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Abstract

The widespread proliferation of the Chip Multi-Processor (CMP)

paradigm has cemented the criticality of the on-chip interconnection

fabric. The Network-on-Chip (NoC) is becoming increasingly sus-

ceptible to emerging reliability threats. As technology feature sizes

diminish into the nanoscale regime, reliability and process variabil-

ity artifacts within the NoC start to become prominent. The need

to detect the occurrence of faults at run-time is steadily becoming

imperative. In this work, we propose NoCAlert, a comprehensive

on-line and real-time fault detection mechanism that demonstrates

0% false negatives within the interconnect, for the fault model and

stimulus set used in this study. Based on the concept of invariance

checking, NoCAlert employs a group of lightweight micro-checker

modules that collectively implement real-time hardware assertions.

The checkers operate seamlessly and concurrently with normal NoC

operation, thus eliminating the need for periodic, or triggered-based,

self-testing. More importantly, 97% of the faults are detected instan-

taneously. Extensive cycle-accurate simulations in a 64-node CMP

demonstrate the efficacy of the proposed technique. Finally, hard-

ware synthesis results using commercial 65 nm technology libraries

indicate minimal area and power overhead of 3% and less than 1%,

respectively, and negligible impact on the router’s critical path.

1. Introduction

Diminutive technology feature sizes have enabled microprocessors

with billions of transistors on a single chip die [1]. This un-

precedented abundance of on-chip resources, coupled with thin-

ning Instruction-Level Parallelism (ILP), have urged designers to

switch their attention to another computational archetype: the Chip

Multi-Processor (CMP) [2]. The presence of multiple on-chip pro-

cessing entities has precipitated a shift from computation-centric

to communication-centric micro-architectures. As a result, the on-

chip interconnection fabric is fast becoming a mission-critical com-

ponent. Packet-based Networks-on-Chip (NoC) are widely viewed

as the de facto communication medium of future multi-/many-core

CPUs, primarily due to their inherent scalability attributes and mod-

ular nature [3].

However, the march towards CMPs with tens – or even hundreds

– of processing cores has been marred by the emergence of an omi-

nous threat: waning reliability [4]. The extreme downscaling trends

of CMOS technology have rendered transistors more susceptible to

both permanent and transient faults. Moreover, digital circuits are

increasingly affected by growing process variability artifacts [5] and

accelerated aging effects [6, 5], all of which are consequences of

dwindling feature sizes. Just like any on-chip component, the in-

terconnection backbone is also affected by decreasing reliability [7].

In fact, a single fault in the on-chip network may paralyze an other-

wise healthy CMP. Faults within the NoC may result in such show-

stopping predicaments as network disconnections, network-level

deadlocks, protocol-level (cache coherence) deadlocks, lost packets,

and severely degraded on-chip communication performance [8].

Architects and designers have proposed a multitude of techniques,

mechanisms, and design modifications to increase the fault tolerance

and reliability of the NoC. However, the vast majority of the related

work found in the literature concentrates on fault prevention (improv-

ing durability/fault-tolerance, prolonging lifetime, etc.) [9] and/or

recovery (redundancy, reconfiguration, adaptation, etc.) [10, 11].

The equally important aspect of fault detection has not been ade-

quately addressed.

Traditionally, fault detection is undertaken by Built-In Self-Test

(BIST) mechanisms that predominantly assume a disruption in the

system’s operation. The BIST process may be executed by the man-

ufacturer prior to shipment, or it may constitute part of system boot-

up [12, 13]. Runtime BIST is also possible, but system operation is

(partially) halted while the module-under-test is examined [10, 14].

BIST usually entails the use of predefined test vectors, patterns,

or routines, which tend to be pure overhead. Regardless, detect-

ing faults at run-time is rapidly becoming a necessity, in light of

the aforementioned decline in reliability. When BIST or BIST-like

methodologies are employed within the context of on-line (run-time)

testing, the process is usually triggered periodically [14]. Choosing

the length of the period between two consecutive test sessions is cer-

tainly non-trivial: if testing is conducted too frequently, the impact

on performance will be more pronounced, due to excessive interrup-

tions; if testing is rarely performed, then faults may go unnoticed for

a prolonged period of time [15]. Furthermore, periodic testing often

implies the use of checkpointing, which adds further overhead (both

in terms of performance and hardware/storage/power).

Near-instantaneous fault detection may be achieved in the data-

path of the interconnect through the use of error detecting codes.

Simple parity checks – or more elaborate coding – will detect (and

may even correct) errors affecting the contents of in-flight packets

[16]. While this methodology guarantees protection of the message

contents, faults within the control logic of the NoC may still wreak

havoc with the operation of the entire CMP. Hence, what is needed to

guarantee functional correctness within the NoC – and, by extension,

within the CMP – is to protect the NoC’s control logic (assuming that

the flit contents are protected by error-correcting codes). This thesis

statement marks the central theme of our work.

Realizing the significance of accurate and timely run-time detec-

tion of faults within the NoC’s control logic, we hereby propose

a comprehensive on-line fault detection mechanism, aptly called

NoCAlert, which provides full fault coverage for all on-chip network

control logic components and achieves instantaneous detection of

any erroneous behavior. Depending on the application’s criticality,

instantaneous detection may be of paramount significance. The No-

CAlert mechanism is based on the notion of invariance checking,

whereby the system is continuously checked for illegal outputs as

a result of upsets (permanent, transient, or intermittent). An ille-

gal output is defined here as an operational decision that violates



the functional correctness rule(s) of a particular component. The

underlying principle of this technique is inspired by prior efforts

to protect the microprocessor by using invariances [17]. NoCAlert

comprises several checker micro-modules distributed throughout the

NoC router, which seamlessly and concurrently monitor all NoC

modules for illegal activity. The checkers never interfere with –

or interrupt – the operation of the NoC and they provide real-time

on-line fault detection. In essence, NoCAlert implements an all-

encompassing collection of extremely lightweight real-time hard-

ware assertions that can detect illegal outputs within the NoC’s con-

trol logic.

In particular, the main contributions of this work are:

1. The development of a comprehensive on-line and real-time

fault detection mechanism for the control logic of the NoC of

multi-core CMPs. The proposed NoCAlert checker modules op-

erate seamlessly and concurrently with normal NoC operation,

thus obviating the need for testing epochs and periodic trigger-

ing of testing sessions that may interrupt/impede normal system

operation.

2. The NoCAlert protective blanket ensures 0% false negatives

within the interconnect for the fault model (single-bit transient)

and stimulus set used in this study, with 97% of the faults de-

tected instantaneously (i.e., in the same cycle as the fault occur-

rence). This attribute allows for ultra-fast response by a potential

fault recovery scheme and/or re-configuration mechanism. No-

CAlert is intended to be used in conjunction with fault recovery

techniques.

3. We demonstrate that by using checkers that solely detect illegal

outputs (outputs that cannot be produced by any input) for all

NoC control components, we observe 0% false negatives for the

entire network using the fault model of this study. This empirical

observation leads to an interesting hypothetical corollary about

a NoC router’s control components: if a unit produces a faulty

but legal output, which does not lead to subsequent invariance

violations, it is always benign as far as the overall NoC operation

in concerned.

4. The entire NoCAlert scheme is extremely lightweight in terms

of all salient design metrics. Hardware synthesis results using

commercial 65 nm standard-cell libraries indicate minimal area

and power overhead of 3% and less than 1%, respectively. More

importantly, the critical path of the router is shown to be negli-

gibly affected (around 1%), rendering the proposed mechanism

transparent to normal operation. Our analysis clearly indicates

that checkers used to detect only illegal outputs have significantly

lower hardware cost, as compared to the cost of the unit they

check; i.e., the complexity of determining whether an output is

illegal – given an input – is much simpler than producing the out-

put.

5. The NoCAlert framework is evaluated by injecting faults in

all possible locations (according to the employed fault model)

within the NoC of a 64-node CMP arranged in an 8×8 mesh. Ex-

tensive simulations were run in a cycle-accurate NoC evaluation

framework. The results and ensuing analysis corroborate the effi-

cacy of the NoCAlert mechanism.

6. Through a detailed experimental comparison, NoCAlert is shown

to outperform ForEVeR [15], a recently proposed state-of-the-

art fault detection and recovery framework. NoCAlert provides

more than 100× reduction in fault detection latency, with no loss

in detection accuracy, and without the need to rely on a secondary,

fault-free checker network for detection purposes.

To the best of our knowledge, this work constitutes the first at-

tempt to utilize real-time hardware-based assertion checkers to en-

sure 0% false negatives within the on-chip interconnection network

of CMPs.

The rest of the paper is organized as follows: Section 2 discusses

related prior work in fault-tolerant NoCs. Section 3 introduces the

idea of invariance checking within the on-chip network, while Sec-

tion 4 delves into the description, implementation, and analysis of

the proposed NoCAlert mechanism. Section 5 presents the em-

ployed evaluation framework, the various experiments, and accom-

panying analysis. Finally, Section 6 concludes the paper.

2. Related Work

In general, research in the field of fault tolerance revolves around

two fundamental axes: (1) Fault Detection, and (2) Fault Recov-

ery/Protection/Isolation. While the focus is often slanted more to-

ward the latter, both axes are essential in delivering a robust sys-

tem. Research in the field of NoC reliability naturally falls into two

main categories: (a) Inter-router faults (i.e., faults within the links in-

terconnecting the various switches), and (b) Intra-router faults (i.e.,

faults within the switches themselves). The following sub-sections

will concentrate on these two categories.

2.1. Inter-Router Faults

Disabled inter-router links in the network reduce connectivity. Re-

duced connectivity may, in turn, lead to network deadlocks and –

depending on the routing algorithm used – may lead to halted net-

work operation. Broken network links imply reduced path diversity,

creation of hotspots, and network delay due to back-pressure effects.

Default Backup Paths (DBP) [18] were proposed as a means to main-

tain connectivity in the presence of faults. In [11], all the physical

links are doubled in order to enhance NoC connectivity. Naturally,

the presence of fully disabled links predominantly affects the routing

algorithm within the network routers.

The assumption of fully disabling a parallel multi-bit inter-router

link is overly pessimistic. In reality, each parallel link (ranging from

32 up to 256 wires) is individually driven. Whenever a wire fails,

the rest can still function properly. Hence, in a real-world scenario,

a fault within the links will give rise to partially faulty links. It is

this realization that has led researchers to look into Error-Correcting

Codes (ECC) [19, 20], utilizing redundant wires/bits. For online

detection and diagnosis purposes, these codes are very effective. Re-

transmission mechanisms are typically required to co-operate with

ECC schemes [19]. Researchers have devised methodologies to

transfer flits through these partially faulty links through shifting and

multi-cycle transmissions [21], and by using spare wires [20].

2.2. Intra-Router Faults

This sub-section presents prior work regarding fault-tolerant routing

and architectural redundancy schemes.

Fault-Tolerant Routing in NoCs: Most NoC fault-tolerant rout-

ing algorithms are inspired from seminal work conducted in the

domain of large-scale, multi-computer interconnection networks

[22, 23]. NoCs are characterized by severely limited on-chip re-

sources, scarce energy budgets, and the imperative need for ultra-

high performance. As such, the fault-tolerant routing algorithms pro-

posed for NoCs must account for these salient attributes. Universal

Logic-Based Distributed Routing (uLBDR) [24] aims to eliminate

fault-susceptible routing tables. Stochastic routing algorithms [25]

have been employed to bypass faulty links in the network. Dynamic

reconfigurable routing algorithms [26] determine forbidden turns at



run-time to avoid deadlocks while bypassing faulty components. De-

flection routing [27, 28] is another technique that favors routing re-

silience, and it has been employed as a fault-tolerant routing mech-

anism [28]. Distributed [29] and multi-path [30] routing strategies

aim to evenly spread network traffic over a faulty network topol-

ogy without deadlocks. Finally, the concept of exploration/scouting

packets [31, 32] has also been used to identify faulty nodes ahead of

regular data packets.

Architectural Techniques to Tackle Datapath and Control

Logic Faults: Besides the multitude of routing algorithms designed

to provide uninterrupted network functionality in the presence of

faults, a lot of research has addressed fault-tolerance in the criti-

cal components comprising the datapath and control logic of NoC

routers.

The Row-Column (RoCo) Decoupled router [33] provides exten-

sive fault tolerance and graceful degradation by decomposing the

router into two independent modules and by employing resource

sharing. Bulletproof [9] proposes various online repair and recov-

ery capabilities and investigates protection at various levels, ranging

from system-level to arbitrary partitions of the design.

Fault-tolerant techniques provide effective recovery mechanisms

that ensure correct functionality in the presence of faults. Of course,

the basic assumption is that the fault must first be detected. While

most of the techniques considered in this Section so far assume the

presence of fault detection capability and concentrate on the recov-

ery aspects, others have also tackled the non-trivial facet of detecting

the faults in the first place.

The proposed mechanism in [13] broadcasts test vectors within

the NoC during boot-up only and detects faults by examining the

responses of the various router components. To accommodate run-

time occurrence of faults, the work in [12] is also capable of gen-

erating on-line test vectors that are broadcast in the network. Test

vector results are then evaluated by neighboring routers. However,

in this scheme, the entire network’s operation is halted for testing

purposes. In order to mitigate the performance degradation caused

by testing interruptions, the token-based mechanism in [14] inter-

rupts only a small portion of the network at any given time. The

Allocation Comparator of [19] performs on-line, real-time diagno-

sis by observing the occurrence of some invalid operations within

the router arbiters as a result of transient faults. The Vicis router

[10] employs ECC codes to detect some faults. Subsequently, spe-

cialized BIST testers located in each router are utilized for more

extensive testing and fault localization [10]. Finally, the appropri-

ate reconfiguration mechanism is triggered to combat the detected

fault. Error-correcting codes have also been used in conjunction

with a packet/flit counting technique to detect and diagnose perma-

nent faults in the network [34].

The ForEVeR framework [15] was recently proposed, which

complements the use of formal methods and runtime verification to

ensure functional correctness in NoCs. While ForEVeR’s goal is to

protect against escaped design-time verification errors with a run-

time technique, the scheme may also be used to provide robustness

against run-time faults. Fault detection is achieved with the help of

(a) an additional lightweight checker network that is assumed to be

100% reliable, (b) the Allocation Comparator from [19], and (c) an

end-to-end checker. The checker network is used to alert destina-

tion nodes ahead of time about incoming flits. The destination node

increases a flit counter upon a notification reception, and decreases

the same counter upon flit reception. Time is separated in so called

epochs, and at the end of each epoch the counter must have reached

the value of zero at least once within the epoch interval. If not, a

recovery mechanism is triggered, which delivers the in-flight data to

the intended destination via the checker network. The use of timing

intervals implies the non-trivial task of finding the optimal epoch du-

ration to minimize false positives. In fact, if the epoch duration is

not carefully chosen, the mechanism may give rise to false positives

even in a fault-free environment. Moreover, the epoch duration is

sensitive to the traffic injection rate, which hinders widespread ap-

plicability. More importantly, the use of an end-to-end, epoch-based

scheme, such as ForEVeR, results in significantly delayed fault de-

tection. Particular to ForEVeR, fault detection relies on ahead-of-

time notifications sent through the checker network; hence, a run-

time fault in the checker network would incapacitate fault detection.

Finally, any faults that cause degradation in performance, but do not

cause a functional error at the output (end-to-end delivery) will never

be detected (i.e., only faults that cause functional errors are detected).

A detailed quantitative comparison between NoCAlert and ForEVeR

[15] will be presented in Section 5.

In summary, recovery and reconfiguration schemes rely on effi-

cient, accurate, and quick-responding fault detection mechanisms.

In the absence of such mechanisms, the efficacy of recovery is

severely compromised. Inaccurate detection mechanisms can cause

undue network/system performance degradation, while delayed de-

tection will necessitate the presence and invocation of checkpointing

mechanisms, which inevitably incur both hardware and performance

overhead.

The NoCAlert mechanism proposed in this work ensures on-line

and real-time fault detection within the NoC, and it guarantees

0% false negatives under the employed fault model. Most impor-

tantly, the technique works concurrently with normal network op-

eration (i.e., no testing interruptions) and is shown to be extremely

lightweight. Moreover, NoCAlert may be used to complement any

other fault recovery scheme, such as ForEVeR [15]. The recovery

mechanism – aided by NoCAlert’s instantaneous fault detection –

may react much more rapidly (if deemed necessary), thus minimiz-

ing the effect on system-level performance.

3. Invariance Checking within the NoC

The NoCAlert mechanism is based on the concept of invariance

checking. When checking for invariances, the system is continu-

ously examined for illegal outputs as a result of some kind of per-

turbation (fault). As previously mentioned, the term illegal output

is defined here as an operational output that is impossible to occur,

based on the set of functional correctness rules of a given component.

Thus, the term “invariance” describes a condition that cannot – by

definition – vary. Consequently, an invariance violation is the break-

ing of fundamental rules within the context of a system component.

Invariance is a general term that applies to every system governed by

some rules within a specific context. Considering an adder circuit as

an example, one derived invariance would be that the sum of two

even numbers must always be even as well.

A well-known implementation of invariance checking is the use of

assertions in software development [35]. Software assertions ensure

that a forbidden state cannot be reached; if it is reached, a notifica-

tion is issued.

In this work, we adopt the notion of invariance checking and ap-

ply it to all the modules of a NoC router’s control logic to detect

abnormalities in the network resulting from either transient, or per-

manent, faults. The assertions are implemented in hardware so as to

provide near-instantaneous detection of anomalies.

The salient characteristic of invariance checking, in general, is the

fact that only functionally illegal outputs are flagged as violations.

In other words, a fault that causes the generation of an erroneous,



Figure 1: Overview of the router pipeline. The baseline router has five
pipeline stages; namely, Routing Computation (RC), Virtual
channel Allocation (VA), Switch Arbitration (SA), Crossbar
(XBAR) traversal, and Link Traversal (LT).

yet functionally legal, output will not be identified as a breach of

correctness.

Knowing this innate limitation of invariance checking, what we

aim to explore in this work – among others – is how often, and un-

der what conditions, such non-invariant faults could potentially lead

to compromised network-level correctness. We will demonstrate em-

pirically that non-invariant faults within the NoC routers, which do

not cause any subsequent invariance violations (i.e., they are not

caught by subsequent checkers), always prove to be innocuous at

the system level, i.e., they do not cause network-level malfunction.

Before we proceed with the identification of invariant conditions

(invariances) within the NoC, we first present – without loss of gen-

erality – a typical router micro-architecture [36], which forms the

foundation of most router implementations discussed in the litera-

ture. It is important to note that this architecture is general enough

to allow the proposed NoCAlert mechanism to be applicable to any

router implementation. Later on in the paper, we will briefly show

how NoCAlert can also be fitted to different router designs.

3.1. A Generic NoC Router Micro-architecture

Figure 1 presents a high-level, abstracted view of the baseline

router micro-architecture assumed in this work. This generic input-

buffered router design consists of five input/output ports. Four of

them are used to communicate with the adjacent routers in the net-

work (in the four cardinal directions of a 2D mesh) and the fifth port

is used to communicate with the local processing element. Each in-

put port has a number of Virtual Channels (VC) that support (poten-

tially) the routing algorithm (e.g., adaptive) and, more importantly,

the cache coherent protocol employed within the CMP. VCs are used

to avoid protocol-level deadlocks in the network, as well as to en-

hance bandwidth utilization at the network level. A central crossbar

(XBAR) facilitates the interconnection between the input and output

ports, as shown in Figure 1. The main modules of the router’s con-

trol logic are the Routing Computation (RC) unit, the Virtual chan-

nel Allocation (VA) unit, and the Switch Arbitration (SA) unit. The

RC unit is responsible to compute the output direction that a packet

must follow to get to the next hop, based on the destination informa-

tion found in the header flit of each packet. The VA unit allocates

a downstream VC to each packet. This is the VC that the packet

will use in the adjacent router. Finally, the SA unit decides which

flits traverse the crossbar in each cycle. The baseline router is as-

sumed to be wormhole-switched (the predominant choice in on-chip

networks) and to use credit-based flow control.

The employed router has a five-stage pipeline, with each stage

corresponding to one of the major functional units within the router:

RC, VA, SA, XBAR traversal, and Link Traversal (LT), as illustrated

in Figure 1. The first two stages are executed only for the header

flit of each packet (in order to set up the wormhole), while the re-

maining stages are executed for all flits. As can be seen in Figure

1, the VA and SA stages are further separated into local (intra-port)

and global (inter-port) sub-stages. Local stages perform arbitration

within a specific port, while the global stages resolve conflicts be-

tween the various ports. The data-path of the router comprises the

input buffers and the XBAR switch. Each input port employs an

input de-multiplexer and an output multiplexer to accommodate the

sharing of one physical channel by multiple VCs. This organiza-

tion implies that only one flit can arrive to, or leave from, an input

port in each cycle. Furthermore, VCs may be atomic or non-atomic.

Atomic VCs can only store the flits of a single packet at any given

time. In other words, flits from two different packets cannot co-exist

in the same VC.

3.2. Examples of On-Chip Network Invariances

This sub-section presents three representative examples of invari-

ances found within the NoC. To aid understanding, the examples

are depicted in Figure 2.

Assuming the 4×4 mesh network in Figure 2(a), let us identify

one important invariance pertaining to the widely used XY rout-

ing algorithm. Routing algorithms, in general, forbid some turns

to avoid deadlocks and/or livelocks in the network. The XY rout-

ing algorithm, in particular, first routes a packet along the X dimen-

sion until the intended destination’s X-coordinate has been reached,

and then along the Y dimension until the destination node has been

reached. Suppose the origin of the Cartesian system is the bottom

left router, and assume that a packet is injected in router (1,1) with

destination (1,3). Upon reaching router (1,2), a fault in the RC unit

of said router forwards the packet to the East output port, toward

router (2,2). This action constitutes an invariance violation, since a

packet arriving from the Y dimension (North or South input ports)

may not make a turn to the X dimension (East or West output ports)

under XY routing. Such an invariance violation, if caught, indicates

a malfunctioning RC unit.

As described in Section 3.1, there are five pipeline stages in

the baseline router. Under normal operation, those pipeline stages

should be executed in the correct order. To maintain the pipeline

functionality, each VC keeps its own functional state. Figure 2(b)

shows an example of a VC’s status table. In this example, a header

flit is present at the head of the queue and is waiting for the VA stage

(VC allocation) to be executed. Since the “VA done” field in the

status table is set to 0, an output VC has not yet been allocated to

the specific packet. A malfunctioning SA arbiter, however, sends

an active grant success signal to the VC, thus violating the correct

pipeline order (SA success before VA is complete). This invariance

violation identifies erroneous behavior within the SA module.

Finally, Figure 2(c) illustrates a router’s input port with four VCs.

Suppose that the flit at the head of the VC0 queue is ready to proceed

to the XBAR stage, as indicated by the active “Read Signal” at VC0.

However, a fault leads to the simultaneous assertion of the VC1 read

signal in the same clock cycle. As can be seen in the figure, only one

flit from each input port may depart in a single clock cycle, due to the



Figure 2: Examples of NoC invariances. The first example (a) illustrates the case whereby a malfunctioning XY routing computation unit
attempts to route a packet in a forbidden direction (S: Source node; D: Destination node). The second example (b) demonstrates an
invariance violation that occurs upon receiving an SA success signal before the VA stage is complete. Finally, the third example (c)
illustrates the erroneous case of having more than one active read signals in the same router port in the same cycle.

presence of the multiplexer. The presence of two concurrently active

read signals in the same input port indicates an invariance violation.

3.3. Identifying Invariances within the NoC Router

In order to identify a component’s invariances, one must carefully

examine the operation of said component within the context of its

governing functional rules. In general, it is not always obvious that

a range of values will never appear under normal operation. In the

case of NoC routers, invariance identification is possible, because

of the inherent modularity of the constituent modules. Each router

module is usually responsible for a very specific task. For example,

the RC unit is only tasked with the determination of the output di-

rection1 of a particular incoming packet. An arbiter grants one out

of a number of requests, and the crossbar module is responsible for

interconnecting input and output ports.

In this work, invariances were constructed by observing the oper-

ation and behavior of each functional module. Specifically, the list

of invariances is constructed using a bottom-up approach. The NoC

router design is implemented in a modular and hierarchical manner;

e.g., FIFO buffers → Arbiters → Input Port → Crossbar Switch →

. . . → Entire Router. The algorithm responsible for the functional

operation of each module (e.g., the routing algorithm) is then exhaus-

tively inspected to identify all functional rules. This analysis allows

us to identify the functional rules of all components (which are not

prohibitively many in a NoC), and, by extension, all functionally

illegal outputs. Hence, the assertions are derived from each func-

tional rule in the algorithm that describes the operation(s) of each

module. This methodology is repeated for higher levels in the de-

sign hierarchy until the whole router is covered. Finally, end-to-end

invariances at the network level (considered to be the highest level

in the hierarchy) are also identified. To be able to follow the same

procedure, designers must keep the design modular, so as to enable

the decomposition of each module’s operation.

By viewing the design hierarchically (not just locally), invari-

ances manifesting in a coupled/combined manner are also covered.

By gradually moving up the hierarchy (from individual modules to

groups of modules), new assertions are derived from functional rules

governing the higher levels of the hierarchy (e.g., rules that apply to

the input-port-level).

The completeness of invariances depends on the completeness of

the functional analysis of the design itself: a NoC consists of a set of

functional rules. These rules are defined by the modules (and their

1Some routing algorithms also provide the output VC, in addition to the output di-

rection [36].

interactions) within the routers. If the invariance checkers cover all

functional rules, NoCAlert will detect any illegal behavior.

All identified invariances are listed in Table 1, which will be de-

scribed in more detail in Section 4.

It should be stressed at this point that our focus is on the control

logic of the on-chip network. The data-path is usually protected by

the well-established and ubiquitous practice of augmenting the flit

payload with Error Detecting Codes (EDC) [19, 10]. In fact, more

elaborate codes can also be employed that can even correct some er-

rors (bit flips) within the flit contents. Hence, our only assumption

in this paper is that the contents of the flits/packets are protected by

a simple error detecting code, which will alert the system of any un-

desired alteration in the message contents (the code usually provides

coverage for both the payload and the network overhead bits). In its

simplest guise, the EDC could be a single-bit parity check.

Protecting the message contents, however, is not enough to guar-

antee the functional correctness of the NoC. Erroneous behavior

within the control logic can lead to catastrophic results, since the con-

trol logic is the coordinator of the network’s operation. Control logic

upsets may lead to flit drop, packet loss, network/protocol deadlocks,

network livelocks, packet mixing (which is not detected by the EDC,

since it involves the flits of different packets erroneously following

the same wormhole), and degraded performance (at best).

It is precisely for this reason that we advocate the incorporation

of the NoCAlert mechanism into the on-chip network. NoCAlert

provides on-line and real-time detection of faults within the control

logic of the entire NoC. The flow of packets – from injection to

ejection – is seamlessly monitored for any digression from normalcy.

The NoCAlert scheme acts as a guardian of NoC operation and casts

a protective blanket over the entire interconnect.

4. NoCAlert: An On-Line, Hardware-Assertion-Based

Fault Detection Mechanism for NoCs

The proposed NoCAlert utilizes the principle of invariance checking

and implements it in the form of real-time hardware-based asser-

tions. The key idea is to have a simple hardware checker module

for every NoC component. This checker module will take as inputs

the inputs and outputs of the protected component and it will check

whether any functional rule is broken during the component’s opera-

tion. Checkers mostly perform simple comparisons and, hence, they

comprise simple combinational circuits with very low complexity.

As previously mentioned, in order to deploy and integrate the

checkers in the router design, all the invalid outputs of all the main

modules of the router had to be identified through a comprehensive

analysis of each module’s operation. This detailed exploration of



Routing Computation (RC) Unit

1 Illegal turn Routing algorithms forbid some turns to prevent deadlocks in the network.
2 Invalid RC output direction There are some invalid RC output directions. For example, if the router has five ports (numbered

1 to 5), value 6 is invalid [19].
3 Non-minimal routing (if required) The RC unit’s output direction must take the flit one step closer to its destination.

Arbiter Modules (VA and SA Stages)

4 Grant w/o request It is not possible for a flit to win a grant without making a request.
5 Grant to nobody The arbiter must always provide a winner when there is at least one client request.
6 1-hot grant vector The arbiter’s output vector must have at most one bit set to logic high.
7 Grant to occupied or full VC A grant to an occupied or full VC (based on the neighbor’s credits) is forbidden.
8 One-to-One VC assignment An input VC must not be assigned to multiple output VCs.
9 One-to-One port assignment An input port must not gain simultaneous access to multiple output ports.

10 VA agrees with RC The output VC assigned by the VA unit must be in agreement with the result of the RC stage, as
originally proposed in [19].

11 SA agrees with RC The SA result must be in agreement with the result of the RC stage, as originally proposed in
[19].

12 Intra-VA stage order If a VC wins the VA2 arbitration stage, it must have also won the VA1 stage.
13 Intra-SA stage order If a VC wins the SA2 arbitration stage, it must have also won the SA1 stage.

Crossbar (XBAR)

14 1-hot column control vector At most one connection must be active in each column of a matrix-style XBAR in each clock
cycle (to avoid flit mixing).

15 1-hot row control vector At most one connection must be active in each row of a matrix-style XBAR in each clock cycle
(to avoid unwanted multicasting).

16 # of Incoming flits equals # of Outgoing flits During each clock cycle, the number of flits exiting the XBAR must be equal to the number of
flits entering the XBAR.

Buffer State (Note: Each VC buffer maintains its own state)

17 Consistent VC buffer state The NoC router pipeline stages must be executed in the correct order.
18 Only header flits in free VC buffers A VC buffer is free when it is not allocated to an in-flight packet. During this state, only a header

flit may enter the buffers (i.e., a new packet creating a wormhole).
19 Invalid output VC value At the end of the VA stage, the computed output VC of the packet is saved in order to extend and

maintain the wormhole. The output VC value cannot be out of range [19].
20 Complete RC stage on a non-header flit Routing computation is performed only on header flits. Thus, to make a transition from the RC

to the VA stage, a header flit must be present at the head of the buffer.
21 Complete RC stage on an empty VC A transition from the RC to the VA stage is forbidden if the buffer of the respective VC is empty.
22 Complete VA stage on a non-header flit Virtual channel allocation is performed only on header flits. Thus, to make a transition from the

VA to the SA stage, a header flit must be present at the head of the buffer.
23 Complete VA stage on an empty VC A transition from the VA to the SA stage is forbidden if the buffer of the respective VC is empty.
24 Read from an empty buffer A “read” signal cannot be issued to an empty VC buffer.
25 Write to a full buffer A “write” signal cannot be issued to a full VC buffer.
26 Buffer atomicity violation (if required) If the buffers are atomic, only flits from a single packet may reside in the buffer at any given time.

Thus, a header flit cannot arrive at a non-free VC buffer.
27 Packet mixing in non-atomic buffer If the buffers are non-atomic, a tail flit may only be followed by a header flit.
28 Packet flit-count violation Typically, packets belonging to the same message class have the same length, i.e., the same num-

ber of flits. Thus, the number of a packet’s flits arriving at a VC belonging to a specific message
class must always be the same (equal to a pre-defined constant) [34].

Port-Level Invariances

29 Concurrent read from multiple VCs Only one flit may leave a single input port in each clock cycle (due to multiplexer).
30 Concurrent write to multiple VCs Only one flit may arrive at a single input port in each clock cycle (due to de-multiplexer).
31 Concurrent RC stage completion of multiple

VCs
Since only one flit can arrive at an input port in a single clock cycle, only one VC may complete
its RC stage in a single clock cycle in each input port [assuming that (a) atomic buffers are used,
and (b) all VCs in a single port use the same routing algorithm].

Network-Level Invariance

32 End-to-End delivery violation The destination address of all packets ejected from a node should equal that node’s address.

Table 1: Complete list of the invariances associated with the baseline NoC router design of Figure 1. Note that Invariance 5 (shaded in grey)
is innocuous if the fault causing it is transient/intermittent (leading only to momentary performance degradation analogous to a NOP
instruction in a microprocessor), while it may prove catastrophic if the fault causing it is permanent (packets stuck in NoC buffers).

the router’s micro-architecture identified a total of 32 invariances,

which are listed in Table 1. The invariances are categorized based

on the router module they are associated with: the Routing Computa-

tion unit, Arbiters, Crossbar, VC State, Port-Level, and End-to-End.

This list of invariances completely characterizes the operational

behavior of the router: any forbidden behavior (as dictated by the

functional rules that govern the router’s operation) will be captured

by at least one of these 32 assertion checkers.

4.1. Ensuring Network Correctness Using Invariances

As NoCs are increasingly becoming more complex, the task of ensur-

ing their functional correctness as a whole is becoming more daunt-

ing. Prior research [37, 15] has identified four main conditions that

ensure functional correctness within the network: (1) No packets

are dropped, (2) Delivery time is bounded, (3) No data corruption oc-

curs, and (4) No new packet is generated within the network. If satis-

fied, these four conditions guarantee functional correctness [37, 15].

Following this guideline, the 32 invariances of Table 1 are cate-

gorized according to the aforementioned four general requirements,

as illustrated in Figure 3. Each number in the diagram refers to the

corresponding entry of Table 1. Even though the original categoriza-

tion of [37, 15] was made at the packet level, we choose to operate

at the flit level, since the smallest unit of flow control is the flit. By



Figure 3: Using invariances to ensure functional correctness. The
32 invariances of Table 1 are categorized based on the 4
fundamental conditions that ensure functional correctness
within the NoC [37, 15].

doing this transformation, we actually make the four requirements

even stronger, because flits are sub-units of packets. For example,

if an extra flit is generated in the network and becomes part of an

existing packet, the flit-level rule will correctly identify this as an

error, whereas the packet-level rule would not capture this anomaly.

Note that operating at the flit level adds the additional requirement

that intra-packet flit ordering is maintained by the network (a typ-

ical assumption in NoCs). Upsets causing such flit ordering viola-

tions also violate some of the fundamental invariances monitored

by NoCAlert; thus, the proposed mechanism also safeguards against

intra-packet flit order changes.

Bounded delivery implies the delivery of all flits to their intended

destination within a finite amount of clock cycles. This rule speci-

fies that no deadlock or livelock should occur in the network. No flit

drop specifies that no flit should be lost during its traversal through

the network. No new flit generation specifies that no new flits should

be spontaneously generated within the NoC. Abnormal flit duplica-

tion is also included in this requirement. Finally, no data corrup-

tion/packet mixing specifies that there should be no collision of flits,

and that no flit belonging to a packet should enter the wormhole of

another packet (packet mixing). Even though the message contents

are assumed to be protected by error-detecting codes, data corrup-

tion could still occur by packet mixing, which would escape the per-

flit error-detecting codes.

Due to lack of space, only two of the 32 invariances of Table

1 will be described in detail. Specifically, two invariances will be

analyzed, which can cause several types of errors. In particular, in-

variances 13 and 17 sit at the intersection of multiple categories in

Figure 3 and may breach three out of the four functional correctness

requirements.

As described in Section 3.1, the Switch Arbitration stage is further

separated into the SA1 (local) and SA2 (global) arbitration stages.

Invariance 13 (see Table 1) specifies that if a VC wins in the SA2

arbitration, it must also have won its SA1 arbitration. If a VC wins

the SA2 stage without winning SA1, there is a possibility of being

forwarded to a full VC in the adjacent router (since credits are eval-

uated in SA1), and, therefore, it will be dropped (No flit drop viola-

tion). Additionally, since the SA2 stage drives the crossbar switch,

Figure 4: An example NoCAlert checker circuit. This checker con-
stantly monitors an arbiter module at run-time to detect
whether a grant signal has been issued at the arbiter’s out-
put without any requests at the arbiter’s inputs. Note that
the figure is not drawn to scale; the checker module is ex-
aggerated for clarity. In reality, the invariance checkers are
significantly smaller than the units they check.

a flit might be sent in a different direction than the one calculated by

the RC unit. If the flit happens to be sent to an idle VC, this may

lead to a deadlock due to “breaking up” of the packet (malfunction-

ing wormhole). Thus, a Bounded delivery rule violation will occur.

Finally, if the flit is sent to an occupied VC, the No packet mixing

rule will be breached.

Invariance 17 states that pipeline stages must be executed in the

correct order. Suppose that the VA stage is executed before the RC

stage. In this case, the flits of the packet might be forwarded to

an occupied VC in the adjacent router (No packet mixing violation).

Now suppose that the SA stage is executed before the VA stage. The

flit will be forwarded to the adjacent router without correct VC ID

information. Thus, the flit will be written to an arbitrary VC. If that

VC is full, the flit will be dropped (No flit drop violation). Finally,

suppose that the SA stage is executed before the RC stage, i.e., on

an empty VC buffer. This will cause a flit to be forwarded to an

adjacent router, but garbage information will be sent (since buffers

employ pointers to maintain FIFO order, an “empty" buffer slot is

not blank). Therefore, a new flit may be generated (No new flit gen-

eration violation).

4.2. Hardware Complexity of the NoCAlert Checkers

The NoCAlert fault detection mechanism consists of an array of dis-

tributed hardware checkers, which constantly and seamlessly mon-

itor the modules comprising the control logic of the router. Each

checker is a simple combinational circuit performing a specific

check, according to the rules of the module being monitored.

An example checker circuit is shown in Figure 4. This checker is

responsible to monitor an arbiter module and detect whether there

is an active grant signal without any requests at the arbiter’s inputs.

As can be seen from the figure, only two logic gates are needed for

each input/output of the arbiter, as well as an OR gate to combine

all individual checks. Furthermore, the checker size grows linearly

with the number of arbiter inputs, whereas the arbiter size grows in

a polynomial fashion.

Invariance checking relies mostly on value comparison, which, in

hardware terms, translates into simple combinational circuits con-

sisting of inverters, AND, OR, and XOR gates. Therefore, the No-

CAlert checkers provide a lightweight and holistic approach to run-

time fault detection, as will be demonstrated through hardware syn-

thesis results in Section 5.

4.3. Faults That Do Not Cause Invariance Violations

As previously mentioned, invariance checking only detects illegal

outputs, not necessarily incorrect ones. Faults that give rise to func-



tionally legal outputs – based on the given input – will not be de-

tected. A simple NoC example to illustrate this scenario is the RC

unit’s functionality. Suppose a packet enters a router from the East

port and is destined to the West output port. Even under determin-

istic XY routing, a misdirection to the North output port will not

constitute an invariance violation, since X-to-Y turns are allowed in

XY routing. Moreover, adaptive routing algorithms – such as Du-

ato’s Protocol [38] – inherently allow more than one routing options

to avoid congestion. It is clear that faults in the RC unit have a good

chance of still returning a valid/legal output that does not violate any

invariance.

The two elemental questions here are the following:

• If such non-invariant upsets cause some other func-

tional/invariance violation later on in the network, will the

fault be caught by one/some subsequent NoCAlert checkers?

• If these non-invariant upsets do not cause any other func-

tional/invariance violation later on in the network (i.e., they are

never caught by any NoCAlert checker), do they end up affect-

ing the overall network correctness (as defined in Section 4.1 and

[37, 15])?

An example relevant to the second question is when a packet re-

quests VC1 of a specific output port, but a fault occurrence causes

the grant of, say, VC2 of the same output port, which also happens to

be available. If both of these VCs belong to the same protocol-level

message class, then this fault does not cause an invariance violation

and it is, in fact, benign, i.e., no functional error manifests itself at

the network or system level later on.

The extensive simulations of Section 5 will answer these two im-

portant questions. It turns out (empirically) that all the non-invariant

faults that end up causing a functional error later on are, indeed, suc-

cessfully captured by subsequent NoCAlert checkers, whereas the

non-invariant faults that do not cause any other invariance violation

later on turn out to be benign, as far as overall network correctness

is concerned.

4.4. Applicability of the NoCAlert Framework to Any Router

Micro-architecture

Based on our exploration so far, it is clear that the invariance concept

is closely related to the micro-architecture under test. Changes in

the router’s micro-architecture may result in subtle (or not so subtle)

changes in the components’ invariances. However, the underlying

principles will still be the same: study each individual module and

identify invariances, while gradually moving up to coarser granular-

ities (e.g., port-level). There are many proposed router architectures

[39, 33, 40, 41], with each one involving changes to the constituent

modules, or the pipeline stages and associated flow. The inherent

modularity of all router designs (a direct consequence of the router’s

parallel nature) allows the designer to fairly easily identify the new

functional invariances.

This sub-section will briefly investigate the key changes to the

invariances of the generic router model when some key router pa-

rameters are varied. The chosen variations are typical alterations ob-

served in the literature. For example, the router design may forego

the use of VCs, it may choose to employ non-atomic FIFO buffers,

it may implement a speculative design (e.g., the VA and SA hap-

pening concurrently), and it may employ a more elaborate routing

algorithm. By exploring how these changes will affect invariance

checking, one may appreciate the flexibility and widespread applica-

bility of the NoCAlert scheme.

In the absence of virtual channels in the design, the VA pipeline

stage is eliminated. Hence, all the invariance checks pertaining to

the VA stage in Table 1 may be removed. For example, invariances

29 and 30 in the table are no longer needed.

Non-atomic buffers allow the simultaneous storage of flits belong-

ing to different packets (albeit without mixing), unlike the atomic

buffers in the baseline architecture, which only allow the flits of a

single packet to reside in the buffer at any given time. If non-atomic

buffers are used, all invariances that forbid a new packet to arrive

in an already-occupied VC buffer are discarded. At the same time,

however, a new invariance is created (invariance 27 in Table 1). The

mixing of flits from two different packets is still forbidden in non-

atomic buffers. This means that an assertion should be raised if the

flit following a tail flit is not a header flit of a new packet.

In speculative router designs [36], the VA and SA stages are exe-

cuted in parallel. In this case, the SA may, in fact, finish before the

VA stage. Thus, invariance 17 in Table 1 must be altered, so as not

to raise an assertion if SA succeeds before VA is done.

The functional definition of a routing algorithm defines its invari-

ances. Most routing algorithms have some turn restrictions in order

to prevent network deadlocks and livelocks, as well as protocol dead-

locks. Some routing algorithms also provide a specific output VC, in

addition to the output direction. In all cases, the NoCAlert checkers

are derived from these restrictions. For example, Duato’s Protocol

[38] dictates that “when making a turn from the East to the North,

a packet must enter VC0.” This statement immediately defines an

assertion checker.

5. Experimental Evaluation

5.1. Evaluation Framework

The goal of the experimental evaluation is to thoroughly assess the

efficacy and efficiency of the NoCAlert mechanism in a realistic envi-

ronment. Our evaluation approach is double-faceted and consists of

(a) extensive simulations in a cycle-accurate simulator, and (b) hard-

ware evaluation based on a full Verilog implementation of NoCAlert

and synthesis using 65 nm commercial standard-cell libraries.

For the former part, the cycle-accurate GARNET NoC simulator

[42] is employed. GARNET models the packet-switched routers

down to the micro-architectural level. The simulator was further

extended with all the checker modules listed in Table 1 (see Section

4) and the fault injection framework to be described in Section 5.2.

Since the focus of this work is the fault detection performance of

NoCAlert (and not the network/system performance), the use of syn-

thetic traffic patterns in an 8×8 mesh suffices to accurately capture

the salient characteristics of the design. Synthetic traffic patterns are

typically more effective in stressing the router design to its limits

and isolating the inherent attributes of the network itself. Hence, we

employ synthetic (uniform random) traffic at various injection rates

to ensure all router components are stressed over a range of traffic

intensities.

The NoCAlert framework is also compared to ForEVeR [15],

a recently proposed state-of-the-art fault detection and recovery

framework (see Section 2). The ForEVeR mechanism was cycle-

accurately implemented within GARNET with all three of its key

fault-detecting techniques: the secondary checker network (includ-

ing the counters and timers), the Allocation Comparator from [19],

and the end-to-end checker.

Without loss of generality, the router architecture assumed in this

evaluation is the baseline implementation described in Section 3.1.

The router is five-stage pipelined (4 intra-router stages + 1 link

traversal stage), with four 5-flit deep VCs per input port, and 128-

bit inter-router links. Atomic VC buffers, wormhole switching, and



credit-based flow control are also assumed. The routing algorithm

used is deterministic XY.

For the hardware evaluation part, we implemented the baseline

NoC router augmented with the NoCAlert mechanism (all 32 invari-

ance checker modules) in Verilog Hardware Description Language

(HDL). The resulting design was synthesized using Synopsys De-

sign Compiler and 65 nm commercial TSMC libraries at 1 V oper-

ating voltage and 1 GHz clock frequency. The results were used to

perform detailed area/power/timing analysis and evaluate the over-

head footprint of NoCAlert.

5.2. Fault Model and Fault Injection Framework

Throughout the evaluation, we assume the occurrence of single

faults in the NoC mesh. Specifically, the simulator injects single-

bit, single-event transient faults at different locations and at differ-

ent instances (network states). The above-mentioned fault model

is widely used in the literature and it was chosen as a proof-of-

concept for NoCAlert. More elaborate fault models are left for fu-

ture work. Even though we employ transient fault injections for the

purposes of our simulations, the mechanism works with permanent

failures in an identical manner. Effectively, the fault model used

evaluates fault behavior for single-event upsets and single perma-

nent faults. The difference is that the NoCAlert checkers will raise

permanent/prolonged (rather than momentary) assertions upon the

occurrence of a permanent/intermittent fault. In other words, since

the NoCAlert checkers raise an exception upon an invariance viola-

tion, NoCAlert’s performance/accuracy is orthogonal to whether the

invariance is temporary or permanent; as soon as the invariance vi-

olation commences, NoCAlert will detect it. The reasoning is that

a permanent fault, or an intermittent fault, will trigger the same

checker as a transient fault, but the checker’s flag will remain raised

for more than one cycle (indicating an intermittent, or permanent,

fault). Note that even if the erroneous value disappears after one

clock cycle, the effects of that short “malfunction” perturbation may

propagate through the network with unpredictable results.

Our fault model looks at the router micro-architecture at the

fine granularity of individual sub-components. These sub-

components comprise all the modules responsible for the router’s

control logic: individual RC units, control status tables, VC buffer

status, arbiters in both VA and SA, and the crossbar control logic.

Our only assumption is that the packet/flit contents are already pro-

tected by error-detecting codes (see Section 3.3), so the datapath of

the router is also covered. Our model has the capability of inject-

ing single-bit faults at the inputs and the outputs of each individual

module. The fault injection framework is illustrated in Figure 5. By

looking at the router micro-architecture at this fine granularity, we

are able to inject single-bit faults at 205 different locations within

a single 5-port NoC router. Taking into account corner and edge

routers (which have fewer ports), the total number of fault locations

is 11,808 in an 8×8 mesh network.

5.3. Experimental Methodology

One simulation run at a single traffic injection rate and one network

state consists of 11,808 different simulations (to exhaustively inject

faults in all possible locations of an 8×8 mesh, assuming the specific

single-fault injection model used in this work). The traffic injection

rate was varied from low to high (0.1–0.4 flits/node/cycle) in steps

of 0.05 flits/node/cycle. Moreover, three different scenarios of fault

injection instances were studied (fault injection at cycle 0, 32K, and

64K). Hence, 21 different scenarios were investigated (7 injection

rates × 3 injection times), for a total of 21× 11,808 ≈ 248K fault-

injection simulations.

Figure 5: Abstract view of the employed fault injection framework.
The evaluation framework used in this work has the capabil-
ity of injecting single-bit faults at the inputs (a), or outputs
(b), of each individual router module. The module granular-
ity is very fine, which results in 11,808 possible fault loca-
tions in an 8×8 mesh network.

The exact same experiments were also run in a fault-free envi-

ronment and detailed flit ejection logs were collected and compiled

in a so called Golden Reference (GR) report. The GR is then used

to ensure that no violations of the four network correctness rules

of Section 4.1 and [37, 15] occur. Furthermore, the GR also de-

tects any changes in the intra-packet flit order (as previously men-

tioned, such order violations constitute erroneous behavior). Since

NoCAlert only captures faults that cause invariances, the GR is used

to facilitate the investigation of the two key questions posed in Sec-

tion 4.3. Moreover, by comparing the GR with the equivalent under-

fault log report, we can study the effects of any fault occurrence on

overall network correctness. This allows us to assess the false pos-

itive (assertions that prove benign) and false negative (undetected

network correctness violations) performances of both NoCAlert and

ForEVeR [15].

5.4. Simulation Results

As discussed in Section 5.1, simulation experiments were performed

in an 8×8 2D mesh network using synthetic traffic patterns. In this

sub-section, we present the results and an evaluation of NoCAlert’s

efficacy and efficiency in terms of several key metrics. Moreover,

we conduct a quantitative comparison with the ForEVeR [15] frame-

work.

We begin our exploration with NoCAlert’s fault detection capabil-

ities. It is important at this point to differentiate the injected faults

from the actual errors manifesting themselves at the network-level

(as defined in Section 4.1 and [37, 15]). NoCAlert’s ultimate goal

is to ensure that no actual error at the network-level escapes detec-

tion. Therefore, injected faults that do NOT cause a real functional

error within the network are viewed as benign. Based on this crucial

differentiation, we classify each of NoCAlert’s detection outcomes

into one of four main categories:

• True Positive: Event detected by NoCAlert when the injected

fault causes an actual error at the network-level (network correct-

ness violation).

• False Positive: Event detected by NoCAlert when the injected

fault turns out to be benign.

• True Negative: Nothing detected by NoCAlert when the injected

fault turns out to be benign.

• False Negative: Nothing detected by NoCAlert when the injected

fault causes an actual error at the network-level (network correct-

ness violation).

In order to identify which injected faults turned out to be mali-

cious (i.e., they caused a network correctness violation), we used

the Golden Reference (GR) log report described in Section 5.3.

Obviously, the most important metric when evaluating the perfor-

mance of a detection mechanism is the occurrence of False Nega-

tives, i.e., actual faults that evade the detection process.



Figure 6: Fault coverage breakdown (over all injected faults) using
synthetic (uniform random) traffic in an 8×8 mesh at two
different fault injection instances (cycle 0 and cycle 32K).
The “NoCAlert Cautious” bars refer to a system where In-
variances 1 and 3 of Table 1 are considered low risk (see
text for details).

Observation 1: Out of all the simulations we ran, NoCAlert reg-

istered zero false negatives. In other words, all faults that violated

network correctness were successfully captured by NoCAlert. The

same was true for ForEVeR [15]. Thus, both mechanisms exhibit the

same fault detection accuracy.

Figure 6 presents a breakdown of the fault detection performance

of both NoCAlert and ForEVeR at two different fault injection in-

stances: cycle 0 and cycle 32K (the results for fault injection at cy-

cles 32K and 64K are very similar; thus, only the 32K results are

shown here for brevity). The results for cycle 0 are representative

of an empty network, while the results for cycle 32K are represen-

tative of networks at steady-state (warmed up). Note that the true

positive percentages are identical for NoCAlert and ForEVeR, since

both mechanisms detected all network correctness violations (all of

the injected faults that actually violated the network correctness).

The notable difference is in the False Positives, where NoCAlert is

slightly worse in both cases. This result is attributed to the real-time

nature of NoCAlert, which raises assertions instantaneously. Instead,

ForEVeR is epoch-based, which means that some benign faults sim-

ply “vanish” by the time the epoch expires. In general, the false

positive percentages are higher for cycle 32K – as compared to cy-

cle 0 – because violations are more likely to be masked by other

traffic in a warmed up network. For example, in an empty network,

an erroneous switch allocation request would propagate to the output

uncontested (since there are no other packets competing for crossbar

access). However, in a more congested environment, the erroneous

request may lose the arbitration to another packet.

The false positive percentages may be markedly reduced if the

recovery mechanism’s reaction is guided by the checkers’ risk lev-

els. In other words, the NoCAlert checkers may be classified into

different categories, based on their risk levels. Low-risk checkers

would trigger a delayed/deferred response, in order to account for

the high probability of a false positive. For instance, we made a very

interesting observation regarding NoCAlert. In our conducted set of

experiments, invariances 1 and 3 of Table 1 never led to network-

level incorrectness when asserted alone, even though they might the-

oretically have led to a deadlock. These invariances are violated if

the RC unit misdirects a header flit (possibly in a direction further

away from the packet’s destination). We noticed that many benign

faults registered as false positives by NoCAlert were caused by those

two invariances. In all those cases, the invariances were asserted by

Figure 7: Cumulative fault-detection delay distribution for the true
positive faults (The epoch duration in ForEVeR was set to
1,500 cycles; see text for details).

themselves (no other assertion was raised). Hence:

Observation 2: If the fault recovery mechanism connected to No-

CAlert sees either Invariance 1 or Invariance 3 (Table 1) violated,

without any other assertions raised, it could move into a “cautious”

state, whereby the fault recovery mechanism is not triggered until

there is further evidence later on that a deadlock actually occurred. If

this strategy is followed, then NoCAlert’s False Positive rates would

drop to 22.01% and 36.62% for cycles 0 and 32K, respectively, as

indicated by the “NoCAlert Cautious” bars in Figure 6.

Invariance 5 in Table 1 exhibits noteworthy behavior. Said invari-

ance is violated whenever an arbiter produces an all-zero grant vec-

tor (i.e., no arbitration winner is declared), even though there was at

least one active client request. If the fault is transient or intermittent,

this fault would only result in brief performance degradation, similar

to a NOP instruction in a microprocessor’s pipeline. However, if the

fault is permanent (i.e., the checker remains permanently asserted),

the consequences could be quite dramatic. The fault may lead to

network/protocol deadlocks.

Observation 3: Invariance 5 in Table 1 exhibits the unique char-

acteristic of being benign (in terms of network correctness) under

transient/intermittent faults, but malicious under permanent faults.

The real strength of NoCAlert is its fault detection latency. Figure

7 shows the cumulative fault detection delay distribution for both No-

CAlert and ForEVeR. In this figure, only faults that resulted in true

positives were evaluated. Notice that 97% of all faults are captured

instantaneously (in the same cycle) by NoCAlert, 99% are captured

within 9 clock cycles, and 100% are captured after 28 cycles. For-

EVeR’s epoch-based scheme takes significantly longer, with 99%

of faults being captured after 3,000 cycles and 100% captured after

11,995 cycles. The epoch duration in ForEVeR was set to 1,500 cy-

cles, which was the shortest period that did not yield excessive false

positives under the fault model employed in this work. These results

demonstrate that:

Observation 4: NoCAlert provides near-instantaneous fault de-

tection with a staggering 97% of all true positive faults captured at

the instance of injection (same cycle). The worst-case detection la-

tency is only 28 cycles after fault injection. Moreover, NoCAlert

achieves several orders of magnitude lower fault detection latency

than ForEVeR [15].

In order to answer the critical questions posed in Section 4.3, we

need to examine all injected faults that did not result in an invariance

violation at the instance of fault injection. It turns out that 78% of

those faults did not cause a subsequent invariance violation, and all

of them turned out to be benign (no network correctness violation).

The remaining 22% caused a subsequent invariance violation and



Figure 8: Percentage of invariance violations captured by each indi-
vidual NoCAlert checker of Table 1 (over all experiments).
The bottom part of the figure has a finer y-axis scale and
focuses on the very low y-axis values of the top part. In-
variance 27 is missing, because it is only applicable to non-
atomic VC buffers.

Figure 9: Cumulative distribution of invariance violations as a func-
tion of the number of simultaneously asserted checkers.

were successfully captured by NoCAlert.

Observation 5: Injected faults that do not cause any invariance

violation in the network are always benign (i.e., they never cause any

network correctness violation).

Figures 8 and 9 evaluate the behavior of the 32 invariance check-

ers. Specifically, Figure 8 shows the percentage of invariance viola-

tions caught by each individual checker over all experiments. Note

that Invariance 27 is missing, because it refers to non-atomic buffers

(we used atomic VC buffers in our simulations, as stated in Section

5.1). It should also be noted that all checkers detected invariances in

the absence of any other checker assertions. This fact indicates that

no single checker is redundant. Finally, Figure 9 shows the cumula-

tive distribution of invariance violations as a function of the number

of simultaneously asserted checkers. Most invariances were caught

by two checkers, while the maximum number of checkers triggered

due to a single invariance violation was 9.

5.5. Hardware Evaluation – Area/Power/Timing Overhead

As described in Section 5.1, a baseline NoC router augmented

with the complete NoCAlert mechanism was implemented in Ver-

ilog HDL and synthesized using 65 nm commercial standard-cell

libraries.

In order to assess the scalability of NoCAlert, we vary the num-

ber of VCs per port from two [41] to eight [39] and evaluate the

NoCAlert percentage area and power overhead. The number of VCs

per port is dictated by the employed routing algorithm (e.g., deter-

ministic vs. adaptive) and/or the cache-coherence protocol (number

of message classes). The area results are shown in Figure 10. To

better appreciate the size of NoCAlert, we also implemented a de-

sign with Double Modular Redundancy (DMR) in the entire NoC

control logic (designated as “DMR-CL” in the figure). DMR serves

Figure 10: The NoCAlert area overhead as a function of the number
of VCs per input port. A comparison with double modu-
lar redundancy in the control logic (“DMR-CL”) is also pre-
sented.

as the most complete fault detection solution possible, albeit a very

expensive one. Clearly, the NoCAlert area overhead is minimal and

ranges from 1.38% to 4.42% (3%, on average) and the percentage

overhead remains fairly constant as the number of VCs increase. On

the other hand, the percentage area overhead of DMR increases lin-

early from 5.41% in the case of two VCs, up to 31.32% in the case

of eight VCs per port.

The power results exhibit the same trends and are, thus, omitted

for brevity. The absolute numbers, however, are much smaller for

NoCAlert, since the checkers comprise purely combinational logic

and have no power-hungry storage elements. Hence, the percentage

power overhead ranges from 0.3% to 1.2% (0.7%, on average), i.e., it

is negligible. The power numbers were extracted from the Synopsys

Design Compiler power report, with switching activity set to 50%

for all nets.

The final key design metric evaluated was the critical path delay,

which sets the maximum possible operating frequency. Our synthe-

sis results indicate minimal impact on the critical path of at most 3%

and, on average, around 1%. This means that the proposed NoCAlert

mechanism is, essentially, transparent to overall network operation.

These results corroborate the fact that NoC control logic checkers

used to detect only illegal outputs have significantly lower hardware

cost than the units they check.

6. Conclusions

This paper proposes NoCAlert, a comprehensive on-line and real-

time fault detection mechanism that ensures 0% false negatives

within the NoC, under the employed fault model. NoCAlert is

based on the concept of invariance checking, whereby the outputs

of the control logic modules of the on-chip network are constantly

checked for illegal outputs, based on current inputs. By combining a

collection of such micro-checker modules dispersed throughout the

router’s control logic modules, the proposed mechanism implements

real-time hardware assertions. The checkers operate seamlessly and

concurrently with normal NoC operation, thus obviating the need for

periodic (epoch-based), or triggered-based, self-testing.

Extensive simulation results validate the efficacy of the NoCAlert

mechanism and yield important insight as to the behavior of the

network when non-invariant faults (that evade the checkers) occur.

Specifically, non-invariant faults either cause some subsequent in-

variance violation (and are captured), or they prove benign at the net-

work/system level. Hardware synthesis analysis using 65 nm com-

mercial libraries demonstrates the extremely lightweight nature of

NoCAlert in terms of area/power/timing overhead. Furthermore, a

detailed comparison with a recently proposed framework [15] high-



lights higher than 100× improvements in detection latency, with no

loss in detection accuracy and with much lower overall complexity.

In summary, this work demonstrates the potential for extremely

accurate and near-instantaneous fault detection within the NoC using

minimally intrusive hardware-based invariance checkers.
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