in the region surrounding
the sensor. We can distinguish two types of threads: saturating threads, i.e.,
threads with qon > qsat and for which the sensor triggers OOTM (including
thread X), and desaturating threads, i.e., threads with qon < qsat for which the
sensor does not trigger OOTM. If we replace all the other threads by threads
identical to X , all the threads are now saturating. The time-average power
density qsat should stay approximately the same as before, but the duty cycle for
thread X should be smaller to compensate for the lack of desaturating threads.
Hence, the power consumption allotted to thread X is not smaller than that
allotted if all the other threads were similar to X .

4. PRELIMINARY EXPERIMENTS

Experiments in this study are conducted with an abstract model of performance
and power consumption that does not take into account microarchitecture de-
tails. We justify some of the assumptions of the model with preliminary ex-
periments presented in this section. In Section 4.1, we show that the power
dissipated in a processor is roughly a linear function of the number of instruc-
tions retired per second (IPS). In Section 4.2, we run trace-driven simulations
and study the performance penalty of thread migrations, without considering
temperature. In particular, we show that migrating every 2 millions cycles in-
curs little performance loss, but migrating every 200 thousands cycles may
impair performance.

4.1 Relation between IPS and Power Consumption

Our power consumption model is based on the assumption that, for a fixed
voltage and frequency, the power consumed by a program execution is strongly
correlated with the number of instructions retired per second (IPS) and that
it is approximately a linear function of the IPS. Although this is inexact (e.g.,
branch mispredictions decrease the IPS, but increase the energy consumption),
we are looking for a first-order approximation in this study.

To verify the validity of this assumption, we tried to correlate the IPS with
the chip temperature by accessing the on-chip thermal diode of a Pentium M.

We use 22 SPEC CPU benchmarks that we run with the reference inputs on
an AC-powered Dell Latitude D600 laptop (1400-MHz Pentium M). For each
benchmark, we do three runs. In the first and second run, the benchmark is
executed to completion. With the first run, we measure the execution time. With
the second run, we instrument the benchmark with Pin [Luk et al. 2005] and
we obtain the number of instructions executed. The first and second runs give
the IPS.

With the third run, we measure temperature. The Pentium M features two
on-chip thermal diodes [Rotem et al. 2004], of which only one can be read. This
diode is not located at the hottest point on the chip. Nevertheless, the tempera-
ture number it provides should be correlated with the total power dissipated on
the chip. Before executing each benchmark, we wait for a certain time without
executing any command, so that temperature drops and stabilizes to its idle

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 9, Publication date: June 2007.

8 • P. Michaud et al.

Fig. 1. Compare with Table I. Each point is for one of 22 SPEC CPU 2000 benchmarks executed
with the reference inputs on an AC-powered Dell Latitude D600 laptop (1400-MHz Pentium M).
The x axis shows the number of X86 instructions retired per second when the benchmark is run to
completion. The y axis shows the temperature rise after 40 s of execution, as given by the on-chip
thermal diode. Between successive executions, we wait long enough for temperature to return to a
stable “idle” value.

value. On the day of the experiment, the idle temperature was approximately
43◦C. The idle temperature is the result of the room temperature, the residual
power consumption on the chip (static power, nongated clock power), and the
power generated by all other electric devices in the laptop. What we measure is
the temperature rise when executing a task, i.e., the temperature as given by
the ACPI temperature file, minus the idle temperature. The temperature rise
should be roughly proportional to the extra power dissipated when we run an
application.

We measure temperature after 40 s of execution of each benchmark (more
precisely, temperature averaged over a few points around t = 40 s). The reason
why we do not take the steady-state temperature is that the principle of super-
position applies to transient temperature as well [Michaud et al. 2005] (some
benchmarks do not run long enough to reach a steady-state). Moreover, after
several minutes of execution of a hot application, the fan speed increases, which
changes the sink-to-ambient thermal resistance. We do not have this problem
with temperature at t = 40 s.

The result of this experiment is shown in Figure 1. Each point is for one of the
22 SPEC benchmarks listed in Table I. The x axis shows the IPS, and the y axis
the temperature rise (cf. Table I). We have plotted on the graph a least-square
linear fit, which is not far from the points. This confirms our assumption that
power is strongly correlated with the IPS and that it is approximately a linear
function of the IPS, which also confirms previous work [Felter et al. 2005].

It should be noted that there is a nonnull power consumption even when
the IPS is very small. This is normal and corresponds to static power and
nongated dynamic power (in particular, part of the clock distribution and
circuitry).

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 9, Publication date: June 2007.

A Study of Thread Migration in Temperature-Constrained Multicores • 9

Table I. SPEC CPU 2000 Benchmarksa

Temperature
Benchmark GIPS Rise (◦C) (t = 40 s)
181 mcf 0.15 8.6
179 art 0.33 9.4
171 swim 0.63 11.6
300 twolf 0.70 12.0
197 parser 0.73 11.4
183 equake 0.77 13.4
188 ammp 0.91 12.0
177 mesa 0.93 11.0
175 vpr 0.95 12.6
173 applu 0.95 12.2
301 apsi 0.98 11.6
256 bzip2 1.04 12.2
172 mgrid 1.09 13.4
164 gzip 1.22 14.0
252 eon 1.27 14.0
176 gcc 1.27 14.8
254 gap 1.29 13.8
255 vortex 1.47 13.8
253 perlbmk 1.76 15.8
186 crafty 1.78 15.6
168 wupwise 1.89 14.4
200 sixtrack 2.60 16.8

agiga instructions per second (GIPS) and temperature rise in degree Celsius (◦C)
at t = 40 s.

4.2 Migration Penalty

Thread migrations incur some performance penalty, mainly because of extra
cache misses and branch mispredictions [Constantinou et al. 2005]. We ran
some simulations to estimate the performance penalty from migrations when
several threads are running concurrently.

4.2.1 Simulator. Our simulator is trace-driven, using traces generated
with Pin [Luk et al. 2005]. We have one trace per SPEC benchmark listed
in Table I. To obtain each trace, we run the application without any instrumen-
tation for several tens of seconds, then we send a signal that triggers instru-
mentation. Each trace represents 10 millions instructions. We managed to take
a sample on which the L2 cache miss rate (in misses per instruction) is not too
far from that of the whole application. When reaching the end of a trace during
a simulation, we wrap around the trace.

We simulate four cores, each with dedicated L1 and L2 caches. Cores commu-
nicate through a unidirectional pipelined ring whose clock cycle is four times
the CPU clock cycle. The next level after the L2 cache is the off-chip DRAM.
In order to stress the performance penalty because of migrations, we do not
consider any on-chip shared L3 cache.

The simulator does not model all the microarchitecture details. Basically, the
simulator consists of a set of finite-size queues. We have abstracted the execu-
tion core with a queue representing a reorder buffer of 128 instructions. The

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 9, Publication date: June 2007.

10 • P. Michaud et al.

minimum latency in the reorder buffer is 10 cycles, which models a minimum
branch misprediction penalty. In each cycle, one X86 instruction can be retired
from the instruction window and two instructions can be fetched into it. We sim-
ulate a 12-KB YAGS [Eden and Mudge 1998] with a 25-branch global history.
We assume a mispredicted branch is resolved when the instruction window is
completely drained (i.e., the actual branch misprediction penalty can be much
higher than 10 cycles).

Though we do not take into account data dependencies in our simplified
model, we simulate the memory hierarchy. An instruction cannot be retired from
the instruction window before all older loads and stores have been executed.
We consider a unique cache block size of 64 bytes. The L1 instruction and
data caches are both 32 KB, four-way set-associative. The per-core L2 cache
is 512 KB, eight-way set-associative. The L1 instruction cache can deliver one
cache block per cycle. The L1 data cache and the L2 cache both use a write-
back, write-allocate policy. The L1 data cache is nonblocking: when there is a
load/store miss in the L1 data cache, subsequent loads/stores can execute and
possibly generate miss requests, which are fully pipelined. At most, a single
load/store can be executed per cycle.

We do not maintain the inclusion between L1 and L2 caches. Before being
sent to memory, a request that misses both the L1 and L2 is sent on the ring and
we search for the missing block in other cores caches and write-back queues.
We assume that cache tags are replicated so that snooping does not impact
the performance of the inspected core when the requested block is missing. We
allow cache-to-cache accesses not only for dirty data blocks, as required, but
also for clean data and instructions blocks. In case the request can be satisfied
by another core, the request is removed from the ring and steals some cache
bandwidth, if necessary, to get the block. The request is intercepted by the first
core encountered on the ring that can satisfy the request. The ring can deliver
16 bytes per core and per CPU cycle.

If the request goes round the ring and returns to the core that emitted it with-
out having been intercepted, the request is sent to DRAM. The bus bandwidth
to DRAM is four bytes per CPU cycle. There are separate queues for requests
from different cores. The bus arbiter prioritizes requests to give bus access to
cores that have been served least recently. Once a request is sent on the bus,
there is a latency of 200 cycles for getting the requested block. Bus request
queues are made large enough so that the bottleneck is not queuing, but bus
bandwidth (i.e., the number of queue entries is greater than 200 × 4/64 = 12.5).
The minimum latency for a L2 miss served by DRAM is 200 + 4 × 4 = 216
cycles, where the 16 extra cycles is the time for a request to go round the ring.

Cache coherency is maintained by invalidating matching blocks on remote
cores when writing in the L1 data cache. When there are several copies of a
cache block on different cores, we assume that, at most, a single copy can be
marked dirty. When forwarding a dirty block on a L2-to-L2 miss, the copy is
considered clean, and the original block remains dirty.

We implemented a L2-prefetcher that is alike the one implemented in the
IBM POWER4 [Tendler et al. 2002]. When arbitrating between requests for a re-
source (caches, ring, bus), demand requests have priority over prefetch requests.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 9, Publication date: June 2007.

A Study of Thread Migration in Temperature-Constrained Multicores • 11

4.2.2 Simulations. The first set of simulations examines the performance
when running four independent threads on fixed cores, that is, thread #0 on
core #0, thread #1 on core #1 and so on. We simulate 100 millions CPU cycles.
Our performance metric is the IPC of thread #0, which we denote IPC0. This
represents the total number of X86 instructions from thread #0 that have been
retired, divided by 100 millions. Each thread is given a different thread ID
(TID), which is used to distinguish address spaces. The TID is part of the cache
tags and is also used in the branch predictor.

For each benchmark listed in Table I, we run 30 simulations, where the
benchmark studied is thread #0 and the three other threads are taken (pseudo-)
randomly out of the set of 22 benchmarks. Each simulation represents 100 mil-
lions CPU cycles. The pseudorandom list of threads is always generated with
the same seed, so that it is the exact same list for each set of 30 simulations.
At the end of the simulation, we compute the arithmetic mean of IPC0 over the
30 simulations. The resulting average IPC0 is shown as the left bar for each
benchmark on Figure 2 (note that the IPC is artificially limited to 1 by our
simulator).

We next evaluate periodic migrations. Periodically, we move thread #0 from
core m ∈ [0, 3] to core n = (m + 1) mod 4. The thread that was running on
core n is moved to core m. That is, we exchange threads. Once a migration is
triggered, we wait until both threads have their instruction window completely
drained before actually switching threads. Thus, there is an immediate penalty
which is approximately that of a branch misprediction. Then there is a penalty
for switching program states. This penalty, which we did not model, should
be negligible compared with the migration interval [Constantinou et al. 2005],
especially if saving and restoring register values is done by the firmware.

The second bar for each benchmark on Figure 2 shows IPC0 averaged over the
30 simulations when migrating every 2 millions CPU cycles. We observe that
migrating thread #0 every 2 millions cycles has little impact on IPC0. For some
benchmarks, like 175, 179, and 300, we even observe a nonnegligible perfor-
mance increase, which is a result of DRAM accesses that have been turned into
cache-to-cache misses (that have a smaller latency and a higher bandwidth). If
we migrate 10 times more frequently, i.e., every 200 thousands instead of 2 mil-
lions cycles, we observe only a slight performance loss on most benchmarks
(third bar). Yet, it is interesting to note that the performance of benchmark
179 is significantly higher when migrating. The main performance bottleneck
for benchmark 179 is L2 cache size and memory bandwidth. Migrations help
alleviating this bottleneck by allowing the thread corresponding to benchmark
179 to distribute its data over several L2 caches. Nevertheless, exploiting this
phenomenon is out of the scope of this study.

The three left bars for each benchmark on Figure 2 are for threads #1, #2, and
#3 taken randomly in the list of 22 benchmarks. However, thread #0 is penalized
by certain threads more than by others. Among our list of 22 benchmarks, the
less “friendly” one is benchmark 179, which has a large data working set that
is swept very quickly.

We repeated the same experiments as previously but, instead of running
30 simulations for each benchmark, we run a single one with threads #1,#2,

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 9, Publication date: June 2007.

12 • P. Michaud et al.

Fig. 2. Simulated IPC for each benchmark.

and #3 being benchmark 179 (fourth, fifth, and sixth bars). We recall that each
thread has a different TID. This situation represents a worst case, as thread #0
has most of its data and instructions evicted from remote caches by the other
threads. Moreover, when accessing DRAM, it has to compete with the other
threads for bus bandwidth. As can be observed, migrating every 200 thousands
cycles incur a significant performance loss on several benchmarks (164, 175,
176, 177, 183, 186, 188, 197, 255, 256, 300).

The migration method introduced in Section 3 prevents migrations to occur
until 1 ms elapsed since the last migration. With a 5-GHz CPU clock, 1 ms
represents 5 millions cycles. From the results of Figure 2 (second bar versus
first one, fifth bar versus fourth one), we expect that, when performance is
limited by temperature, the thermal benefit of migrations outweighs their per-
formance cost. The discussion in this section is for cores having private L2
caches and no L3 cache. If there is an on-chip shared L3 cache, the migra-
tion penalties will be even smaller than those exhibited on Figure 2. In the

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 9, Publication date: June 2007.

A Study of Thread Migration in Temperature-Constrained Multicores • 13

remainder of this study, we neglect the migration penalty and focus on thermal
aspects.

5. MODELING METHODOLOGY

We model the instruction execution throughput Eon of a thread in the on state
as

Eon = 1
M + C/ f

(2)

where Eon is in instructions per second, f is the clock frequency in hertz, C is
in cycles per instruction, and M is the average time, in seconds per instruction,
spent waiting for off-chip accesses. When the duty cycle γ is less than 1, the
actual performance is E = γ Eon.

5.1 Power and Temperature Model

We model the power density qon in the core as

qon = qs + βu × Eon + βc × f (3)

where qs is the static power density, βu × Eon is the dynamic power density
corresponding to the energy spent doing useful work, and βc × f is the contri-
bution from the clock circuitry. Parameters qs, βu, and βc depend on voltage.
In this study we consider a constant voltage, hence, constant parameters. The
contribution βc × f from the clock circuitry is important on current processors.
For instance, on the Intel Itanium Montecito, about 25% of the total power con-
sumption comes from the clock circuitry [Naffziger et al. 2005]. Clock-gating
techniques can mitigate this problem, but cannot solve it completely [Jacobson
et al. 2005].

We assume that when a core is not executing instructions, power density is
null, i.e., qoff = 0. Indeed, it is possible to bring power density to a low value,
provided the off period is long enough. Clock gating removes dynamic power
consumption and power gating with high Vt sleep transistors can remove most
static power consumption, provided it is applied for a sufficiently long time, e.g.,
several microseconds [Tschanz et al. 2003]. The power dissipation remaining
in the core is essentially the power necessary to preserve data in the various
tables (branch predictor, TLB, level-1 cache, register file, ...). In the remaining,
we neglect this power consumption [Nii et al. 1998; Kim et al. 2004]. In any
case this assumption does not change our qualitative conclusions.

All temperature numbers in this study were obtained with ATMI [ATMI;
Michaud et al. 2005]. We used the ATMI parameters listed in Table II. We model
the four-core chip as depicted on Figure 3. Each core is modeled as a 3-mm side
square dissipating a uniform power density. The rest of the chip is assumed to
dissipate a power that is negligible compared with the total power dissipated
by cores.2 We consider a single thermal sensor per core, located at the center of
each core. For the maximum allowed temperature Tmax, we assume Tmax = 85◦C

2Even if not negligible, this power consumption brings roughly the same temperature contribution
on all cores, via an increase of the heat-sink temperature.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 9, Publication date: June 2007.

14 • P. Michaud et al.

Table II. Parameter Values Used in this Study

Parameter Value Unit Meaning
k1 110 W/mK Silicon thermal conductivity
k2 400 W/mK Copper thermal conductivity
α1 6 × 10−5 m2/s Silicon thermal diffusivity
α2 1.1 × 10−4 m2/s Copper thermal diffusivity
h1 4 × 104 W/m2K Interface material thermal conductance
h2 500 W/m2K Heat-sink thermal conductance
z1 0.5 mm Die thickness
z2 − z1 5 mm Heat-sink base plate thickness
L 7 cm Heat-sink base plate width

Fig. 3. Four-core chip model. Cores are modeled as 3-mm side squares dissipating a uniform power
density. The rest of the chip is assumed to dissipate a negligible power.

[ITRS 2004]. The clock frequency and parameters for power density are given
in Table III. These parameter values were chosen such that an IPC of one
instruction per cycle (Eon = 1 × f = 5 GIPS) generates a power density qon = 2
W/mm2, 25% of which is static power and another 25% is from the clock circuitry
[Naffziger et al. 2005].

5.2 Artificial Threads

In following experiments, we use artificial threads whose characteristics are
listed in Table IV. We distinguish hot, warm, and cold threads. We generate in-
structions artificially according to specified values C and M (formula 2). Power
density qon is obtained from Formula (3).

It should be noted that a given application may be warm or cold, depending
on the number of threads that are running concurrently and depending on their
characteristics. For instance, if bus contention limits the IPS, the more memory-
bound threads are running concurrently, the cooler the threads. However, our
study is not concerned with this question, but with understanding the thermal
benefit of thread migrations for a given set of threads running concurrently.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 9, Publication date: June 2007.

A Study of Thread Migration in Temperature-Constrained Multicores • 15

Table III. Clock Frequency, Power Density
Parameters, and Maximum Temperature

f 5.109 Hz
qs 0.5 W/mm2

βc × f 0.5 W/mm2

βu 2.10−4 J/m2

Tmax 85◦C

Table IV. Different Types of Artificial Threads

Type C M × f Eon (GIPS) qon (W/mm2)
Hot 1/3 0 15 4
Warm 1 0 5 2
Cold 1 10 0.45 1.1

5.3 Initialization and Simulation Time

After a long period of low activity, the temperature of the heat sink is close
to local ambient. The performance of a TCMC will be high in the first sec-
onds following such idle period. If a high activity is maintained for several
minutes, the performance decreases progressively, until the heat sink temper-
ature reaches a steady state. When we study steady-state performance, TCMC
simulations must be put in a meaningful initial state. There are several pos-
sibilities. The most rigorous way would be to study the performance of the
system over a period of time long enough to reach a steady state. If one does not
know workload characteristics over such a long period (or if simulations are too
slow), it is possible to extrapolate the workload behavior, i.e., to assume that
workload characteristics will not change [Skadron et al. 2003; Srinivasan and
Adve 2005].

In this study, we assume that at t = 0 the four cores are thermally saturated.
In a TCMC, assuming that cores are thermally saturated corresponds both to
a worst and a likely case. The power density that we apply on each core during
the initialization phase is

qsat = Tmax − Tamb

Rja × N × Acore

where Acore = 9 mm2 is the core area and Rja is defined in the appendix. We
obtain qsat = 1.17, 1.46, 1.75 W/mm2 for Tamb = 45, 35, 25◦C, respectively.

5.4 Performance

Performance numbers are given either in instructions per second or, when sim-
ulating a fixed time, in raw number of instructions executed. As mentioned
previously, we do not model any migration penalty.

6. IMPORTANCE OF STUDYING TRANSIENT BEHAVIORS

Figure 4 shows the performance for a single warm thread running on a fixed
core, as a function of time, at Tamb = 35◦C. For t ≤ 0, all cores are thermally
saturated. For instance, the processor could have been running four threads

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 9, Publication date: June 2007.

16 • P. Michaud et al.

Fig. 4. Single warm thread running on a fixed core. All cores are thermally saturated at t = 0.
The curve shows performance in instructions per second as a function of time, at Tamb = 35◦C.

for t < 0 (for a long time) and then, at t = 0, three threads finish and a single
thread remains.

For t > 0, the temperature of the three inactive cores falls slowly. As the
three inactive cores dissipate no power, the active core should be able to dis-
sipate more power. Thus, the remaining thread should run faster after t = 0.
Actually, it takes a long time until the remaining thread can exploit the benefit
of three cores going inactive. Figure 4 shows that the performance of the thread
increases with time, but slowly. Initially, the performance is E = γ Eon ≈ 3.6
GIPS. This corresponds to the steady-state performance we would obtain if we
kept applying power density qsat on cores that are now inactive. The long-term,
maximum performance is E = Eon = 5 GIPS, but it takes about 40 s to reach
this performance. For t > 40 s, the active core is no longer thermally saturated.

If we enable thread migrations, this phenomenon disappears, i.e., the perfor-
mance of the remaining thread reaches its maximum value almost immediately.
Indeed, if qon ≥ 4qsat, we are just prolonging the steady state assumed for t < 0,
i.e., thanks to migrations, the time-average power density is qsat on each core,
and cores remain thermally saturated for t > 0. Yet, the remaining thread
runs four times faster after t = 0. On the other hand, if qon < 4qsat (which is the
case on this example), the time-average power density, qon/4, is smaller than
qsat. Hence, temperature drops below Tmax and OOTM no longer throttles per-
formance, i.e., the performance of the remaining thread reaches its maximum
level very quickly, after a few migrations.

This experiment shows that the full benefit of activity migration cannot be
exposed if one looks only at steady state. The benefit of thread migrations may
be limited in time. Yet this transient benefit may last as long as several tens
of seconds. The transient benefit of thread migration will manifest whenever
some extra power can be allotted to the running threads, in particular, when
there is a decrease of the number of running threads. Thread migration permits
allotting this extra power very quickly.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 9, Publication date: June 2007.

A Study of Thread Migration in Temperature-Constrained Multicores • 17

7. IDENTICAL THREADS

In this section, we consider threads with identical (and fixed) characteristics C
and M .

7.1 Steady State

When core 1 is thermally saturated, we have (Eq. A1, appendix)

Tmax − Tamb = Acore ×
4∑

j=1

qj w1 j

As w13 ≈ w12 = w14, the steady-state duty cycle γ is approximately the same on
all active cores. If n threads are running on fixed cores 1 to n, the steady-state
time-average power density on active cores is qj = γ qon. We have

E
Eon

= γ = Tmax − Tamb

Acore × qon × ∑n
j=1 w1 j

which gives the steady-state relative performance as a function of Tamb. As
expected, when Tamb decreases, performance increases until γ = 1.

On the other hand, when migrations are enabled, all four cores are active
and the time-average power density is qj = γ qon × n/4. We have

E
Eon

= γ = Tmax − Tamb

Acore × qon × Rja × n

Figure 5 shows the steady-state performance gain of enabling versus disabling
migrations as a function of Tamb when fewer threads than cores are running.
For hot threads, enabling migrations is always beneficial in the range of real-
istic ambient temperatures, and the performance gain is important, e.g., more
than 50% for two threads. For warm threads, the benefit of migrations is less
pronounced. In the range Tamb ∈ [25, 45]◦C, migrating three threads is always
beneficial, with up to 20% extra performance from migrations. With two warm
threads, enabling migrations is interesting only for Tamb > 30◦C, but the poten-
tial performance benefit is relatively high. For a single warm thread, enabling
migrations is interesting only for ambient temperatures above 40◦C.

We recall that the results on Figure 5 concern the steady-state performance
and we have seen that it may take several tens of seconds to reach this perfor-
mance (cf. Figure 4).

7.2 Transient Behavior

We now consider the transient behavior over a simulated time tsim = 0.1 s, and
for warm threads. Figure 6 shows the total number of instructions executed
by the multicore during tsim = 0.1 s as a function of the number of threads,
with and without thread migration, for Tamb = 45, 35, 25◦C. Unlike what was
observed for the steady-state performance, enabling migrations when a sin-
gle warm thread is running is always beneficial for transient performance in
the considered range of ambient temperature. This fact generalizes to multi-
ple threads, as long as there are less threads than cores. When migrations are

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 9, Publication date: June 2007.

18 • P. Michaud et al.

Fig. 5. Steady-state relative performance of enabling versus disabling migrations as a function of
Tamb when fewer threads than cores are running. The upper graph is for hot threads, while the
lower graph is for warm threads. A value of 1 indicates no performance benefit.

disabled, transient performance is proportional to the number of threads. Once
again, this is unlike the steady-state performance. On the other hand, with
migrations enabled, transient performance equals steady-state performance.
This experiment confirms what was stated in Section 6: thread migration is
most beneficial in the period following a decrease of the number of running
threads.

It should be noted that at Tamb = 45◦C and with migrations enabled, adding
a third thread increases the total throughput only slightly. This is because cores
are already close to thermal saturation with only two threads (the time-average
power density on each core is 1 W/mm2, which is close to qsat). Actually, the total
throughput with three threads and migrations enabled is almost as high as with
four threads and no migration.

In other words, when temperature limits performance, thread migrations
permit maximizing throughput with fewer threads. This fact may be exploited
by the OS when threads have different priorities [Michaud and Sazeides 2006].

7.2.1 Migration Frequency. Table V shows the number of migrations that
have occurred for each thread during tsim = 0.1 s. The migration frequency
depends on the number of threads and on the ambient temperature, but in
a nontrivial way. For instance, for Tamb = 45◦C, the migration frequency is

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 9, Publication date: June 2007.

A Study of Thread Migration in Temperature-Constrained Multicores • 19

Fig. 6. Total number of instructions executed, as a function of the number of warm threads, with
and without thread migrations enabled, for Tamb = 45, 35, 25◦C and tsim = 0.1 s.

highest when two threads are running (the average time between consecutive
migrations is tsim/41 ≈ 2.4 ms for each thread). This corresponds to a situa-
tion where enabling migrations brings a large performance potential (Figure 6,
Tamb = 45◦C, “2T”). On the other hand, with a third thread (“3T”), cores are
thermally saturated. The relative performance gain from enabling migrations
is still significant, but not as pronounced as with two threads. We see in Table V
that this corresponds to a smaller number of migrations. Our migration method
reduces automatically the migration frequency when there is less benefit to ex-
pect from migrating.

Figure 6 shows only the aggregate performance. However, we verified that
when several threads are running with migrations enabled, thermal fairness is

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 9, Publication date: June 2007.

20 • P. Michaud et al.

Table V. Number of Per-Thread Migrations for the
Experiments Reported on Figure 6

Number of Migrations
Threads Thread 1 Thread 2 Thread 3

Tamb = 45◦C
1 14
2 41 41
3 19 10 12

Tamb = 35◦C
1 9
2 11 12
3 20 22 19

Tamb = 25◦C
1 5
2 5 6
3 27 15 22

respected, i.e., threads have approximately the same performance (and power
consumption). Yet, the per-thread migration frequency is not necessarily the
same for all threads, e.g., at Tamb = 45◦C with three threads. Nevertheless, this
is only an initial effect. We verified that the per-thread migration frequencies
tend to equalize as tsim increases. Statistically, our thread migration method
treats similar threads identically.

8. MIX OF THREADS WITH DIFFERENT CHARACTERISTICS

We use strings to represent thread mixes. For example, HWC means that only
three threads are running: thread one is a hot thread, thread two is warm,
and thread three is cold. We study the three-thread mix HWC and the 4-thread
mixes HWCC, HWCW and HWCH.

Figure 7 shows the transient (tsim = 0.1 s) aggregate throughput, with and
without thread migrations. We observe that when there is a thread running on
each core, enabling migrations does not bring any benefit when Tamb = 45◦C.
Actually, no migration occurs here, because even without migrations, cores are
thermally saturated or very close to thermal saturation (for cold threads, qon is
close to qsat). However, for Tamb = 35◦C and 25◦C, qon for cold threads is smaller
than qsat, and the potential benefit from migrations is significant. This benefit
is more pronounced when there are two cold threads.

Figure 8 shows the performance for each thread at Tamb = 25◦C. We see that
most of the benefit from enabling migrations goes to the hot thread. Figure 9
shows the mapping of threads on cores for the HWC mix as a function of time, at
Tamb = 25◦C. It shows that most migrations (about 90% of migrations) involve
the hot thread and the inactive core. On this example, the cold thread migrates
from time to time, but less often than the hot thread. However, this is not
the case for the four-thread mixes. For instance, for HWCH, the thread that
migrates most often is the cold thread, because this is the only thread whose qon

is less than qsat. Nevertheless, on this example, the migration frequency of the
cold thread is still low, with more than 6 ms between consecutive migrations, on
average. By comparing HWC with the four-thread mixes, we can see the effect

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 9, Publication date: June 2007.

A Study of Thread Migration in Temperature-Constrained Multicores • 21

Fig. 7. Transient (tsim = 0.1 s) aggregate throughput for various thread mixes, with and without
thread migrations enabled.

of adding a fourth thread. In all cases, the power consumption allotted to the
fourth thread is mostly taken from the hot thread. This is an illustration of
thermal fairness.

We verified that thermal fairness was approximately respected: similar
threads have approximately the same performance, and the performance of
a thread X is not smaller than that obtained when all threads are similar to X.

9. RELATED WORK

The problem of process scheduling under a temperature constraint has been
previously studied for a single-core processor [Rohou and Smith 1999]: when
temperature exceeds the maximum allowed temperature, the OS tries to iden-
tify the hot processes responsible for the high temperature, which are usually

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 9, Publication date: June 2007.

22 • P. Michaud et al.

Fig. 8. Transient throughput for each thread, at Tamb = 25◦C.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 9, Publication date: June 2007.

A Study of Thread Migration in Temperature-Constrained Multicores • 23

Fig. 9. Mapping of threads on cores for the HWC mix, at Tamb = 25◦C.

CPU-bound, and penalizes them. Interactive processes and I/O bound processes
are not penalized.

The general idea of activity migration for alleviating the temperature con-
straint has been studied in Lim et al. [2002], Skadron et al. [2003], and Heo et al.
[2003]. Thread migration as a special case of activity migration has been stud-
ied in Powell et al. [2004] and Shayesteh et al. [2005]. In Shayesteh et al. [2005],
the case of a single thread running on a dualcore is considered. The thread is
migrated to the unused core whenever temperature reaches the temperature
limit. However, there is no mechanism for limiting the migration frequency,
which accelerates as time increases, as we explained in Section 3.

The question of how to distribute threads in a multicore under a tempera-
ture constraint has been studied in Powell et al. [2004] for dual-threaded cores
with idle contexts. A migration method, called HRTM, is introduced. When a
core reaches the temperature limit, threads on that core are moved to other
cores. The hot core is allowed to cool down for a fixed duration before accept-
ing threads again. This method permits limiting the migration frequency and is
similar to ours in that respect. However, HRTM uses migration as a replacement
for OOTM (called stop–go in Powell et al. [2004]). Powell et al. [2004] does not
mention what action is taken whenever several cores are cooling down simulta-
neously and the number of contexts remaining exceeds the number of threads.

We did a simple experiment to illustrate the difference between our migration
method and HRTM. Although Powell et al. [2004] considered SMT cores, HRTM
can be easily extended to the case of single-threaded cores with less threads
than cores. When temperature reaches Tmax on a core, this core is turned off for
a fixed duration and we move the thread to an unused core. If the destination
core is also in a cooling period, we migrate the thread anyway, and the thread
waits there and resumes its execution after the cooling period is over.

We consider three hot threads running on four cores, and we run experiments
similar to those in Section 7.2, assuming Tamb = 45◦C. Table VI shows the total

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 9, Publication date: June 2007.

24 • P. Michaud et al.

Table VI. Three Hot Threads at Tamb = 45◦C for tsim = 0.1 s

Total Throughput # Migrations
(# instructions) (total three threads)

OOTM only 1.3 × 109 0
OOTM + migrations 1.6 × 109 43
HRTM cooling = 1 ms 1.4 × 109 308
HRTM cooling = 8 ms 9.9 × 108 44
HRTM cooling = 100 μs 1.6 × 109 2911

Fig. 10. Three hot threads at Tamb = 45◦C. Temperature (relative to ambient) on a core as a
function of time. Comparison between HRTM and our method.

throughput for OOTM only (no migrations), for OOTM and migrations (our
method), and for HRTM with different cooling durations.

When the cooling duration is 1 ms, HRTM increases performance over the
no-migration case (about 8% more throughput). However, our method yields
about 23% more throughput compared with the no-migration case. Moreover,
our method requires much less migrations, as shown in the last column of
Table VI. A possible way to decrease the number of migrations with HRTM is to
increase the cooling duration. With a cooling duration of 8 ms, HRTM generates
approximately the same number of migrations as our method. However, in this
case, the performance is significantly degraded. The last row of Table VI is for
HRTM with a cooling duration of 100 μs. In this case, HRTM provides the same
throughput as our method, but requires a much larger number of migrations,
whose performance penalty may be significant, as we have shown in Figure 2.

The reason why our method is more efficient than HRTM is placed into
evidence in Figure 10, which shows a snapshot of temperature on a core as a
function of time. With HRTM, cores are periodically on and off, which generates
a temperature oscillation, as with OOTM. However, HRTM uses a much longer
toff than OOTM, which makes the amplitude of the temperature oscillation
larger, and the time-average temperature significantly smaller than Tmax. That
is, the thermal limit is underexploited.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 9, Publication date: June 2007.

A Study of Thread Migration in Temperature-Constrained Multicores • 25

10. CONCLUSION

Previous studies have shown that thread migration is an efficient technique
for increasing performance under a temperature constraint [Heo et al. 2003;
Powell et al. 2004], which our study confirms. Our simulations indicate that
the performance loss induced by migrations on a four-core processor may be
significant if a thread does not stay longer than a few hundreds of thousands of
cycles on a core before migrating to a new core. Thus, a safe migration method
should include a safeguard for limiting the migration frequency.

We have proposed a new thread migration method for TCMCs: we exchange
threads whenever the simultaneous occurrence of a cold and a hot core is de-
tected. Under a thermal constraint, this method permits maintaining cores
close to thermal saturation, hence to maximum performance, while minimiz-
ing the number of thread migrations.

We have shown that the benefit of thread migration is not constant in time.
Thread migration is most beneficial in the first tens of seconds following a
decrease of the number of running threads.

This study was not concerned with determining how many threads and which
threads should be running simultaneously, which is an OS issue. Thread mi-
gration is able to increase throughput when there is a thread running on each
core, provided threads have different thermal characteristics. However, thread
migration brings all its potential when there are fewer running threads than
cores. We see at least two reasons why the OS may run fewer threads than
cores at a given time:

1. There are not enough runnable threads at that time.
2. Threads have different priorities and the performance of a given thread de-

pends on how many threads are running concurrently. For example, it there
are four cores and only four runnable threads with different priorities, run-
ning a thread on each core does not give to each thread a performance reflect-
ing its priority. We have shown in this study that when the total throughput
is limited by temperature, it is sometimes possible to run fewer threads with
little loss of total throughput, thanks to thread migration. This gives the OS
a degree of freedom for adjusting the fraction of CPU time given to each
thread so that its performance reflects its priority [Michaud and Sazeides
2006].

In both cases, ensuring fairness between threads running concurrently is
important. Our thread migration method respects thermal fairness as we de-
fined it. The OS can rely on this predictable behavior to take proper scheduling
decisions.

APPENDIX

This appendix provides a simple model for reasoning about steady-state tem-
perature in multicores.

Let us consider a processor with N identical cores, numbered from 1 to N .
Let Pi be the time-average power dissipated by core i. For simplicity, we neglect
the power dissipated outside cores, e.g., shared caches and buses. From the

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 9, Publication date: June 2007.

26 • P. Michaud et al.

principle of superposition, the steady-state time-average relative temperature
wi in core i is

wi =
N∑

j=1

Pj × wij (A1)

where wij > 0 is the steady-state relative temperature in core i per watt gen-
erated in core j . It should be noted that wij ≈ wji, i.e., matrix (wij) is approxi-
mately symmetric. This stems from the principle of reciprocity [Michaud et al.
2005].

Let us apply the same power Pi = P/N on each core, with P the total power.
Relation (A1) yields

wi = P
N

×
N∑

j=1

wij

We say that cores are equivalent if wii and the sum

Rja = 1
N

N∑
j=1

wij = 1
N

N∑
j=1

wji

do not depend on i. In this case

wi = P × Rja (A2)

Quantity Rja, measured in kelvins/watt, is commonly called junction-to-ambient
thermal resistance. The equivalence of cores implies that when the same power
is applied on each core, all cores have the same temperature. It also implies that
all the rows of the symmetric matrix (wij) are obtained by a permutation on
the first row. Hence, the N values w1 j are sufficient to obtain the temperature
on each core. For the four-core chip depicted on Figure 3, and for the parameter
values given in Table II, we have

w11 ≈ 2.52 K /W,
w12 ≈ 0.44 K /W,
w13 ≈ 0.42 K /W,
w14 = w12,

Rja = 1
4

∑
j

w1 j ≈ 0.95 K /W

Relation (A2) can be generalized to cores with different power consumptions,
provided we consider the spatial-average temperature defined as

w = 1
N

N∑
i=1

wi (A3)

From (Eq. A1), we have

w =
N∑

j=1

Pj
1
N

N∑
i=1

wij = P × Rja (A4)

where P = ∑N
j=1 Pj is the total power.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 9, Publication date: June 2007.

A Study of Thread Migration in Temperature-Constrained Multicores • 27

REFERENCES

ATMI. http://www.irisa.fr/caps/projects/ATMI/.
CLABES, J., FRIEDRICH, J., SWEET, M., DILULLO, J., CHU, S., PLASS, D., DAWSON, J., MUENCH, P., POWELL,

L., FLOYD, M., SINHAROY, B., LEE, M., GOULET, M., WAGONER, J., SCHWARTZ, N., RUNYON, S., GORMAN,
G., RESTLE, P., KALLA, R., MCGILL, J., AND DODSON, S. 2004. Design and implementation of the
POWER5 microprocessor. In Proceedings of the 41st Design Automation Conference.

CONSTANTINOU, T., SAZEIDES, Y., MICHAUD, P., FETIS, D., AND SEZNEC, A. 2005. Performance impli-
cations of single thread migration on a chip multi core. ACM SIGARCH Computer Architecture
News 33, 4 (Nov.), 80–91.

EDEN, A. AND MUDGE, T. 1998. The YAGS branch prediction scheme. In Proceedings of the 31st
Annual IEEE/ACM International Symposium on Microarchitecture.

FELTER, W., RAJAMANI, K., KELLER, T., AND RUSU, C. 2005. A performance-conserving approach for
reducing peak power consumption in server systems. In Proceedings of the 19th ACM Interna-
tional Conference on Supercomputing.

GUNTHER, S., BINNS, F., CARMEAN, D., AND HALL, J. 2001. Managing the impact of increasing mi-
croprocessor power consumption. Intel Technology Journal 5, 1 (Feb.).

HASAN, J., JALOTE, A., VIJAYKUMAR, T., AND BRODLEY, C. 2005. Heat stroke : power-density-based de-
nial of service in SMT. In Proceedings of the 11th International Symposium on High-Performance
Computer Architecture.

HEO, S., BARR, K., AND ASANOVIĆ, K. 2003. Reducing power density through activity migration. In
Proceedings of the International Symposium on Low Power Electronics and Design.

INTEL. 2004. Intel Pentium 4 processor on 90nm process thermal and mechanical design guide-
lines. Document 300564.

ITRS. 2004. International technology roadmap for semiconductors. http://www.itrs.net.
JACOBSON, H., BOSE, P., HU, Z., EICKEMEYER, R., EISEN, L., GRISWELL, J., BUYUKTOSUNOGLU, A., ZYUBAN, V.,

LOGAN, D., SINHAROY, B., AND TENDLER, J. 2005. Stretching the limits of clock-gating efficiency in
server-class processors. In Proceedings of the 11th International Symposium on High-Performance
Computer Architecture.

KIM, N., FLAUTNER, K., BLAAUW, D., AND MUDGE, T. 2004. Single-Vdd and single-Vt super-drowsy
techniques for low-leakage high-performance instruction caches. In Proceedings of the Interna-
tional Symposium on Low Power Electronics and Design.

KONGETIRA, P., AINGARAN, K., AND OLUKOTUN, K. 2005. Niagara: A 32-way multithreaded Sparc
processor. IEEE Micro 25, 2 (Mar.), 21–29.

LIM, C., DAASCH, W., AND CAI, G. 2002. A thermal-aware superscalar microprocessor. In Proceed-
ings of the International Symposium on Quality Electronic Design.

LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A., LOWNEY, G., WALLACE, S., REDDI, V. J., AND

HAZELWOOD, K. 2005. Pin : building customized program analysis tools with dynamic instru-
mentation. In Proceedings of the ACM SIGPLAN conference on Programming Language Design
and Implementation.

MICHAUD, P. AND SAZEIDES, Y. 2006. Scheduling issues on thermally constrained processors. Tech.
Rep. PI-1822, IRISA. Also published as INRIA report RR-6006.

MICHAUD, P., SAZEIDES, Y., SEZNEC, A., CONSTANTINOU, T., AND FETIS, D. 2005. An analytical model
of temperature in microprocessors. Tech. Rep. PI-1760, IRISA. Also published as INRIA report
RR-5744.

MOORE, J., SHARMA, R., SHIH, R., CHASE, J., PATEL, C., AND RANGANATHAN, P. 2004. Going beyond
CPUs: The potential for temperature-aware data centers. In Proceedings of the First Workshop
on Temperature-Aware Computer Systems.

NAFFZIGER, S., STACKHOUSE, B., AND GRUTKOWSKI, T. 2005. The implementation of a 2-core multi-
threaded Itanium-family processor. In IEEE International Solid-State Circuits Conference Digest
of Technical Papers.

NII, K., MAKINO, H., TUJIHASHI, Y., MORISHIMA, C., HAYAKAWA, Y., NUNOGAMI, H., ARAKAWA, T., AND

HAMANO, H. 1998. A low power SRAM using auto-backgate-controlled MT-CMOS. In Proceed-
ings of the International Symposium on Low Power Electronics and Design.

PHAM, D., BEHNEN, E., BOLLIGER, M., HOFSTEE, H. P., JOHNS, C., KAHLE, J., KAMEYAMA, A., KEATY, J.,
LE, B., MASUBUCHI, Y., POSLUSZNY, S., RILEY, M., SUZUOKI, M., WANG, M., WARNOCK, J., WEITZEL,

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 9, Publication date: June 2007.

28 • P. Michaud et al.

S., WENDEL, D., AND YAZAWA, K. 2005. The design methodology and implementation of a first-
generation CELL processor: A multi-core SoC. In Proceedings of the IEEE 2005 Custom Integrated
Circuits Conference.

POIRIER, C., MCGOWEN, R., BOSTAK, C., AND NAFFZIGER, S. 2005. Power and temperature control on
a 90nm Itanium-family processor. In EEE International Solid-State Circuits Conference Digest
of Technical Papers.

POWELL, M., GOMAA, M., AND VIJAYKUMAR, T. 2004. Heat-and-run: leveraging SMT and CMP to
manage power density through the operating system. In Proceedings of the 11th International
Conference on Architectural Support for Programming Languages and Operating Systems.

ROHOU, E. AND SMITH, M. 1999. Dynamically managing processor temperature and power. In
Proceedings of the 2nd Workshop on Feedback-Directed Optimization.

ROTEM, E., NAVEH, A., MOFFIE, M., AND MENDELSON, A. 2004. Analysis of thermal monitor features
of the Intel Pentium M processor. In First Workshop on Temperature-Aware Computer Systems.

SAMSON, E., MACHIROUTU, S., CHANG, J.-Y., SANTOS, I., HERMERDING, J., DANI, A., PRASHER, R., AND SONG, D.
2005. Interface material selection and a thermal management technique in second-generation
platforms built on Intel Centrino Mobile Technology. Intel Technology Journal 9, 1 (Feb.).

SCHMIDT, R., CRUZ, E., AND LYENGAR, M. 2005. Challenges of data center thermal management.
IBM Journal of Research and Development 49, 4/5 (July), 533–539.

SHAYESTEH, A., KURSUN, E., SHERWOOD, T., SAIR, S., AND REINMAN, G. 2005. Reducing the latency and
area cost of core swapping through shared helper engines. In Proceedings of the International
Conference on Computer Design.

SKADRON, K., STAN, M., HUANG, W., VELUSAMY, S., SANKARANARAYANAN, K., AND TARJAN, D. 2003.
Temperature-aware microarchitecture. In Proceedings of the 30th Annual International Sym-
posium on Computer Architecture.

SRINIVASAN, J. AND ADVE, S. 2005. The importance of heat-sink modeling for DTM. In Proceedings
of the 4th Annual Workshop on Duplicating, Deconstructing, and Debunking.

TENDLER, J., DODSON, J., FIELD, J., LE, H., AND SINHAROY, B. 2002. POWER4 system architecture.
IBM Journal of Research and Development 46, 1 (Jan.).

TSCHANZ, J., NARENDRA, S., YE, Y., BLOECHEL, B., BORKAR, S., AND DE, V. 2003. Dynamic sleep transis-
tor and body bias for active leakage power control of microprocessors. IEEE Journal of Solid-State
Circuits 38, 11 (Nov.), 1838–1845.

Received March 2006; revised September 2006; accepted November 2006

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 9, Publication date: June 2007.

