
The performance vulnerability of architectural and non-architectural arrays to permanent faults

Damien Hardy∗†, Isidoros Sideris∗, Nikolas Ladas∗, Yiannakis Sazeides∗
∗University of Cyprus †University of Rennes 1, IRISA, France

Abstract
This paper presents a first-order analytical model for determining the
performance degradation caused by permanently faulty cells in archi-
tectural and non-architectural arrays. We refer to this degradation
as the performance vulnerability factor (PVF).

The study assumes a future where cache blocks with faulty cells are
disabled resulting in less cache capacity and extra misses while faulty
predictor cells are still used but cause additional mispredictions.

For a given program run, random probability of permanent cell
failure, and processor configuration, the model can rapidly provide
the expected PVF as well as lower and upper PVF probability distri-
bution bounds for an individual array or array combination.

The model is used to predict the PVF for the three predictors and
the last level cache, used in this study, for a wide range of cell failure
rates. The analysis reveals that for cell failure rate of up to 1.5e-6
the expected PVF is very small. For higher failure rates the expected
PVF grows noticeably mostly due to the extra misses in the last level
cache. The expected PVF of the predictors remains small even at
high failure rates but the PVF distribution reveals cases of significant
performance degradation with a non-negligible probability.

These results suggest that designers of future processors can lever-
age trade-offs between PVF and reliability to sustain area, perfor-
mance and energy scaling. The paper demonstrates this approach by
exploring the implications of different cell size on yield and PVF.

1. Introduction
For the past 50 years, technological advances have enabled contin-
uous miniaturization of circuits and wires. The increasing device
density offers designers the opportunity to place more functionality
per unit area and in recent years has allowed the integration of large
caches and many cores into the same chip. Unfortunately, the scaling
of device area has been accompanied by at least two negative conse-
quences: a slowdown of voltage scaling and frequency, due to slower
scaling of leakage current as compared to area scaling [34], and a
shift to probabilistic design and less reliable silicon primitives due to
variations [6, 9].

Technology trends suggest that in tomorrow’s computing world
failures will become commonplace due to many and/or frequent
causes such as: static [6] and dynamic [9] variations, latent-faults
due to limited burn-in [35], higher temperatures and accelerated
wear-out [33], near subthreshold operation [36], etc. A recently pub-
lished resilience roadmap [24] underlines the expected increase of
probability of failure (pfail) with scaling. Table 1 shows the pfail
predicted in [24] for inverters, latches and SRAM cells due to random
dopant fluctuations as a function of technology node (the trends for
negative-bias-temperature-instability are similar). The table shows
that the pfail of all types of devices increases dramatically with scal-
ing. However, the table clearly indicates that not all types of devices
are equally vulnerable; SRAM cells that are usually aggressively
sized are distinctively more problematic.

A variety of well known approaches, such as column/row sparing
and error correcting codes [29], have been adopted to provide fault-
free chips by mitigating manufacturing faults and static parametric

Tech Node Inverter Latch SRAM
45nm ≈0 ≈0 6.1e-13
32nm ≈0 1.8e-44 7.3e-09
22nm ≈0 5.5e-18 1.5e-06
16nm 2.4e-58 5.4e-10 5.5e-05
12nm 1.2e-39 3.6e-07 2.6e-04

Table 1: Predicted probability of failure (pfail) for different types of
circuits vs technology node [24]

variations while preserving an important abstraction: performance-
invariability. This is defined to be the expectation that two identi-
cal chips, or even two cores within a chip, when each is operating
stand-alone under identical conditions have identical cycle by cycle
behavior and, therefore, identical performance.

The central hypothesis of this paper is that the abstraction of
performance-invariability is unrealistic to preserve for future pro-
cessor chips due to the non-scalable cost of existing techniques to
mitigate the mismatch between the scaling rates of area, voltage and
static and dynamic variations. Replacing a chip and coarse grain
disabling (e.g. core, cache bank/ways) may be acceptable when
variability phenomena are rare but with increasing static and dy-
namic variations finer disabling and deconfiguration (e.g. individual
functional units, cache blocks) will become economically necessary.
We are going, therefore, to enter an era of performance-variability:
functionally correct chips with variable degraded performance, intra-
chip and across-chips, from the time when parts are shipped. The
performance-variability will be due to lower resource capacity caused
by the disabling of faulty cache blocks or units [32, 21, 36], timing
misspeculation in the datapath due to timing variations [13], and
extra mispredictions caused by faulty predictor cells [20].

In this paper, we propose a first-order analytical model for under-
standing the implications on performance of permanently faulty cells
in architectural and non-architectural arrays. The model for a given
program execution, micro-architectural configuration, and probability
of cell failure, provides rapidly the Performance Vulnerability Factor
(PVF). PVF is a direct measure of the performance degradation due to
permanent faults. In particular, the model can determine the expected
PVF as well as the PVF probability distribution bounds for caches
and prediction arrays without using an arbitrary number of random
fault-maps.

PVF is analogous to the Architectural Vulnerability Factor
(AVF) [23] proposed for assessing the vulnerability of architectural
structures to soft-errors. PVF like AVF can be used by design-
ers/researchers to appreciate and compare vulnerability of different
structures and perform reliability driven trade-offs. However, PVF is
complementary to AVF as it measures performance degradation due
to permanent errors.

Virtually all previous micro-architectural work aiming to assess
the performance implications of permanently faulty cells relies on
simulations with random fault-maps, assumes faulty blocks are dis-
abled [32, 21, 4, 1], and focuses on architectural arrays such as caches.
These studies are, therefore, limited by the fault-maps they use that
may not be representative for the average and distributed performance.
Moreover, they are incomplete by ignoring faults in non-architectural

arrays, such as predictors, that do not affect correctness but can de-
grade performance. A narrow understanding of the consequences
of permanently faulty cells can lead to a processor fault-reliability
strategy that neither addresses key reliability challenges nor leverages
reliability driven trade-offs.

A recent relevant study [27] proposes a method that given a cache,
random probability of permanent cell failure, and an address trace,
can calculate without any fault-maps the expected miss ratio when
blocks with permanent faults are disabled. The model proposed in
our paper, augments the method in [27], to predictors, can produce
for caches and predictors the miss-rate and misprediction distribution
bounds respectively, and provides the expected performance and
performance distribution bounds for individual or combination of
faulty arrays.

The paper establishes that for three predictors (a return address
stack, a gshare direction predictor and an indirect jump predictor) and
the last level cache used in this study, the proposed model assump-
tions are valid. The model is used to predict, for the same arrays and
processor, the expected PVF and PVF distribution bounds at different
technology nodes using projected cell failure rates due to random
dopant fluctuations.

The experimental analysis shows that for cell pfail of up to 1.5e-6
the expected PVF is very small for any array or array combination.
For higher pfail the PVF grows considerably mainly due to the extra
misses in the last level cache. The expected PVF of all predictors
remains small even at high pfail, but the PVF distribution reveals
cases of significant performance degradation with small but notice-
able probability. These results suggest that in the future designers can
leverage trade-offs between PVF and reliability to improve efficiency.
The paper demonstrates this approach by investigating the impact of
different cell size on yield and PVF.

The remainder of the paper is organized as follows. Section 2
introduces the notion of PVF. The model that determines PVF is
presented in Section 3. Experimental results are given in Section 4.
Section 5 reviews related work and Section 6 concludes the paper
and gives direction for future work.

2. Performance Vulnerability Factor - PVF

The Performance Vulnerability Factor (PVF) is a measure of the
performance degradation that a processor will experience for a given
benchmark run due to permanently faulty cells in its arrays. PVF
takes values in the range [0,1), with zero meaning no vulnerability
at all (100% of performance) and for values near 1 almost zero
performance. To define PVF, we rely on the notion of Computation
Capacity (CC) as follows:

PV F = 1−CC (1)

where the computation capacity [5] is the fraction of the original
pristine machine’s performance that is still available given current
hardware conditions and defined in our work as:

CC =
Cbase

Cbase +overhead ∗# f ailures
(2)

where Cbase corresponds to the number of cycles of a fault-free run
of a program by the microarchitecture under study, # f ailures is the
number of failures, e.g. misses or mispredictions, resulting from
permanently faulty cells and, overhead represents the mean increase
in cycles of the overall execution time per failure.

For mathematical convenience, we introduce the notation ETV
(Execution Time Vulnerability) which represents the normalized
execution cycle increase of a program due to faults in arrays and
defined as:

ETV = penalty∗# f ailures (3)

where penalty = overhead
Cbase

and corresponds to the normalized over-
head of a single failure to the overall cycle count of a fault free run.
By substituting ETV in Eq. 2 the computation capacity becomes:

CC =
1

1+ETV
(4)

PVF and expected PVF (noted PV F) can be determined directly
from ETV and ETV by using Eq. 1 and 4.

In the following section we describe a model that can determine the
ETV, ETV and ETV distribution bounds for caches and prediction
arrays.

3. ETV for non-architectural and architectural arrays

This section presents a first-order analytical model for predicting
the ETV of an individual or combination of non-architectural and
architectural arrays. First we present the model assumptions and then
introduce the basic model. We then present how to use the model for
non-architectural and architectural arrays. In particular, we focus on
how to obtain the mean penalty per failure and the number of failures
for each array. After, we describe a method to determine lower and
upper ETV probability distribution bounds. At the end of the section,
we discuss model limitations, extensions and uses.

3.1. Model Fault Assumptions

The model assumes that permanently faulty SRAM cells locations
are random, each cell has equal probability of failure, and broken
cells behave as stuck-at faults (the stuck-at assumption is only needed
for predictors). The random behavior aims to capture some major
causes of uncorrelated faults, such as line edge roughness and random
dopant fluctuation. Also, the granularity of spatial correlation is large
and within a chip the failures can be treated as uncorrelated [10].

The cells in processor can be divided into the following categories:
• can be faulty and not disabled - e.g. predictor bits
• can be faulty and must be disabled - e.g. cache block data bits
• cannot be faulty (fault free or replaced with a spare) - e.g. PC bits,

block disable bit
The third category affects correctness and yield. Our model focuses
on the first two categories, which affect performance. Based on the
above cell classification, faulty entries in prediction arrays are used
normally and can lead to extra mispredictions. In caches, on the
other hand, blocks with faults are disabled and thus reduce the array
capacity and lead to extra misses. For caches, an entry (i.e. a cache
block) with at least one permanent fault is considered as faulty. Faulty
cache blocks are assumed to be detected with post-manufacturing and
boot-time tests, ECC, and built in self tests. Cache block disabling
has been proposed for commercial processors in [22].

The model does not address the effect of rarely occurring transient
errors, e.g. due to particle strikes because their effects are rare and
short lived. In fact, they will cause at most a handful of mispredictions
in prediction arrays and a repair when captured by ECC in caches.

Stuck-At Bit

Figure 1: Operation of a 2-bit saturating counter used for prediction (a) Fault Free, (b) With Faults

3.2. Basic Model

At the core of determining PVF is the computation of ETV (Eq. 3)
which can be obtained for a given program run by:

ETV = penalty∗# f ailures =
u

∑
i=1

Mi

∑
j=1

Pi j (5)

where u is the number of arrays with faults, Mi is the number of
failures caused by faults in array i, and Pi j is the penalty for the jth
failure in the program from array i. Mi corresponds to additional
mispredictions (faulty-mispredictions) in case the unit i is a predictor,
and additional cache misses (faulty-misses) in case i is a cache. Eq. 5
can be simplified to:

ETV =
u

∑
i=1

ETVi =
u

∑
i=1

MiPi (6)

where ETVi is the ETV of unit i and Pi is the mean normalized penalty
for each failure in array i. Finally, the expected ETVi of unit i can be
obtained from:

ETVi = Mi ∗Pi (7)

This is the same equation as Eq. 6 except Mi that represents the
expected number of faulty-mispredictions or faulty-misses due to
unit i.

The above model assumes that ETV is additive, i.e. we determine
the ETVi of each array i separately and simply sum them together to
obtain the overall ETV . We discuss in Section 3.5 why this can be
accurate.

Next we describe how to determine for non-architectural and archi-
tectural arrays: (i) Pi, (ii) Mi when given a fault-map, (iii) Mi when
given a random cell pfail but without fault-maps, and (iv) distribution
bounds of ETV when given a random cell pfail without fault-maps.

3.3. ETV for non-architectural arrays

The focus of this part is on the performance implications of perma-
nently faulty SRAM cells in non-architectural arrays. Today’s high-
end processors employ several non-architectural arrays for improving
performance. Such arrays are used to predict: next instruction line,
direction for conditional branches, target for branches (especially
for return and indirect branches), addresses for prefetching, etc. In
addition, non-architectural arrays are used to guide the updating of
predictors (hysteresis bits).

Although faults can occur in any of these arrays, the performance
implications of a faulty cell vary depending on how the value in a
faulty cell is used in a pipeline and, in particular, on how a faulty cell
influences performance. For example, a faulty cell in a conditional
predictor, a return-address-stack and an indirect-jump predictor can
cause a misprediction and a pipeline flush and, therefore, have a large
misprediction penalty. In contrast, a faulty line-predictor cell has

a smaller misprediction penalty because a line-predictor is usually
corrected by a more accurate predictor within one or two cycles.

A faulty cell can have different implications depending on its
semantic functionality. For example, a stuck-at fault in an 1-bit
hysteresis, used to guide replacement on a misprediction, can lead
to two behaviors: always replace or never update. Both behaviors
can degrade performance but the second can be more grave. Fig. 1
illustrates how different combinations of stuck-at fault(s) at different
bit positions transform the operation of a 2-bit saturating counter
used for direction prediction. It is interesting to observe that such
faults mainly result in always taken or always not-taken behavior.

Another key parameter that influences the vulnerability of a non-
architectural array to faults is the distribution of accesses. A per-
manent fault in a frequently accessed entry is likely to cause more
degradation than a fault in an infrequently accessed entry. Also, a
program with many "hot" entries has higher probability to have a
faulty hot entry. However, for the same number of accesses the more
the hot entries the lower the impact from each.

The bias of the values stored in a non-architectural array also influ-
ences the performance with faults. For instance, an entry that contains
bits that are highly biased will experience worst case degradation
when at least one of these bits is stuck-at in the opposite value of the
bias.

The above discussion reveals that performance is not equally vul-
nerable to faults across non-architectural arrays and even within an
array. Furthermore, there is variation due to differences in the dy-
namic behavior between programs, such as the access distribution,
instruction mix, predictability and misprediction penalty. For exam-
ple, it is obvious that a program with or with low branch predictability
will not suffer significantly from faults in the predictors.

Below we define the basic analytical model for determining the
performance impact of permanently faulty cells in non-architectural
arrays.

3.3.1. Model for non-architectural arrays
According to Eq. 6, the ETVi, of a non-architectural array i, can be
obtained from Mi and Pi. Pi can be obtained by linear regression of
the additional cycles and additional mispredictions from runs that
inject randomly stuck-at faults in unit i1. It is known from previous
work [15] that misprediction penalty is sensitive to the number of
mispredictions, but our approximation for Pi is found to be accurate
for most benchmarks and non-architectural arrays we considered
in this study. If more accuracy is needed future work can consider
models that correlate penalty to other parameters [15].

The Mi for a non-architectural array i and a program run, can be
obtained using the access-map and bias-maps of the array. An access-
map represents the number of correct predictions from each entry

1We used ten runs for each of the following fractions of faulty bits in unit i: 0.5, 2
and 8%

Bias0	 Bias1	

0	 30	 12	

1	 6	 47	

2	 23	 30	

3	 15	 15	

Fmap0	 Fmap1	

0	 0	 0	

1	 0	 1	

2	 1	 0	

3	 0	 0	

Figure 2: Mi computation example for a 4 entry 1bit/entry predictor.
The predictor has a stuck-at-1 bit in entry 1 resulting in 6
extra misspredictions (Bias0 map) and a stuck-at-0 bit in
entry 2 resulting in 30 extra misspredictions (Bias1 map).

during a fault free run of the program. The access map is further
broken into bias-maps, bias0 and bias1, that indicate for each bit in
the array, during the fault free run, how many times it is part of a
correct prediction with value 0 and 1 respectively.

Next we explain how to use the access and bias maps to obtain the
Mi when given a fault-map, and to determine the expected Mi and
ETVi when given a cell pfail.

3.3.2. Mi from a fault-map
We can obtain Mi for a specific fault-map, that indicates whether

a bit is faulty and its stuck-at value, by taking effectively the dot
product of the fault-map and the bias-maps. This is illustrated in
Figure 2 for a single-bit per entry predictor. For a 2-bit saturating
predictor, this approach works as well because, as shown in Figure 1,
a stuck-at bit in such a predictor, can lead to always taken or always
not-taken predictions.

We limit the fault-maps used for non-architectural arrays to at most
one faulty-bit per entry to keep the bias-maps simple, as multiple
faulty bits in an entry are very unlikely for the pfail range considered
in this work.

3.3.3. Expected ETVi and Mi for a given cell pfail
The expected ETVi, for a benchmark running on a processor with

faulty cells in a non-architectural array i, can be obtained from Eq. 7.
The term Mi represents the expected number of mispredictions due to
faults in unit i. Mi can be obtained probabilistically for a given cell
pfail without using fault-maps as follows:

Mi =
∑

entriesi
j=1 access_map j

2
∗ p f ail_entryi (8)

where entriesi represents the total number of entries in predictor
array i, access_map j is the number of correct predictions of entry j
during a fault free run, and p f ail_entryi is the expected probability
of having a faulty entry determined as follows for an n bit entry:

1− (1− p f ail)n (9)

The halving in Eq. 8 captures the probability of a fault being
stuck-at 0 or 1.

The non-architectural PVF model is valid as long as the access-
map and bias-maps of an array, for a given program run, are virtually
insensitive to pipelining effects, i.e. the number of correct predictions
is insensitive to pipelining effects. Fortunately, this is the case for
prediction arrays that are not speculatively updated or when they are
speculatively updated they are repaired from wrong path effects [18,
31].

LRU+3	
(MRU)	

LRU+2	 LRU+1	 LRU	

SET	 0	 120	 100	 110	 60	

SET	 1	 150	 140	 110	 55	

SET	 2	 180	 134	 80	 50	

SET	 3	 220	 200	 100	 30	

Fault Map
1
0
3
2

Figure 3: M computation example for a 4 set 4 ways LRU cache. M =
454 resulting from 1 faulty block in set 0, 3 faulty blocks in
set 2 and 2 faulty block in set 3.

3.4. ETV for architectural arrays

Nowadays, caches take most of the real-estate in processors and
contain numerous SRAM cells. As explained before, we assume that
blocks that contain permanently faulty cells are disabled and thus
reduce the cache capacity.

Architectural arrays vulnerability, similar to non-architectural, de-
pends on the distribution of hit accesses across sets and within sets
and cache miss latency. Consequently, the PVF for architectural ar-
rays can vary across programs and across sets, and, it depends on the
dynamic program behavior. The model detailed hereafter is proposed
to assess the performance impact of permanently faulty SRAM cells
in architectural arrays.

3.4.1. Notations and Assumptions
A cache configuration is defined by the number of sets s, ways

per set n, and block size in bits k. The model is defined for the
LRU replacement policy, the generalization of the model to other
replacement policies is left for future work.

3.4.2. Model for architectural arrays
The ETVi, caused by faulty blocks in cache i, can be obtained using

Eq. 6. For caches, Mi corresponds to the number of additional misses
caused by faulty blocks, and Pi is the average normalized penalty
per additional miss. Pi can be determined by linear regression using
additional cycles and additional misses from handful runs2.

The number of additional misses Mi for a program run is deter-
mined by using the access-map of the cache during a fault free run
of the program. An access-map represents the number of hits per set
and per LRU position during a fault free run. In the access-map, a
row corresponds to a set and each column corresponds to a position
in the LRU stack.

Next we present how to use cache access maps to obtain the Mi
when given a cache fault-map, and to determine the expected Mi and
expected ETVi when given a cell pfail.

3.4.3. Mi from a fault-map
Given an access-map, we can obtain Mi for a specific fault-map of
cache i, which indicates the number of faulty blocks w per set, by
simply adding the accesses to the last w columns as illustrated in
Figure 3 and suggested by [25]. It can be noticed that, thanks to the
LRU replacement policy, the exact position of the faulty-blocks are
not needed because the LRU stack is reduced by the number of faulty
blocks in each set.

3.4.4. Expected ETVi and Mi for a given cell pfail
The expected ETVi, for a benchmark running on a cache with faulty
cache blocks, can be obtained from Eq. 7. The term Mi represents
the expected number of additional misses due to faulty blocks. Mi

2We used n (associativity of the cache) runs by considering 1 way faulty in each set,
2 ways faulty etc.

can be obtained analytically for a given cell pfail without using fault-
maps as proposed in [27]3. To determine Mi, we first compute the
probability of a cache block failure pb f with Eq. 9 for k bits. Then,
the probability pei for i faulty ways in a set can be determined based
on the well-known binomial probability:

pei =

(
n
i

)
pi

b f (1− pb f)
n−i (10)

which can provide, for every value of i[0 . . .n], the probability of
having i faulty ways. This distribution provides insight about how
likely it is to have a given number of faulty ways in a set and, can
be used to obtain the expected number of additional misses. The
expectation of a random variable X = x1,x2, . . . ,xn for which each
possible value has probability P = p1, p2, . . . , pn is given by:

E[X] =
n

∑
i=1

xi ∗ pi (11)

In our case, the random variable X corresponds to the total number of
additional misses in a cache set with faults, xi corresponds to the total
number of additional misses when there are i faulty ways in a set,
noted hereafter mi,set , and pi the probability of having i faulty ways
in a set. mi,set is simply determined by adding the last n− (i− 1)
columns of the access map of the set:

mi,set =
n

∑
j=n−(i−1)

access_map[set][j] (12)

Therefore, the expectation of the number of additional cache misses
Mset for a given set can be expressed as follows:

Mset =
n

∑
i=1

mi,set ∗ pei (13)

Finally, we sum this expectation for each set to get the expected
number of additional misses Mi.

We note that the ETV model requires that the access-map and the
number of cache hits per set and LRU position, for a given program
run, to be rather insensitive to pipelining effects. Our empirical
analysis presented in Section 4 reveals that this assumption is true.

3.5. Why are ETVis additive?

Eq. 6 assumes that ETVi for each array i is additive when computing
the overall ETV . It is known from previous work [30, 14] that, the
penalty of different units can overlap, thus, how can this additive
claim be accurate?

The proposed method for the penalty estimation of an array i
considers the overall execution increase due to additional misses or
mispredictions while it captures the overlapping and interactions with
other pipelining effects and events as well as the non-constant main
memory latency. Specifically, the penalty Pi, for an array is obtained
by activating faults while in the pipeline there can be other concurrent
misses, mispredicts, stalls, memory accesses etc.

The simple summation of ETVis is found to be accurate for the
benchmarks, faulty arrays, and microarchitecture used in this study.
If more accuracy is needed, future work can consider the detail
interaction between units [30, 14].

3The model used in this section to estimate Mi is from [27] and is presented here for
completeness.

Clustering function

Entry 0 Entry 1 Entry 2 Entry 3

upper/lower
bound

C2
C1

C1

C2

a. Hierarchical computation

x1= 0.012 3 ; P(x1)=i
x2= 0.012 5 ; P(x2)=j

x3= 0.00421 ; P(x3)=k

(c1) Cluster 0.012: P(r)=i+j
(min) r=0.0123
(max) r=0.0125

(c2) Cluster 0.0042: P(r)=k
r=0.00421

b. Clustering function α=2

Figure 4: Hierarchical distribution computation and clustering func-
tion example.

3.6. ETV probability distribution bounds

To draw more insight about the PVF, we introduce an analysis that
determines the lower and upper PVF probability distribution bounds
for an individual or any combination of arrays for a given cell p f ail.
These bounds are computed in two steps: (i) estimation of a discrete
ETV probability distribution per entry for each unit i, (ii) combining
the multiple discrete ETV probability distributions by using a heuris-
tic to determine a lower bound and an upper bound of the distribution.
Although, not discussed further, the heuristic can be trivially used to
produce the Mi probability distribution bounds by using Eq. 6.

Estimation of a discrete probability distribution. For predictors,
a discrete ETV probability distribution is first determined per entry.
For each entry, this distribution is determined by the sum of prob-
abilities that can cause a given ETV by considering the following
cases:
• ETV = 0 which corresponds to a fault free entry. The correspond-

ing probability is 1− p f ail_entryi
• ETVbias0

4 which corresponds to the ETV caused by a stuck-at-1
bit in the entry. The corresponding probability is p f ail_entryi/2.
The ETVbias0 can be obtained using Eq. 6.

• ETVbias1 which corresponds to the ETV caused by a stuck-at-0 bit
in the entry. The corresponding probability is p f ail_entryi/2.

For a cache, the discrete ETV probability distribution is deter-
mined at the granularity of a set. We obtain at most associativity+1
different ETVs that correspond to 0 up to all blocks faulty in a set
with the probability for each case given by pei.

Combining multiple discrete probability distributions. To de-
termine the resulting ETV probability distribution of an array or com-
bination of arrays, we need to combine together all the previously
computed distributions. It is well known that exhaustive combining
is infeasible due to a combinatorial explosion [16]. To avoid this
problem we propose a parametric (α) heuristic to determine a lower
bound and an upper bound of the ETV distribution.

A hierarchical approach [16] is used based on a binary tree rep-
resentation as illustrated in Figure 4.a. Each leaf represents the
distribution of an entry for predictors or the distribution of a set in
a cache. The root represents the resulting upper/lower distribution
bound and each intermediate node an intermediate joint distribution.

4For arrays that predict multi-bit values, like the return address-stack, ETV is deter-
mined for each bit and the probability is further divided by the number of bits per entry.
This approach is similarly used for ETVbias1

To avoid the combinatorial explosion, after obtaining each inter-
mediate distribution (at each intermediate node), we use a cluster-
ing approach by summing probabilities when ETV values are close
enough.

This strategy uses a clustering function as illustrated in Figure 4.b.
It starts with a truncation of each value (i.e. ETV) after the first α non-
zero digits5. Equal resulting values are then grouped together and
their respective probability are summed. The value r representative
of each group is the minimal/maximal value of the group before the
truncation. This ensures (see the proof in appendix) a lower/upper
bound ETV probability distribution.

3.7. How many runs are needed to determine the input values of
the analytical model?

In this section, we summarize the number of runs needed by the
analytical model to determine the expected PVF and the PVF distri-
bution bounds. We like to note that the PVF analysis assumes a fixed
microarchitecture. Therefore, for each distinct microarchitecture a
separate PVF analysis is required.

For each array under study the model needs information provided
by a single run without faults for each program that is analyzed. This
fault-free run is performed to collect the Cbase, program baseline
performance, and the access-maps of each array. The access-maps
obtained for predictors and caches are then used to compute the
expected PVF and PVF distribution bounds.

The mean penalty, Pi, for a unit i is obtained per program by
running it on the given microarchitecture with increasing number of
faults in the unit i. Typically ki (=30 in this study6) runs for each
predictor and as many runs as the number of ways, wi, in cache i are
sufficient to observe how the overall execution increases as a function
of additional faulty mispredictions and misses.

Therefore, for one benchmark the total number of runs needed to
determine the input values for the analytical model is given by:

1+
#arch_units

∑
i=1

wi +
#non_arch_units

∑
i=1

ki

So assuming 26 benchmarks, 3 predictors and an 8 way cache we
need to perform 2574 simulations to completely characterize the
microarchitecture.

The model key strengths is that once the characterization is com-
plete, the model does not require performing new simulations when
changing cell pfail. It can very fast and accurately obtain the expected
PVF (few seconds) and the PVF distributions (1 minute on a current
machine) for different pfails.

To put in perspective, to produce the model results using random
fault maps and simulations will require exponential to the number
of entries and sets runs for each unique pfail. The benefits of our
analytical model as compared to current practice depend on the
number of distinct pfail to consider and the number of fault-maps
to simulate. The proportion of runs needed between our model and
current practice for a benchmark is:

1+∑
#arch_units
i=1 wi +∑

#non_arch_units
i=1 ki

#p f ails∗# f aultmaps

5α is a parameter that determines the precision and allows to trade-off accuracy for
computation time.

6ki is determined empirically. Furthermore, ki has been validated by a sensitivity
analysis over the penalty values, which reveals that in most of the cases there is a range
of values around the determined penalties that provides the same PVF.

The denominator is the number of runs for current practice and the
numerator is the number of runs needed to determine the input values
of the model (100 is an upper bound in our study). Our cost is thus
a small number of runs whereas a random fault map methodology
may require huge amount of runs to obtain the expected PVF and its
distribution.

3.8. Model limitations

The model is a first-order approximation and can underestimate the
PVF in some cases. In particular, for prediction arrays when multiple
bits of the same entry happen to be faulty and their combined mispre-
dictions is more than their individual contributions, then the expected
PVF is underestimated. For arrays with 1-bit entries or 2-bit satu-
rating counters this is not a problem since the faulty mispredictions
are determined uniquely by the faulty bits, the faulty value and the
bias (see Fig. 1) and, therefore, Mi can be estimated at the granularity
of an entry. For arrays that predict multi-bit values, like the return
address-stack and the indirect jump predictor, this is not a problem as
long as the fault-maps are random and the number of faults is small
enough that render very unlikely to have more than one faulty bit in
a frequently accessed entry. These assumptions are reasonable for
the configuration and parameters used in this study (in particular for
pfail ≤0.001).

It is possible that faults in the prediction arrays and caches can
result in a significant increase in the cache accesses and misses that
may not be captured by our model. We have not observed such
behavior for the pfails considered in this study.

All these limitations are directions for future model improvements
if higher model accuracy is required.

3.9. Model Extensions

The model, in its current version, is defined for three predictors and
a cache of a single core. The model, however, should be applicable
to other arrays as long as we can derive a method to obtain the
number of extra events due to faults and their corresponding penalties.
For non-arrays, like functional units, we believe that the model can
be extended based on the probability of timing violations [13, 19].
Finally, for multi-cores the impact on performance of faults in shared
resources, such as caches and interconnect, will need to be modeled
while also considering the interactions between benchmarks.

With the currently modeled structures, we observe that the per-
formance degradation depends on the penalty and on the number
of accesses to a structure. The more accessed an entry is and the
higher the penalty of an extra miss or misprediction, the higher the
performance degradation when the entry is faulty. We believe that
this observation will also hold for other structures.

3.10. Model Uses

The model, once derived, can be used to explore processor behavior
with different cell pfail. This can be helpful to forecast how processor
performance may be affected by faults in the future. Additionally,
this information can be useful to explore the use of different cell
sizes that enable a trade-off between area and PVF. Another use of
the model is to determine which arrays have significant PVF and
make design decisions to reduce their PVF, for example through
a protection mechanism, using larger cells, or even by selecting
a different array organization. The PVF distributions bounds can
help establish how a population of chips is affected due to faults in
predictors and caches. Such binning provides an indication about

Parameter description Setting
Pipeline depth 15 stages
Fetch/Decode/Issue/Commit up to 4/4/6/4 instr. per cycle
Line Predictor 4096 entries
RAS 16 entries (31 bits per entry) x 2 (fetch and commit)
Indirect Jump Predictor 512 entries (31 bits per entry)
Branch Predictor 8 KB gshare (32768 entries - 2 bits per entry, 15 bits history)
Branch Resolution In-order
Issue Queue/Reorder buffer 40 INT entries, 20 FP entries/128 entries
Functional Units 4 INT ALUs, 4 INT mult/div, 1 FP ALUs, 1 FP mult/div
L1 instr./data cache 64 KB, 2-way, 64 B blocks, 1-cycle, LRU / 64 KB, 2-way, 64 B blocks, 3-cycle, LRU
L2 unified cache 2 MB, 8-way, 64 B blocks, 12-cycle hit latency, 255 cycles miss latency, LRU

Table 2: Processor Configuration

Benchmark Baseline Conditional Returns Indirect L2 cache Accuracy Overheads
IPC branches (M) jumps MPKI Gshare RAS Ijump Gshare RAS Ijump L2 cache

ammp00 1.54 8.8 21K 0 1.19 0.97 1.00 0 20 25 0 58
applu00 0.52 0.6 100 94 22.04 0.99 0.99 0.68 33 41 0 51
apsi00 2.35 3.5 58K 0 0.82 0.99 1.00 0 25 29 0 187
art00 1.82 8.6 110 0 0.25 0.99 0.99 0 45 27 0 70

bzip00 1.29 14.4 353K 0 0.82 0.95 1.00 0 17 18 0 62
crafty00 1.90 8.7 1.09M 209K 0.17 0.96 0.99 0.66 24 24 25 66
eon00 1.26 7.0 2.04M 571K 0.01 0.99 1.00 0.76 14 16 13 48

equake00 0.64 1.7 1.06M 0 12.73 0.97 1.00 0 39 28 0 55
facerec00 1.58 6.7 166K 0 4.22 0.98 1.00 0 23 24 0 43
fma3d00 1.43 16.3 1.43M 278K 0.04 0.96 1.00 0.83 19 25 25 76
galgel00 2.42 5.8 0 0 0.24 0.99 0 0 29 0 0 55

gap00 1.56 9.5 2.05M 1.53M 1.01 0.99 0.99 0.77 23 25 26 38
gcc00 1.17 6.9 478K 213K 4.02 0.97 1.00 0.59 17 27 34 74
gzip00 1.54 7.0 1.05M 13 0.17 0.94 1.00 0.77 20 20 0 94
lucas00 0.70 1.3 0 0 13.39 1.00 0 0 9 0 0 40
mcf00 0.13 20.4 3.33M 0 86.42 0.96 1.00 0 58 68 0 60

mesa00 1.73 5.9 1.19M 547K 0.20 0.97 1.00 0.99 29 25 27 35
mgrid00 0.82 0.4 327 154 10.58 0.99 0.99 0.90 16 0 0 66
parser00 1.19 12.3 1.99M 240 1.37 0.96 0.99 0.90 20 21 0 82

perlbmk00 1.28 9.2 2.11M 1.54M 0.19 0.99 1.00 0.77 21 16 23 48
sixtrack00 1.96 2.3 128 24K 0.29 0.99 1.00 0.80 28 34 38 50
swim00 0.40 2.3 66 46 26.36 0.99 1.00 0.57 24 23 0 45
twolf00 1.06 10.6 705K 0 0.25 0.90 1.00 0 20 24 0 86
vortex00 1.86 10.8 2.06M 79K 0.34 0.99 0.99 0.95 23 24 23 81

vpr00 0.72 9.7 647K 49 6.13 0.94 1.00 0.93 23 31 0 72
wupwise00 1.78 8.8 652K 18 2.79 0.99 1.00 0 25 17 0 85

Table 3: Benchmark Characteristics

how many chips will be affected by failures and up to what extent.
Finally, the PVF analysis can provide a first order timing analysis for
systems with performance constraints such as real time systems.

The above types of studies are facilitated by the proposed method-
ology, since being analytical it allows for quick exploration, without
long micro-architectural simulation or fault maps generation.

4. Experimental Results

4.1. Experimental setup

In our experiments, the validated cycle accurate simulator sim-
alpha [12] is used. We have extended it to measure the performance
implications of faults in three prediction arrays: a return address
stack, a gshare direction predictor and an indirect jump predictor;
and the L2 cache of a high performance out-of-order superscalar
processor. Key parameters of the processor configuration are sum-
marized in Table 2. For L2 cache, we consider blocks comprised of
64 bytes for data, 11 bits for its ECC, 25 bits for the tag, 3 control
bits for valid, disable and dirty states and 7 bits for the tag ECC.
The experiments are conducted using SPEC CPU2000 benchmarks.
The applications characteristics are summarized in Table 3 that also
shows the estimated overhead per failure for each benchmark and

structure. An in-house SimPoint [17]-like tool is used to select the
regions to simulate and run them for 100M committed instructions.

Two types of experimental results are reported: simulation based
(Section 4.2.1) and model-based (Section 4.2.2).

The simulation based results are used to validate the accuracy of
our model. The validation compares the values obtained by simula-
tions against the values predicted by the model presented in Sections
3.3.1 and 3.4.2. The validation runs used 1000 fault maps. A fault-
map represents the location of the faulty entries. Each fault-map
represents a processor with faults and contains the locations of faults
in the prediction arrays and the L2 cache. The validation fault-maps
are randomly generated with cell probability failure of 1e-3 (lower
probabilities have also been used to validate the model). For predic-
tion arrays, unlike architectural arrays, it is not sufficient to know
that a cell is faulty but we also need to know what is the faulty value.
Therefore, for the prediction arrays, each fault-map is paired with a
value-map that contains, for each fault location, a randomly generated
fault value. For each fault map, the PVF of the predictions arrays
and the L2 cache are estimated for each of the benchmarks using the
model. If the PVF is 1% or more for both the prediction arrays and
the L2 cache, a detailed performance simulation is performed. Out
of the 26000 possible runs, only 1847 are predicted to produce PVF

!"#"$%&&'$("

&"

)"

$&"

$)"

'&"

')"

*&"

*)"

&")" $&" $)" '&" ')" *&" *)"

!"
#$

%&
'#
$(
)$

$%
*+

,)
-(.

%/
0"
#$

%&
*+

,/
(

1(
23
33
33
(

4&'5)-()$$%*+,)-(.%/0"#$%&*+,/(
1(233333(

Figure 5: Actual vs. Predicted number of additional mispredictions
with pfail=0.001.

!"#"$%&&'()"

$"

("

*$"

*("

+$"

+("

,$"

,("

'$"

'("

$" (" *$" *(" +$" +(" ,$" ,(" '$" '("

!"
#$

%&
'#
$(
)$

$%
*+

,)
-(&
)&
.#

(/
%0
0#
0(1(
23
33
33
(

4&'5)-()$$%*+,)-(&)&.#(/%00#0(
1(233333(

Figure 6: Actual vs. Predicted number of additional L2 misses with
pfail=0.001.

!"#"$%&'()*"

&"

&%$"

&%+"

&%'"

&%,"

&%)"

&%-"

&%."

&%("

&%/"

$"

&" &%$" &%+" &%'" &%," &%)" &%-" &%." &%(" &%/" $"

!"
#$

%&
'#
$(
!)

*(

+&',-.(!)*(

Figure 7: Actual vs. Predicted PVF with pfail=0.001.

more than 1% for both type of arrays.
For the model based results, we determine the expected PVF and

the distribution bounds. The pfails values in [24] for technologies
ranging from 32nm to 12nm (7.3e-09 to 2.6e-04) are used in this
study. To account for aging phenomena and lower voltage, we use
cell pfail of 1.0e-03, which also falls in the range considered by many
recent studies [11, 1, 4, 36, 26, 2]. Finally, we explore for the L2
cache the impact of more robust but larger cells on the expected PVF
and yield.

4.2. Experimental results

4.2.1. Simulation based results
The simulation based results are used to validate the model. Each

point in Figures 5 and 6 shows the additional mispredictions (respec-
tively additional misses) predicted from the model and the actual
obtained through simulation for different benchmarks and fault-maps
when cell pfail is 0.001. On each figure, the linear regression of all
points and its corresponding equation is shown. We can observe from
Figure 5 that the prediction model for additional mispredictions is
very accurate (3.79% error on average) with virtually all predicted
and actual values being equal. Figure 6 shows the same trends for
the additional misses (3.34% error in average) except for two cases
which are underestimated. We further analyzed these cases and found
that for both cases the underestimation comes from the interaction

with the faulty predictors which increase significantly the number of
accesses to the L2 cache. We have validated this hypothesis by using
only the cache fault-map and found that the predicted and actual
values match in that case.

Figure 7 compares the PVF predicted from the model and the
actual obtained through simulations. We observe again that the
proposed model is quite accurate (7.15% error in average) with most
of the predictions being close to the actual experimental outcome.
However, there is more deviation in Figure 7 as compared to Figures 5
and 6. Considering that the additional misprediction and misses are
predicted very accurately, the deviation is attributed to the variability
in the penalties which are not captured by the proposed approach.

Overall, the results suggest that the model is quite accurate and also
validate the model assumption that the ETV of different prediction
arrays and the L2 cache are additive.

4.2.2. Model based results
This set of experiments estimates the expected PVF for cell pfails that
correspond to different technology nodes [24]. Results are shown in
Table 4. In this table, the first two columns show the technology node
and the corresponding pfail, the next six columns show the maximal
expected PVF in at least one benchmark for gshare, ras, ijump, all the
predictors together, L2 cache and the global expected PVF. The last
column shows the expected PVF for a composite benchmark which
treats the consecutive benchmark execution as a single benchmark.

As shown in Table 4, the expected performance degradation from
permanent faults in predictors is small and at most 2% when pfail
equals to 1e-03. For the L2 cache, the performance degradation ob-
served at current technology nodes is small, but, at pfail=2.6e-04 and
pfail=1e-03 the maximal expected PVF is close to 30% and 84% re-
spectively. Further analysis, not shown, reveals one benchmark, art00,
experiences large PVF. The composite expected PVF for the different
benchmarks at the two highest pfails is low but still significant at 2%
and 14% respectively. Our model, therefore, can be useful to estimate
at which point the performance degradation due to permanent faults
can be tolerated and when it starts to become problematic and needs
to be addressed with fault tolerance techniques.

The lower PVF of the predictors as compared to the L2 cache is
mainly due to the size and the organization of each structure: number
of total bits and number of bits per entry. Specifically, for the same
cell pfail the expected number of faulty bits in the L2 cache will be
L2_size_in_bits/Predictor_size_in_bits times more. For example,

Technology pfail [24] Max Expected PVF Composite Bench.
Gshare RAS ijump Predictors L2 cache global Expected PVF

32nm 7.3e-09 0.00001% 0.00001% 0.00001% 0.00002% 0.00007% 0.00007% 0.00003%
22nm 1.5e-06 0.00106% 0.00213% 0.00111% 0.00347% 0.01441% 0.01533% 0.00621%
16nm 5.5e-05 0.03874% 0.07792% 0.04055% 0.12697% 1.70053% 1.73797% 0.25661%
12nm 2.6e-04 0.18286% 0.36615% 0.19083% 0.59581% 29.96965% 30.05939% 1.95337%

- 1.0e-03 0.69939% 1.37861% 0.72203% 2.23256% 83.71776% 83.73641% 14.60214%

Table 4: Expected Performance Vulnerability Factors (PVFs) for different technology nodes

1E-‐290	
1E-‐270	
1E-‐250	
1E-‐230	
1E-‐210	
1E-‐190	
1E-‐170	
1E-‐150	
1E-‐130	
1E-‐110	
1E-‐90	
1E-‐70	
1E-‐50	
1E-‐30	
1E-‐10	 0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

Pr
ob

ab
ili
ty
	

PVF	

art00	

L2	 cache	 predictors	 global	

1.E-‐03	

1.E-‐02	

1.E-‐01	

1.E+00	
0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

Figure 8: art00: average of the lower and upper distribution bounds.
pfail=0.001 ; α = 2.

1E-‐304	
1E-‐282	
1E-‐260	
1E-‐238	
1E-‐216	
1E-‐194	
1E-‐172	
1E-‐150	
1E-‐128	
1E-‐106	
1E-‐84	
1E-‐62	
1E-‐40	
1E-‐18	 0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

Pr
ob

ab
ili
ty
	

PVF	

vortex00	

L2	 cache	 predictors	 global	

1.E-‐03	

1.E-‐02	

1.E-‐01	

1.E+00	
0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

Figure 9: vortex00: average of the lower and upper distribution
bounds. pfail=0.001; α = 2.

1.E-‐301	
1.E-‐279	
1.E-‐257	
1.E-‐235	
1.E-‐213	
1.E-‐191	
1.E-‐169	
1.E-‐147	
1.E-‐125	
1.E-‐103	
1.E-‐81	
1.E-‐59	
1.E-‐37	
1.E-‐15	 0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

Pr
ob

ab
ili
ty
	

PVF	

galgel00	

L2	 cache	 predictors	 global	

1.E-‐03	

1.E-‐02	

1.E-‐01	

1.E+00	
0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

Figure 10: galgel00: average of the lower and upper distribution
bounds. pfail=0.001; α = 2.

0.0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1.0	

0.0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1.0	

Pr
ob

ab
ili
ty
	

PVF	

vortex00	 galgel00	 art00	

Figure 11: Cumulative distribution of the lower and upper distribu-
tion bounds for all units together. pfail=0.001 ; α = 2.

for pfail=1.0e-3 the L2 cache used in this study will experience about
18000 faulty bits whereas the gshare predictor 65. Furthermore, the
impact of a faulty bit in the L2 is significantly more pronounced since
the size of a block is typically much larger than a predictor entry. We
observe that the performance degradation due to a structure depends
on the penalty and on the number of accesses to that structure. The
more accessed an entry is and the higher its penalty, the higher the
performance degradation when the entry is faulty.

PVF distribution bounds: To draw more insight about the ex-
pected PVF and to show that the range of possible PVF values can be
quite distant from the expectation, we determine the lower and upper
bounds of the PVF distributions. For reading ease, we show only
three benchmarks representative of the different cases we observed.

Figures 8, 9, and 10 present the average of the two distribution
bounds for the last level cache, the predictors and all units together.

Figure 11 shows the cumulative distribution of the two bounds for the
three benchmarks when all units are considered together to highlight
the small distance between the bounds (i.e. small error).

The first observation is that the combined distribution of all units is
dominated by the distribution of the unit that has the highest expected
PVF (the cache for art00 and galgel00, the predictors for vortex00).

Moreover, the distribution results help to reveal the shortcoming
of analysis based only on expected values and limited number of
random fault maps: they cannot reveal the shape of the distribution.
For instance, even if the highest PVF probability is close to the
expectation, there is a significant probability to suffer a much higher
PVF. In terms of population of processors, this will mean that a
significant number will experience a PVF higher than the expectation.
For example, with vortex00, 1 per 1000 processors will experience a
PVF near 0.2 while the expected PVF is only 0.02.

1.E-‐11	

1.E-‐10	

1.E-‐09	

1.E-‐08	

1.E-‐07	

1.E-‐06	

1.E-‐05	

1.E-‐04	

1.E-‐03	

1.E-‐02	

1.E-‐01	

1.E+00	

0.56	

0.58	

0.6	

0.62	

0.64	

0.66	

0.68	

0.7	

0.72	

0.74	

c1	 (1)	 c2	 (1.12)	 c3	 (1.23)	 c4	 (1.35)	 c5	 (1.46)	 c6	 (1.58)	

M
ax
	 e
xp
ec
te
d	
PV

F	
&
	 C
el
l	 p
fa
il	

Di
e	
yi
el
d	

Cell	 type	 (rela6ve	 cell	 area)	

Die	 yield	 Max	 expected	 PVF	 Cell	 pfail	

Figure 12: Die yield vs. Max Expected PVF for different L2 cell size
(32nm).

1.E-‐13	
1.E-‐12	
1.E-‐11	
1.E-‐10	
1.E-‐09	
1.E-‐08	
1.E-‐07	
1.E-‐06	
1.E-‐05	
1.E-‐04	
1.E-‐03	
1.E-‐02	
1.E-‐01	
1.E+00	

C1
-‐0
	

C2
-‐0
	

C1
-‐1
	

C3
-‐0
	

C1
-‐2
	

C2
-‐1
	

C4
-‐0
	

C1
-‐3
	

C3
-‐1
	

C2
-‐2
	

C5
-‐0
	

C1
-‐4
	

C4
-‐1
	

C3
-‐2
	

C2
-‐3
	

C6
-‐0
	

M
ax
	 e
xp
ec
te
d	
PV

F	

Cell	 type	 &	 #spares	

Figure 13: Max Expected PVF for different L2 cell size (x) and spare
blocks (s). The configurations Cx-s are sorted in decreas-
ing order according to their corresponding estimated die
area.

The main cause for this difficult to detect behavior, when using
fault maps, is that accesses are not evenly distributed across entries
and, in general, it will require many fault-maps to produce a repre-
sentative distribution.

Finally, the cumulative distributions in Figure 11 show that the
bounds are accurate for all benchmarks with a small error, 0.027 on
average and up to 0.07, when α is set to 2. In terms of computation
time, computing the two bounds for all units together takes 1 minute
per benchmark on average, when running on a typical desktop.

4.2.3. Case study: design trade-offs using PVF
As shown above, for the same cell pfail the L2 cache has higher PVF
than the predictors. An approach that can reduce the L2 PVF is to use
more robust cells. On the other hand, robust cells require more die
area. This is especially true for large size L2 cache which occupies a
significant part of the total processor’s area and thus will lower the
die yield. To assess this trade-off, we use six different cells sizes with
their corresponding pfail from [37] for 32nm technology. Figure 12
shows the die yield7, the maximal expected PVF for the different
L2 cell size and their corresponding pfail. The results show that by
choosing a less robust cell (c2 in this case) instead of the most robust
one (c6), the PVF remain low (1.0e-4 vs. 1.0e-9) with a significant
improvement in die yield (0.72 vs. 0.63). Furthermore, the cell with
higher yield (c1) results in the largest PVF (close to 0.05). This first
order analysis helps identify that c2 can be a good compromise.

Another approach to reduce the PVF is to use spare blocks (for
instance s per set). The notion of spares can be easily incorporated in
our model by changing Equation 10 as follows:

pei =

(
n+ s
i+ s

)
pi+s

b f (1− pb f)
n−i

which provides, for every value of i [1...n], the probability of having
i+ s faulty blocks. To assess the benefits of sparing, Figure 13 shows
the expected maximal PVF when using different cell size and number
of spare blocks. Each configuration is noted Cx-s where x is the cell
type and s is the number of spare blocks per set. In the figure, the
different configurations are sorted in decreasing order according to

7die yield =wa f er yield ∗(1+ die area∗de f ects per unit area
α

)−α , where wa f er yield = 1,
de f ects per unit area = 0.4, α = 4 and the die area for the processor is estimated by
using hotfloorplan [28] in our experiments.

their estimated area/yield. As shown in the figure, using spares with
the less robust cell (c1) is not a good solution because it decreases
significantly the die yield to achieve the same PVF as c2 without
spares (PVF(C1-3)∼PVF(C2-0)). Nevertheless depending on the
targeted PVF threshold, it can be better to use relatively robust cells
with some spares to maximize the die yield instead of using only the
most robust cells. C2-2, for instance, gives a lower PVF and a better
die yield as compared to C5-0 and C6-0.

The two cases studies highlight how the rapid exploration of PVF
and area trade-offs can help designers configure and optimize their
array designs.

5. Related Work

Previous work investigating the implications of permanently faulty
cells in processor arrays focused on caches and considered yield and
performance analysis.

Yield analysis provides the probability distribution in terms of
number of faulty blocks expected in a cache given a specific cache
configuration and a random probability for permanently faulty cells.
Such analysis is usually based on binomial probability and helps
determine the expected fraction of fault-free caches and number of
spares that may be required by the caches with faults [2, 26, 36,
4, 1, 11]. The cell pfail depends on several parameters including
technology node, failure sources, such as static process-variations
and below Vcc-min operation, operating conditions and fault-model.

Performance analysis is useful to assess the performance of a pro-
cessor that operates with disabled faulty blocks that have not been
replaced with spares. Sohi [32] studied the impact on miss-rate of a
cache organization with randomly disabled portions, such as ways
and sets. The aim of [32] is to improve yield without noticeable
miss-rate increase. Related research performed by Pour and Hill [25]
also studied the impact of manufacturing faults on cache miss-rate.
The work by [25] quantified analytically the expected miss-rate im-
plications of different fault scenarios using a single run through an
address trace. This approach aims to eliminate the need for long sim-
ulations but uses large number of random-fault maps. They estimate
the expected miss ratio for a fixed number of faults by generating all
the possible distributions of these faults over the cache sets. In [27],
a methodology is proposed to estimate the expected miss rate and its
expected distribution by using pfail without the need to generate fault

maps. Our work shares similarities to [27] but, as highlighted in the
introduction, also some key differences.

A number of recent studies consider the performance implications
with disabled cache blocks assuming random fault-maps [21, 4, 1].
Our model does not rely on fault-maps but rather on probability
analysis.

An earlier work is concerned with the testing and validation of
mechanisms aiming to enhance performance [7]. This underlines
the importance of mitigating faults in prediction arrays. However,
this work does not evaluate the performance implications of faults.
Bower et al. [8] investigate the performance effects of up to 8 per-
manently faulty entries in a branch history table. Their conclusion is
that it is not worthwhile to protect this table against hard faults as per-
formance degradation is negligible. Also, Makris et al. [3] evaluated
the effect of a single fault in the most frequently accessed entry of a
conditional branch predictor. Our paper considers the performance
impact more rigorously using an analytical approach.

6. Conclusions and Future work

This work proposes a model for predicting PVF: the expected per-
formance degradation in the presence of permanently faulty cells in
architectural and non-architectural arrays. The model for a given
program execution, micro-architectural configuration, and cell pfail,
provides rapidly the PVF. PVF can be used by designers/researchers
to evaluate and compare vulnerability of different structures and
perform reliability driven trade-offs.

The model assumptions are validated and shown to be correct by
comparing the predicted values of our model against actual values
obtained by simulations with many fault-maps.

Predictions using the model reveal that the expected PVF for pre-
dictors is small even with high pfail. However, the PVF distribution
reveals cases where processors in a given population will experience
a significant performance degradation. Consequently, future proces-
sor reliability strategies may need to consider predictors. For the
last-level cache, the PVF becomes increasingly prominent with tech-
nology scaling. This suggests that last level cache PVF mitigation
techniques will become essential for future processors.

Design trade-off analysis using the model reveals that choosing
appropriately the cell size in an array can help maintain PVF low
with a small impact on die yield.

Future work, will extend and validate the proposed PVF model
for other non-architectural arrays and architectural arrays as well as
to multi-cores. We also plan to investigate low-cost detection and
repair schemes for both architectural and non-architectural arrays
to ensure a given PVF bound for all processors in a population.
Developing an integrated AVF-PVF analysis will help measure the
interactions between the two types of vulnerability when making
design decisions.

Acknowledgements

The research leading to this paper is supported by the European
Commission FP7 project "Energy-conscious 3D Server-on-Chip for
Green Cloud Services (Project No:247779 "EuroCloud")". Damien
Hardy was also supported by a mobility grant by HiPEAC (FP7
Network of Excellence). We like to thank the reviewers for their
critique and comments that helped improve significantly the quality
of this manuscript. The last author likes to acknowledge Veerle
Desmet, Babak Falsafi, Emre Özer, Ronny Ronen, and André Seznec
for their encouragement to pursue this line of work.

References

[1] J. Abella, J. Carretero, P. Chaparro, X. Vera, and A. González, “Low
vccmin fault-tolerant cache with highly predictable performance,” in
MICRO42, 2009, pp. 111–121.

[2] A. Agarwal, B. C. Paul, H. Mahmoodi, A. Datta, and K. Roy, “A process-
tolerant cache architecture for improved yield in nanoscale technologies,”
IEEE Trans. Very Large Scale Integr. Syst., vol. 13, no. 1, pp. 27–38,
Jan. 2005.

[3] S. Almukhaizim, T. Verdel, and Y. Makris, “Cost-effective graceful
degradation in speculative processor subsystems: The branch prediction
case,” Computer Design, p. 194, 2003.

[4] A. Ansari, S. Gupta, S. Feng, and S. Mahlke, “Zerehcache: armoring
cache architectures in high defect density technologies,” in MICRO42,
2009, pp. 100–110.

[5] M. D. Beaudry, “Performance-related reliability measures for computing
systems,” IEEE Trans. Comput., vol. 27, no. 6, pp. 540–547, Jun. 1978.

[6] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De,
“Parameter variations and impact on circuits and microarchitecture,” in
DAC40, Jun. 2003, pp. 338–342.

[7] P. Bose, “Testing for function and performance: Towards anintegrated
processor validation methodology,” J. Electron. Test., vol. 16, no. 1-2,
pp. 29–48, 2000.

[8] F. A. Bower, P. G. Shealy, S. Ozev, and D. J. Sorin, “Tolerating hard
faults in microprocessor array structures.” in DSN34, Jun. 2004, pp.
51–60.

[9] K. Bowman, J. Tschanz, C. Wilkerson, S.-L. Lu, T. Karnik, V. De,
and S. Borkar, “Circuit techniques for dynamic variation tolerance,” in
DAC46. New York, NY, USA: ACM, 2009, pp. 4–7.

[10] L. Cheng, P. Gupta, C. J. Spanos, K. Qian, and L. He, “Physically
justifiable die-level modeling of spatial variation in view of systematic
across wafer variability,” IEEE Trans. on CAD of Integrated Circuits
and Systems, vol. 30, no. 3, pp. 388–401, 2011.

[11] Z. Chishti, A. R. Alameldeen, C. Wilkerson, W. Wu, and S.-L. Lu,
“Improving cache lifetime reliability at ultra-low voltages,” in MICRO42,
2009, pp. 89–99.

[12] R. Desikan, D. Burger, S. Keckler, and T. Austin, “Sim-alpha: a vali-
dated execution driven Alpha 21264 simulator,” CS Dept., University of
Texas at Austin, Tech. Rep. TR-01-23, 2001.

[13] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: A low-power
pipeline based on circuit-level timing speculation,” in Proceedings of
the 36th International Symposium on Microarchitecture, Dec. 2003, pp.
7–18.

[14] S. Eyerman, K. Hoste, and L. Eeckhout, “Mechanistic-empirical proces-
sor performance modeling for constructing cpi stacks on real hardware,”
in Performance Analysis of Systems and Software (ISPASS), 2011 IEEE
International Symposium on, april 2011, pp. 216 –226.

[15] S. Eyerman, L. Eeckhout, and J. E. Smith, “Characterizing the branch
misprediction penalty,” in Proceedings of the 2006 IEEE International
Symposium on Performance Analysis of Systems and Software, Mar.
2006.

[16] D. Fass, “Approximation of discrete multivariate probability distribu-
tions: Recursive and hierarchical approaches,” 2005.

[17] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster
and more flexible program analysis,” in Journal of Instruction Level
Parallelism, 2005.

[18] E. Hao, P.-Y. Chang, and Y. N. Patt, “The effect of speculatively updating
branch history on branch prediction accuracy, revisited,” in MICRO27,
Nov. 1994, pp. 228–232.

[19] E. Krimer, P. Chiang, and M. Erez, “Lane decoupling for improving the
timing-error resiliency of wide-simd architectures,” in ISCA, 2012, pp.
237–248.

[20] N. Ladas, Y. Sazeides, and V. Desmet, “Performance Implications of
Faults in Prediction Arrays,” in 2nd HiPEAC Workshop on Design for
Reliability, 2010.

[21] H. Lee, S. Cho, and B. R. Childers, “Performance of graceful degrada-
tion for cache faults,” in IEEE Computer Society Symposium on VLSI,
Mar. 2007, pp. 409–415.

[22] C. McNairy and J. Mayfield, “Montecito error protection and mitiga-
tion,” in HPCRI ’05: 1st Workshop on High Performance Computing
Reliability Issues, in conjunction with HPCA ’05, 2005.

[23] S. S. Mukherjee, C. Weaver, J. S. Emer, S. K. Reinhardt, and T. M.
Austin, “A systematic methodology to compute the architectural vulner-
ability factors for a high-performance microprocessor,” in MICRO36,
Dec. 2003, pp. 29–42.

[24] S. R. Nassif, N. Mehta, and Y. Cao, “A resilience roadmap,” in DATE,
2010, pp. 1011–1016.

[25] A. F. Pour and M. D. Hill, “Performance implications of tolerating cache
faults,” IEEE Transactions on Computers, vol. 42, no. 3, pp. 257–267,
Mar. 1993.

[26] D. Roberts, N. S. Kim, and T. N. Mudge, “On-chip cache device scaling
limits and effective fault repair techniques in future nanoscale technol-
ogy,” Microprocessors and Microsystems - Embedded Hardware Design,
vol. 32, no. 5-6, pp. 244–253, May 2008.

[27] D. Sánchez, Y. Sazeides, J. L. Aragón, and J. M. Garcia, “An analytical
model for the calculation of the expected miss ratio in faulty caches,” in
IOLTS, 2011, pp. 252–257.

[28] K. Sankaranarayanan, S. Velusamy, M. Stan, C. L, and K. Skadron, “A
case for thermal-aware floorplanning at the microarchitectural level,”
Journal of ILP, vol. 7, 2005.

[29] D. P. Siewiorek, R. S. Swarz, and A. K. Peters, Reliable computer
systems (3rd ed.): design and evaluation. Ltd, 1998.

[30] L. J. Simonson and L. He, “Micro-architecture performance estimation
by formula.” in SAMOS’05, 2005, pp. 192–201.

[31] K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark, “Improv-
ing prediction for procedure returns with return-address-stack repair
mechanisms,” in MICRO31, Nov. 1998, pp. 259–271.

[32] G. S. Sohi, “Cache memory organization to enhance the yield of high per-
formance VLSI processors,” IEEE Transactions on Computers, vol. 38,
no. 4, pp. 484–492, Apr. 1989.

[33] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “Lifetime reliability:
Toward an architectural solution,” IEEE Micro, vol. 25, no. 3, pp. 70–80,
May 2005.

[34] Y. Taur, “CMOS design near to the Limit of Scaling,” IBM Journal of
Research and Development, vol. 46, no. 2/3, pp. 213–222, Mar./May
2002.

[35] A. Vassighi, O. Semenov, M. Sachdev, S. Member, A. Keshavarzi, and
C. Hawkins, “Cmos ic technology scaling and its impact on burn-in,”
IEEE Trans. on Devices and Materials Reliability, vol. 4, 2004.

[36] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khellah, and S.-
L. Lu, “Trading off cache capacity for reliability to enable low voltage
operation,” in ISCA35, Jun. 2008, pp. 203–214.

[37] S.-T. Zhou, S. Katariya, H. Ghasemi, S. Draper, and N. S. Kim, “Mini-
mizing total area of low-voltage sram arrays through joint optimization
of cell size, redundancy, and ecc,” in Computer Design (ICCD), 2010
IEEE International Conference on, oct. 2010, pp. 112 –117.

Appendix

Sketch of proof: correctness of the discrete distribution
lower/upper bounds.
Let’s consider the min clustering function (similar reasoning can be
applied to the max clustering function).
1 Let’s assume a discrete distribution P. By applying the clustering

function on P, we obtain distribution P′.
By construction of the min clustering function, the following prop-
erty (pa) is ensured:

pa : ∀X ,P′(x < X)≥ P(x < X)

The correctness is ensured for the first step of the algorithm.
2 Let’s assume two distributions P1 and P2 and their corresponding

P′1 and P′2 distributions resulting from the min clustering function.
The next step of the algorithm consist of combining P′1 with P′2,
noted P′1,2 and we want to be sure that the following condition (ca):

ca : ∀Z,P′1,2(x < Z)≥ P1,2(x < Z)

is always valid to ensure the correctness of this step.
With property pa, we have:

∀Z,P′1(x < Z)≥ P1(x < Z)

∀Z,P′2(y < Z)≥ P2(y < Z)

Thus,

∀(x+ y)< Z,

P′1(x < Z− y)≥ P1(x < Z− y)

∧
P′2(y < Z− x)≥ P2(y < Z− x)

Thus,

∀(x+ y)< Z,

P′1(x < Z− y)∗P′2(y < Z− x)≥ P1(x < Z− y)∗P2(y < Z− x)

And the combination of distributions is a multiplication of proba-
bilities thus, ca is verified.

3 By induction we obtain a safe distribution bound.
�

