
Reliably Executing Tasks in the Presence
of Malicious Processors

Antonio Fernández1, Chryssis Georgiou2, Luis López1, and Agustı́n Santos1

1 LADyR, GSyC, Universidad Rey Juan Carlos, Móstoles, Spain
2 Dept. of Computer Science, University of Cyprus, CY-1678 Nicosia, Cyprus

Problem and Motivation. The demand for processing large amounts of data has in-
creased over the last decade. As traditional one-processor machines have limited com-
putational power, distributed systems consisting of multitude of cooperating processing
units are used instead. An example of such a massive distributed cooperative compu-
tation is the SETI@Home project [5]. As the search for extraterrestrial intelligence
involves the analysis of gigabytes of raw data that a fixed-size collection of machines
would not be able to effectively carry out, the data are distributed to millions of volun-
tary machines around the world. A machine acts as a server and sends data (aka tasks)
to these client computers, which they process and report back the result of the task
computation. This gives rise to a crucial problem: how can we prevent malicious clients
from damaging the outcome of the overall computation?

In this work we abstract this problem in the form of a distributed system consisting
of a master fail-free processor and a collection of processors (workers) that can execute
tasks; worker processors might act maliciously. Since each task returns a value, we want
the master to accept only correct values with high probability. Furthermore, we assume
that the service provided by the workers is not free (as opposed to the SETI@Home
project). For each task that a worker executes, the master computer is charged with a
work-unit. Therefore, considering a single task assigned to several workers, our goal is
to have the master computer to accept the correct value of the task with high probabil-
ity, with the smallest possible amount of work. We explore two ways of bounding the
number of faulty processors and evaluate an algorithm that the master can run. Our pre-
liminary analytical results show that it is possible to obtain high probability of correct
acceptance with reasonable amount of work.

Prior/Related work. The problem we consider in this work can be viewed as a special
case of the voting problem [1] where a deciding agent decides on a value based on
values generated and sent by processing nodes; the goal is for the agent to reach the
correct decision with high probability. The voting problem has been considered in the
presence of malicious voters (e.g., [6]), and optimal strategies have been identified that
maximize the probability of correct decision. However, to the best of our knowledge, no
prior work involving malicious voters consider minimizing the amount of work while
restricting the probability of incorrect decisions of the voting procedure.

Do-All is the abstract problem of having a collection of processors to cooperatively
perform a collection of independent tasks in the presence of failures [2]. This problem
has been widely studied the last two decades in a variety of computation and failure
models. Recently, this problem was studied under Byzantine processors [4]. Although

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 490–492, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Reliably Executing Tasks in the Presence of Malicious Processors 491

the idea of executing tasks in the presence of malicious nodes is the same, the model
and the problem we consider in this work are different.

Model and Algorithm. We assume there is a master processor M which has a task that
has to be executed. This task returns a value, which M wants to reliably obtain. M is
not capable of executing the task itself, so a set P of n (powerful) processors (called
workers), P = {1, ..., n}, is made available to M . We assume that the workers might
fail, and their faulty behavior is not restricted (e.g., send incorrect value, do not send
any value, etc). We want to minimize the (expected) number of workers that have to
run the task in order to obtain a failure probability of no more than ρ. The workers
are continuously waiting for M to give them a task to execute, they execute a task if
they are assigned one, and return the computed value. However, processors can be slow,
and messages can get lost or arrive late. In order to introduce these assumptions in the
model, we consider that there is a known probability d of M receiving the reply from
a given worker on time. We also consider two types of known bounds on the number
of faulty processors. We either assume that (i) there is a fixed bound f < n/2 on the
maximum number of processors that can fail, or (ii) there is a probability p < 1/2 of
any processor to be faulty.

We explore the following algorithm. First M chooses uniformly at random a subset
S from the set P . We consider two ways to do so: either M defines a probability q and
chooses each worker with that probability or it fixes a value s and chooses exactly s
workers. Then, M sends the task to the processors in S and waits T time for the replies
(T is a value set by M based on the value of d). M has a threshold τ and accepts
as correct any value v received from at least τ workers within time T . If there is no
such value, the algorithm has failed (it is repeated). Note that the (expected) work of an
execution of this algorithm is exactly the (expected) size of the set S.

Using Chernoff bounds we show that our algorithm guarantees a failure probabil-
ity of no more than ρ for: (a) q = 3(ln 2−ln ρ)

(1−2p)2npd and τ = 2np(1 − p)qd when we use

parameters p and q, with expected work E[|S|] = nq, (b) s = � 3(ln 2−ln ρ)
(1−2p)2pd � and

τ = 2sp(1 − p)d when we use parameters p and s, with work |S| = s, (c) q =
3(ln 2−ln ρ)n2

(n−2f)2fd and τ = 2f(n−f)qd
n when we use parameters f and q, with expected work

E[|S|] = nq, and (d) s = � 3(ln 2−ln ρ)n3

(n−2f)2fd � and τ = 2f(n−f)sd
n2 when we use param-

eters f and s, with work |S| = s. (For p < 1/6 the values for p = 1/6 should be
used. For f < n/6 the values for f = n/6 should be used.) More details can be found
in [3].

References

1. D. Blough and G. Sullivan. A comparison for voting strategies for fault-tolerant distributed
systems. In SRDS’90, pp.136–145, 1990.

2. C. Dwork, J. Halpern, and O. Waarts. Performing work efficiently in the presence of faults.
Siam J. on Computing, 27(5):1457–1491, 1998.

3. A. Fernández, C. Georgiou, L. López, and A. Santos. Reliably executing tasks in the
presence of malicious processors. Technical Report, 2005. (http://gsyc.info/
publicaciones/tr.)

http://gsyc.info/publicaciones/tr
http://gsyc.info/publicaciones/tr

492 A. Fernández et al.

4. A. Fernández, C. Georgiou, A. Russell, and A. Shvartsman. The Do-All problem with Byzan-
tine processor failures. Theoretical Computer Science, 333(3):433–454, 2005.

5. E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky. SETI@Home:Massively
distributed computing for SETI. Computing in Science and Engineering, 3(1):78–83, 2001.

6. M. Paquette and A. Pelc. Optimal decision strategies in Byzantine environments. In
SIROCCO’04, pp.245–254, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

