
GeST an Automatic Framework
for Generating CPU Stress-Tests

Zacharias Hadjilambrou (University of Cyprus), Shidhartha Das, Paul
Whatmough, David Bull (ARM), Yiannakis Sazeides (University of Cyprus)

ISPASS-2019
Madison, March 24-26, 2019

Motivation

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 2

Power viruses

Check TDP, IR drop within
specifications

dI/dt voltage-noise viruses

Determine chip’s operational voltage
frequency points

Is tedious and time-consuming to manually craft such stress-tests (viruses)
Need for an automatic framework!

Performance Stress-tests

Performance comparison, max
sustainable throughput exploration

This work

• Proposes GeST (Generating Stress Tests): A Genetic Algorithm (GA) based framework for
automatically generating stress-tests

• Written in Python3, inputs defined in XML

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 3

GeST overview

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 4

ADD
SUB
MUL
DIV
…
r0
r1
r2
…

Rest of the Presentation

• Genetic Algorithms

• GeST

• Case-study on Ampere X-Gene2 ARM 64bit Server CPU

• GeST vs Related Work

• Conclusion

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 5

Why GA

• GA is well suited to a wide range of problems…
• Well-suited to non-linear optimisations

• Can handle large search space (e.g. Travelling salesman problem)

• Can overcome local optima (c.f. linear optimisations)

• However…
• Can not guarantee optimal solution

• Can be time expensive (depends on measurement time)

• Overall for our purposes GA offers a good trade-off between time and quality of solution

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 6

GA Flow

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 7

Seed Population

A collection of instruction
sequences (individuals)

Population size = 50 individuals
Individual size = 15-50 instructions

GA Flow

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 8

Seed Population Measure
population

GA Flow

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 9

Seed Population Measure
population

Parent
Selection

GA Flow

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 10

Seed Population Measure
population

Parent
Selection Parent Crossover

STR r8, [r11,#4]
Crossover point

Parent1
ADD r0,r1,r2
MUL r3,r4,r5
SUB r3,r1,r2

LDR r8, [r11,#4

Child1
ADD r0,r1,r2
MUL r3,r4,r5
MLA r3,r4,
SUB r3,r1,r2

Child2
ASR r0,r1,#31
STR r8, [r11,#4]
SUB r3,r1,r2
LDR r8, [r11,#4]

Parent2

MLA r3,r4,r5
SUB r3,r1,r2

ASR r0,r1,#31

GA Flow

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 11

Seed Population Measure
population

Parent
Selection Parent Crossover Mutation

Child1
ADD r0,r1,
MUL r3,r4,r5
MLA r3,r4,
SUB r3,r1,r2

r3r2

GA Flow

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 12

Seed Population Measure
population

Parent
Selection Parent Crossover Mutation

Child1
ADD r0,r1,
MUL r3,r4,r5
MLA r3,r4,
SUB r3,r1,r2

r3
Child2
ASR r0,r1,#31
STR r8, [r11,#4]
SUB r3,r1,r2
LDR r8, [r11,#4]LSL r3,r1,#31

Mutation rate: 2-8%

GA Flow

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 13

Seed Population Measure
population

Parent
Selection Parent Crossover Mutation

GeST Framework Overview

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 14

Genetic
Algorithm

Engine

Configuration
File

Template
source code

Input

GA populations
in binary
format,

Individual source
codes in ASCII

Output

Measurement
Script

Measurement

Inheritance

BaseMeasurement.py

Individual
(source code)

Fitness evaluation

Fitness
Function

Inheritance

BaseFitness.py

Measurement results

Fitness
value

Instructions, registers, parameters, etc.

Instruction definition Interface & Code Generation

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 15

32*5 = 160 possible instruction forms mov 16 (%rsp), %rbx

32 possible values

5 possible values

Total Search Space vs Search Space Covered

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 16

20 instructions
160 possible forms each
50 instructions per individual
Total Search Space = 320050 individuals

100 generations
50 individuals per generation
Search Space covered = 5000 individuals

Still GeST achieves good results!

Paper Case studies

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 17

CPU
of

Cores
Board Environment

Stress-test
developed

Measurement Instrument

ARM Cortex-A15 2 CoreTile Versatile Express Bare Metal power-virus ARM energy probe

ARM Cortex-A7 3 CoreTile Versatile Express Bare Metal power-virus ARM energy probe

Ampere X-Gene 2 8 Validation Board Centos 7.2
thermal-virus and IPC

virus
i2c temperature sensor readings, performance

counters

AMD Athlon II X4
645

4 Asus M5A78L LE Windows 8.1 dI/dt virus
External Oscilloscope hooked on voltage-sense

points

Instructions used

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 18

Instruction Type Instruction

Short Latency Integer
ADD, ADD_LSLS, ADDS, LSL,

ASR, ROR, SUB, MOV

Long Latency Integer MUL

Memory STP, STR, LDP, LDR

Branch B

Float/SIMD

FMOV, FMUL, FADD, SCVTF,

FCVTAS,FMADD,

FSQRT,FABS, FDIV

GA parameters used

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 19

Parameter Value

Population size 50

Individual Size (number of

loop instructions)
50

Mutation rate 0.02

Crossover operator one point crossover

Elitism (Best individual

promoted to next generation)
TRUE

Parent selection method Tournament Selection

Tournament size 5

1

1.05

1.1

1.15

1.2

1.25

1.3

0 10 20 30 40 50 60 70 80 90 100

N
o

rm
al

iz
e

d
 C

h
ip

 T
e

m
p

e
ra

tu
re

Generation

GeST temperature optimization

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 20

• Run for 87 generations (populations)

• 5 seconds measurement per individual

• Exec Time = 5 * 50 * 87 = 6 hours

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

N
o

rm
al

iz
e

d
 C

h
ip

 T
e

m
p

e
ra

tu
re

workload

Thermal virus vs conventional workloads

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 21

Thermal virus vs conventional workloads

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 22

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

N
o

rm
al

iz
e

d
 C

h
ip

 T
e

m
p

e
ra

tu
re

workload

Thermal vs IPC virus

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 23

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Relative IPC Relative Chip Temp Relative Plug Power (W)

R
el

at
iv

e
IP

C
/T

em
p

er
at

u
re

/P
o

w
er

thermalVirus IPCvirus

12%

12%

6%

Thermal vs IPC virus instruction breakdown

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 24

44%

10%

18%

24%

4%

thermalVirus

ShortInt LongInt Float/SIMD Mem Branch

52%

0%

30%

12%

6%

IPCvirus

ShortInt LongInt Float/SIMD Mem Branch

GeST in Numbers

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 25

1. Whatmough, Paul N., Shidhartha Das, Z. Hadjilambrou, and David M. Bull. "Power integrity analysis of a 28 nm dual-core arm cortex-a57 cluster using an all-digital power delivery monitor.“ JSCC 2017

2. Hadjilambrou, Zacharias, Shidhartha Das, Marco A. Antoniades, and Yiannakis Sazeides. "Leveraging CPU Electromagnetic Emanations for Voltage Noise Characterization." MICRO 2018

3. Hadjilambrou, Z., Das, S., Antoniades, M. A., & Sazeides, Y. (2018). Sensing CPU voltage noise through Electromagnetic Emanations. IEEE Computer Architecture Letters, 17(1), 68-71.

4. Tovletoglou K, et al.. Measuring and Exploiting Guardbands of Server-Grade ARMv8 CPU Cores and DRAMs. DSN 2018

Platform CPU OS ISA Measurement Power Virus
dI/dt
virus

IPCvirus Reference

VersatileExpress Cortex-A15 BareMetal ARM
energy probe,
oscilloscope

1 1

VersatileExpress Cortex-A7 BareMetal ARM energy probe 1

JunoR0 Cortex-A57 Debian ARM on-chip oscilloscope 1 [1]

JunoR2 Cortex-A72 Debian ARM on-chip oscilloscope 1 1 [2],[3]

JunoR2 Cortex-A53 Debian ARM spectrum analyzer 1 [2],[3]

Asus M5A78L LE Athlon II X4 645 Win8.1 x86 external oscilloscope 1 [2]

Socket LGA1155 Intel i5-2400 Ubuntu x86
likwid software power

meter
1 1

Validation Board X-Gene2 Centos 7.2 ARM
i2c sensors, performance

counters
1 1 1 [4]

Validation Board X-Gene3 Centos 7.2 ARM
i2c sensors, performance

counters
1 1 1

SUM 7 platforms 9 CPUs 5 OS 2 ISAs 8 instruments
6 power

virus
7 dI/dt
viruses

3 IPC
virus

4 papers

GeST vs Related work

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 26

Work
Compatible with any

ISA or high level
language

Extensible
Multi-objective
fitness function

ISA
Metric

Maximized
Publicly

available

AUDIT [MICRO2012] - - - x86 voltage-noise No

MAMPO [HPCA 2011] - - - x86 power No

Joshi et al [HPCA 2008] - - - Alpha power No

Powermark [MICRO 2011] - - - x86 power No

GeST [ISPASS 2019] Yes Yes
Yes (power and

instruction stream
simplicity)

ARM, x86
power,

voltage-noise,
IPC

Yes

Conclusions

• GeST platform independent automatic stress-test generation framework

• Key strengths flexibility and extensibility – provides easy interface to the
experimenter to build upon

• This work shows measurements on real-hardware but framework can be used as
well for pre-silicon stress-test generation in conjunction with simulators/models

• GeST will be publicly available on https://github.com/toolsForUarch/GeST and it’s free :)

• For future work augment GeST with more features e.g. adaptive mutation

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 27

https://github.com/toolsForUarch/GeST

THE END

Thank you for listening!

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 28

Backup

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 29

Structure

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 30

Conclusions - Main Features Overview
• Written in Python3, inputs defined in XML format

• Allows setting GA parameters such as crossover, mutation rate, population
size etc.

• Allows specifying which instructions, registers, memory ranges and even
atomic code sequences are available to the optimization engine

• Use dynamic class loading (class injection) to allow user to add in a plug-and-
play fashion (by changing the input file) custom measurement procedures
and fitness functions

• Virtually compatible with any optimization (power, voltage-noise etc) and
multi-objective fitness functions

• Optionally force dependencies between instructions

• Optionally force specific instruction mix

• Stop a run and continue it later

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 31

GA optimization

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 32

40

50

60

70

80

90

100

0 50 100 150 200 250

P
KG

 p
o

w
er

 (
W

)

GA generation

Best source code per generation is shown
Best of random population (1st) generates 53W
Latest populations generate 89-90W
Whole optimization process took ~16hours

Peak Power Measurements

0

10

20

30

40

50

60

70

80

90

100

idle prime95 (small
test)

prime95 (large test) GAvirus TDP (with iGPU?)

Pe
ak

 P
KG

 p
o

w
er

 (
W

)

Average power measurements (including
some parsec)

0

10

20

30

40

50

60

70

80

90

100

P
KG

 a
ve

ra
ge

 p
o

w
er

 (
W

)

Peak Temperature Measurements

30

40

50

60

70

80

90

100

idle prime95 (small test) prime95 (large test) GAvirus

M
ax

 P
kg

 t
em

p
er

at
u

re
 (

C
)

Power over time (GAvirus and Prime95)

50

55

60

65

70

75

80

85

90

95

0 50 100 150 200 250 300 350

P
KG

 P
o

w
er

 (
W

)

Seconds

GAvirus_power prime95 (smalltest)_power prime95 (largetest)_power

Temperature over time (GAvirus and Prime95)

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350

P
KG

 T
em

p
er

at
u

re
 ©

Seconds

GAvirus_CPUtemp prime95 (smalltest)_CPUtemp prime95 (largetest)_CPUtemp idle_temp0

GA virus characteristics

• Loop of 50 instructions

• Doesn’t touch L2

• 60% of instructions are avx2

• 34% instructions are integer instructions with memory accesses

• 6% register only short latency integer instructions

• Long latency register-only instructions such as MUL and old floating-
point instructions such as faddp were included in the optimization
mix. But these instructions are not found in the GA virus. Probably GA
figured out that these instructions do not help in raising the power
consumption

• Virus IPC is 3.58
• mprime (small) has 2.21, mprime (large) has 1.54 initially and ~after 5 minutes 2.14

6.00%

34.00%

60.00%

Instruction Type Breakdown

shortLat intMem avx2

GA virus source code and instruction
breakdown

• Essentially the virus code is a sequence of various
avx2 instructions, and some ads, moves, and one
shift!

• Half of the user defined instructions are missing
from the virus

• GA ended up using only 12 out of 24 user defined
instructions

• VPSHUF that stresses the shuffling unit is not
preferred by the GA

• Integer vector instructions are also not preferred by
the GA

• As expected, long latency int instructions such as
mul are also discarded by GA

• Fmulp and Faddp are also discarded

Instruction name Count

MUL 0

SAR 1

ROR 0

VSUBPD 3

MOV_2ndMem 2

VMULPD 14

VPADDW 0

MOV 0

ADD_2ndMem 4

MUL_1stMem 0

VXORPD 2

MOV_1stMem 10

ADD 0

VPSHUFB 0

VPMULUDQ 0

FMUL 0

ADD_IM 1

CMP 0

MUL_IM 0

ADD_1stMem 1

SHL 1

VADDPD 6

VMAXPD 5

FADD 0

