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Motivation
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Power viruses

Check TDP, IR drop within 
specifications

dI/dt voltage-noise viruses

Determine chip’s operational voltage 
frequency points

Is tedious and time-consuming to manually craft such stress-tests (viruses)
Need for an automatic framework!

Performance Stress-tests

Performance comparison, max 
sustainable throughput exploration



This work

• Proposes GeST (Generating Stress Tests): A Genetic Algorithm (GA) based framework for 
automatically generating stress-tests

• Written in Python3, inputs defined in XML
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GeST overview
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ADD
SUB
MUL
DIV
…
r0
r1
r2
…



Rest of the Presentation

• Genetic Algorithms

• GeST

• Case-study on Ampere X-Gene2 ARM 64bit Server CPU

• GeST vs Related Work

• Conclusion
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Why GA

• GA is well suited to a wide range of problems…
• Well-suited to non-linear optimisations

• Can handle large search space (e.g. Travelling salesman problem)

• Can overcome local optima (c.f. linear optimisations)

• However…
• Can not guarantee optimal solution

• Can be time expensive (depends on measurement time)

• Overall for our purposes GA offers a good trade-off between time and quality of solution
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GA Flow
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Seed Population

A collection of instruction 
sequences (individuals)

Population size = 50 individuals
Individual size = 15-50 instructions



GA Flow
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Seed Population Measure 
population 



GA Flow
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Seed Population Measure 
population 

Parent 
Selection



GA Flow
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Seed Population Measure 
population 

Parent 
Selection Parent Crossover

STR r8, [r11,#4]
Crossover point

Parent1
ADD r0,r1,r2
MUL r3,r4,r5
SUB r3,r1,r2

LDR r8, [r11,#4

Child1
ADD r0,r1,r2
MUL r3,r4,r5
MLA r3,r4,
SUB r3,r1,r2

Child2
ASR r0,r1,#31
STR r8, [r11,#4]
SUB r3,r1,r2
LDR r8, [r11,#4]

Parent2

MLA r3,r4,r5
SUB r3,r1,r2

ASR r0,r1,#31



GA Flow
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Seed Population Measure 
population 

Parent 
Selection Parent Crossover Mutation

Child1
ADD r0,r1,
MUL r3,r4,r5
MLA r3,r4,
SUB r3,r1,r2

r3r2



GA Flow
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Seed Population Measure 
population 

Parent 
Selection Parent Crossover Mutation

Child1
ADD r0,r1,
MUL r3,r4,r5
MLA r3,r4,
SUB r3,r1,r2

r3
Child2
ASR r0,r1,#31
STR r8, [r11,#4]
SUB r3,r1,r2
LDR r8, [r11,#4]LSL r3,r1,#31

Mutation rate: 2-8%



GA Flow
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Seed Population Measure 
population 

Parent 
Selection Parent Crossover Mutation



GeST Framework Overview
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Genetic 
Algorithm 

Engine

Configuration 
File

Template 
source code

Input

GA populations 
in binary  
format,

Individual source 
codes in  ASCII

Output

Measurement 
Script

Measurement

Inheritance

BaseMeasurement.py

Individual 
(source code)

Fitness evaluation

Fitness 
Function

Inheritance

BaseFitness.py

Measurement results

Fitness 
value

Instructions, registers, parameters, etc.



Instruction definition Interface & Code Generation
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32*5 = 160 possible instruction forms mov 16 (%rsp), %rbx

32 possible values

5 possible values



Total Search Space vs Search Space Covered
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20 instructions
160 possible forms each
50 instructions per individual
Total Search Space = 320050 individuals

100 generations
50 individuals per generation
Search Space covered = 5000 individuals

Still GeST achieves good results!



Paper Case studies
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CPU
# of 

Cores
Board Environment

Stress-test
developed

Measurement Instrument

ARM Cortex-A15 2 CoreTile Versatile Express Bare Metal power-virus ARM energy probe

ARM Cortex-A7 3 CoreTile  Versatile Express Bare Metal power-virus ARM energy probe

Ampere X-Gene 2 8 Validation Board Centos 7.2
thermal-virus and IPC 

virus
i2c temperature sensor readings, performance 

counters

AMD Athlon II  X4 
645

4 Asus M5A78L LE Windows 8.1 dI/dt virus
External Oscilloscope hooked on voltage-sense 

points



Instructions used
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Instruction Type Instruction

Short Latency Integer
ADD, ADD_LSLS, ADDS, LSL, 

ASR, ROR, SUB, MOV

Long Latency Integer MUL

Memory STP, STR, LDP, LDR

Branch B

Float/SIMD

FMOV, FMUL, FADD, SCVTF, 

FCVTAS,FMADD, 

FSQRT,FABS, FDIV



GA parameters used
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Parameter Value

Population size 50

Individual Size (number of 

loop instructions)
50

Mutation rate 0.02

Crossover operator one point crossover

Elitism (Best individual 

promoted to next generation)
TRUE

Parent selection method Tournament Selection

Tournament size 5



1

1.05

1.1

1.15

1.2

1.25

1.3

0 10 20 30 40 50 60 70 80 90 100

N
o

rm
al

iz
e

d
 C

h
ip

 T
e

m
p

e
ra

tu
re

Generation

GeST temperature optimization 

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 20

• Run for 87 generations (populations)

• 5 seconds measurement per individual

• Exec Time =  5 * 50 * 87 =  6 hours



0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

N
o

rm
al

iz
e

d
 C

h
ip

 T
e

m
p

e
ra

tu
re

workload

Thermal virus vs conventional workloads

Z. Hadjilambrou, GeST an Automatic Framework for Generating CPU Stress-Tests, ISPASS 2019 21



Thermal virus vs conventional workloads
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Thermal vs IPC virus
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Thermal vs IPC virus instruction breakdown
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44%

10%

18%

24%

4%

thermalVirus

ShortInt LongInt Float/SIMD Mem Branch

52%

0%

30%

12%

6%

IPCvirus

ShortInt LongInt Float/SIMD Mem Branch



GeST in Numbers
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Platform CPU OS ISA Measurement Power Virus
dI/dt 
virus

IPCvirus Reference

VersatileExpress Cortex-A15 BareMetal ARM
energy probe, 
oscilloscope

1 1

VersatileExpress Cortex-A7 BareMetal ARM energy probe 1

JunoR0 Cortex-A57 Debian ARM on-chip oscilloscope 1 [1]

JunoR2 Cortex-A72 Debian ARM on-chip oscilloscope 1 1 [2],[3]

JunoR2 Cortex-A53 Debian ARM spectrum analyzer 1 [2],[3]

Asus M5A78L LE Athlon II X4 645 Win8.1 x86 external oscilloscope 1 [2]

Socket LGA1155 Intel i5-2400 Ubuntu x86
likwid software power 

meter
1 1

Validation Board X-Gene2 Centos 7.2 ARM
i2c sensors, performance 

counters
1 1 1 [4]

Validation Board X-Gene3 Centos 7.2 ARM
i2c sensors, performance 

counters
1 1 1

SUM 7 platforms 9 CPUs 5 OS 2 ISAs 8 instruments
6 power 

virus
7 dI/dt 
viruses

3 IPC 
virus

4 papers



GeST vs Related work
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Work
Compatible with any 

ISA or high level 
language

Extensible
Multi-objective 
fitness function

ISA
Metric 

Maximized
Publicly 

available

AUDIT [MICRO2012] - - - x86 voltage-noise No

MAMPO [HPCA 2011] - - - x86 power No

Joshi et al [HPCA 2008] - - - Alpha power No

Powermark [MICRO 2011] - - - x86 power No

GeST [ISPASS 2019] Yes Yes
Yes (power and 

instruction stream 
simplicity)

ARM, x86
power, 

voltage-noise, 
IPC

Yes



Conclusions

• GeST platform independent automatic stress-test generation framework

• Key strengths flexibility and extensibility – provides easy interface to the 
experimenter to build upon

• This work shows measurements on real-hardware but framework can be used as 
well for pre-silicon stress-test generation in conjunction with simulators/models

• GeST will be publicly  available on https://github.com/toolsForUarch/GeST and it’s free :)

• For future work augment GeST with more features e.g. adaptive mutation
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https://github.com/toolsForUarch/GeST


THE END

Thank you for listening!
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Backup
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Structure
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Conclusions - Main Features Overview
• Written in Python3, inputs defined in XML format

• Allows setting GA parameters such as crossover, mutation rate, population 
size etc.

• Allows specifying which instructions, registers, memory ranges and even 
atomic code sequences are available to the optimization engine

• Use dynamic class loading (class injection) to allow user to add in a plug-and-
play fashion (by changing the input file) custom measurement procedures 
and fitness functions 

• Virtually compatible with any optimization (power, voltage-noise etc) and 
multi-objective fitness functions

• Optionally force dependencies between instructions

• Optionally force specific instruction mix

• Stop a run and continue it later
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GA optimization 
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Peak Power Measurements
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Average power measurements (including 
some parsec)
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Peak Temperature Measurements
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Power over time (GAvirus and Prime95)

50

55

60

65

70

75

80

85

90

95

0 50 100 150 200 250 300 350

P
KG

 P
o

w
er

 (
W

)

Seconds

GAvirus_power prime95 (smalltest)_power prime95 (largetest)_power



Temperature over time (GAvirus and Prime95)
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GA virus characteristics

• Loop of 50 instructions

• Doesn’t touch L2

• 60% of instructions are avx2

• 34% instructions are integer instructions with memory accesses

• 6% register only short latency integer instructions

• Long latency register-only instructions such as MUL and old floating-
point instructions such as faddp were included in the optimization 
mix. But these instructions are not found in the GA virus. Probably GA 
figured out that these instructions do not help in raising the power 
consumption

• Virus IPC is 3.58
• mprime (small) has 2.21, mprime (large) has 1.54 initially and ~after 5 minutes 2.14

6.00%

34.00%

60.00%

Instruction Type Breakdown

shortLat intMem avx2



GA virus source code and instruction 
breakdown

• Essentially the virus code is a sequence of various 
avx2 instructions, and some ads, moves, and one 
shift!

• Half of the user defined instructions are missing 
from the virus 

• GA ended up using only 12 out of 24 user defined 
instructions

• VPSHUF that stresses the shuffling unit is not 
preferred by the GA

• Integer vector instructions are also not preferred by 
the GA

• As expected, long latency int instructions such as 
mul are also discarded by GA

• Fmulp and Faddp are also discarded

Instruction name Count

MUL 0

SAR 1

ROR 0

VSUBPD 3

MOV_2ndMem 2

VMULPD 14

VPADDW 0

MOV 0

ADD_2ndMem 4

MUL_1stMem 0

VXORPD 2

MOV_1stMem 10

ADD 0

VPSHUFB 0

VPMULUDQ 0

FMUL 0

ADD_IM 1

CMP 0

MUL_IM 0

ADD_1stMem 1

SHL 1

VADDPD 6

VMAXPD 5

FADD 0


