
University of Cyprus
Department of Computer Science
Networks Research Laboratory

Adaptive Methods for the
Transmission of Video

Streams in Wireless Networks

Deliverable 3.1

Simulation Software

Project Title : Adaptive Methods for the Transmission of Video

 Streams in Wireless Networks
Deliverable Type : Intermediate Progress Report (M18)

Deliverable Number : D3.1
Title of Deliverable : Simulation Software
Work Package Title : Simulation of Adaptation Techniques
Work Package Number : WP3
Internal Document Number :
Contractual Delivery Date :
Actual Delivery Date :
Author(s) : Pavlos Antoniou

 Vasos Vassiliou
 Andreas Pitsillides
 Ioakim Sykopetritis

Email(s) : paul.antoniou@cs.ucy.ac.cy
 vasosv@cs.ucy.ac.cy
 Andreas.Pitsillides@ucy.ac.cy
 asykopetritis@gmail.com

Abstract
Having designed the two feedback techniques for the increase of the objective and
subjective (perceptual) quality as well as two congestion control protocols for high
speed networks, we need to provide a simulation framework for the evaluation of
their performance. A combined wired and wireless network will be simulated and the
proposed techniques will compose a fully adaptive system which will be tested for its
ability to support real time multimedia applications in various realistic or extreme
scenarios. This deliverable focuses on the development of simulation modules for the
novel Content and Network adaptation techniques. We are going to give an in depth
description of the simulation modules that were designed for the evaluation of the
proposed algorithms.

Keywords:.

Table of Contents
Abstract ... 2
Table of Contents.. 3
List of Figures ... 4
List of Tables .. 5
1 Introduction.. 6
2 Evaluation Procedures and Simulation Modules ... 6

2.1 ADIVIS Evaluation Procedures and Simulation Modules.................................. 6
2.1.1 Operating System and Required Packages .. 7
2.1.2 Overview of QoS Assessment Framework .. 8
2.1.3 Description and analysis of the new agents in NS2................................... 13
2.1.4 Commands executed before and after conducting simulations.................. 18

2.2 RAF... 19
2.2.1 Operating System and Required Packages .. 19
2.2.2 Goddard Streaming Media System .. 20
2.2.3 Implementation of the proposed algorithm.. 21
2.2.4 Commands executed before and after conducting simulations.................. 25

3. Conclusions... 26
References ... 28

List of Figures
Fig. 1. ADIVIS scheme... 7
Fig. 2. Structure of the Evalvid framework. ... 8
Fig. 3. NS2 Enviroment. ... 11
Fig. 4. QoS Assessment Framework including Evalvid. .. 11
Fig. 5. Wired/Wireless Node Model in NS2... 12
Fig. 6. Function sendmsg() of VideoRTPAgent. .. 14
Fig. 7. Function recv() of VideoRTPAgent. ... 14
Fig. 8. Function timeout() of VideoRTCPAgent. ... 14
Fig. 9. Function sendpkt() of VideoRTCPAgent. ... 15
Fig. 10. Function recv() of VideoRTCPAgent.. 15
Fig. 11. Function build_report of RTPSession. .. 16
Fig. 12. Function recv of RTPSession. ... 16
Fig. 13. EHSR, CNPL, ecnPV and parameter a evaluations in RTPSession.............. 17
Fig. 14. Decision Algorithm. .. 17
Fig. 15. Function videoTraceFile of VideoTrafficTrace. ... 18

List of Tables
Table 1. Operating System and required packages used in ADIVIS. 8
Table 2. Operating System and required packages used in RAF................................ 20
Table 3. Goddard Client (Gplayer) parameters with default values. 20
Table 4. Combination of different parameters when user provides specific frame
dimensions and frame quality. .. 23
Table 5. Combination of different parameters when user provides specific frame
dimensions. ... 24
Table 6. Combination of different parameters when user provides specific frame
quality. .. 24
Table 7. Combination of different parameters when user does not provide neither
specific frame dimensions nor frame quality.. 25

1 Introduction
In Deliverable 2.2 we proposed two novel adaptive approaches for video transmission
over wireless networks as well as two new congestion control algorithms for high
speed networks. We also gave an in depth description of all the algorithms focusing
on key ideas, functionalities and the different parameters that influence their
operation.
Having designed the feedback techniques for the increase of the objective as well as
the subjective (perceptual) quality, we have to provide a simulation framework for the
evaluation of their performance.
This deliverable focuses on the development of simulation modules for Content and
Network adaptation techniques. We are going to give an in depth description of the
simulation modules that were designed for the evaluation of the proposed video
transmission algorithms. A combined wired and wireless network will be simulated
and the proposed techniques will compose a fully adaptive system which will be
tested for its ability to support real time multimedia applications in various realistic or
extreme scenarios. Moreover we will conduct some experiments based on these
modules and the emerged results will be presented in detail in Deliverable 3.2.
In Section 2 of this deliverable we concentrate on the evaluation procedures and
simulation modules for each algorithm.

2 Evaluation Procedures and Simulation Modules
The simulations in this deliverable are intended to illustrate the use of the proposed
feedback adaptive models for wireless video transmission using NS2 [1]. We use both
simple and complicated topologies as well as single and multiple video stream flows
as workload.
Furthermore, the procedures and functions followed for the performance evaluation
of each algorithm will be also presented in detail focusing primarily on the software
packages and mathematical models as well.
The rest of this section is organized as follows. Section 2.1 provides an in depth
description of the simulation module and procedures regarding the Adaptive
Feedback Algorithm for Internet Video Streaming based on Fuzzy Control (ADIVIS)
while Section 2.2 presents the module and procedures implemented for Receiver-
driven Adaptive Feedback algorithm (RAF).

2.1 ADIVIS Evaluation Procedures and Simulation Modules
The ADIVIS algorithm deals with video streaming over the wireless Internet using a
fuzzy controlled decision algorithm at the video streaming server side and a feedback
algorithm. The feedback algorithm takes into consideration both receiver’s critical
information and network-oriented measurements in order to evaluate the available
bandwidth of the network path. The two aforementioned procedures are illustrated in
Fig. 1.

 Receiver

IP Network

Scalable Decoder

RTP Protocol

UDP / IP

RTCP

ECN/RED

Loss Rate Per SecondFeedback
mechanism

Decision
Algorithm

Scalable MPEG4 Encoder

RTP / RTCP

UDP / IP

Video Streaming Server

Layered
 Video
 Streams

Fig. 1. ADIVIS scheme.

The available bandwidth (calculated by the feedback mechanism) is fed into the
decision algorithm which intuitively decides the optimal number of layers that ought
to be sent according to the available transmission rate.
This scheme requires that the video streams are encoded in a layered manner using a
scalable encoder. Layered information needs to be adapted for a number of
transmission rates in order to have smooth and optimal adaptation to the available
bandwidth. The techniques for reducing the transmitted information are primarily
based on dropping or adding layers.
We will compare adding/dropping layers and switching among different versions of
the video and we will investigate how the layered information needs to be adapted for
a number of transmission rates. To achieve optimal adaptation to any transmission
rate we believe that it is necessary to have a large number of layers. However, we
need to be aware of possible drawbacks of having a large layer number, such as
difficulty in separating/generating the layers at the source, and find the optimal
number for them.
These issues will be investigated thoroughly through various simulations conducted
using the widely known Network Simulator version 2 (ns2). For this purpose we
implemented some software modules written in C++ programming language and TCL
scripting language. In this section we intend to give basic directions and comments on
chosen points of the source code. The rest of this section is organized as follows.
Section 2.1.1 mentions the operating system requirements and the packages required
prior the installation of the simulation modules. Section 2.1.2 gives an overview of
the QoS assessment framework including Evalvid ([3], [4], [5]) that will be used for
end-to-end delay, end-to-end jitter and PSNR evaluations while Section 2.1.3 gives a
detailed description of the new ns2 agents. Finally Section 2.1.4 deals with the
operations that will be executed prior the simulations/scenarios.

2.1.1 Operating System and Required Packages
Before getting into the insights of our source code let us mention the operating system
options and requirements needed prior the installation of our simulation modules. All
the simulations were conducted in a linux-based Fedora Core 2 [2] operating system.
All the required packages are shown in the table below.

Required Packages Description
NS2 [1] NS is a discrete event simulator targeted at networking

research. Ns provides substantial support for simulation
of many protocols, routing, and multicast protocols over
wired and wireless (local and satellite) networks. All our
simulations were conducted under this framework.

Evalvid in NS2 [3], [4]
[5]

EvalVid [5] is a complete framework and tool-set for
evaluation of the quality of video transmitted over a real
or simulated communication network. It was integrated
into NS2 as shown in [3] and [4]. We used it for end-to-
end delay, end-to-end jitter and PSNR evaluations in
NS2-based simulations. The commands we used for
these evaluations will be shown below.

FFmpeg Multimedia
System [6]

FFmpeg is a very fast video and audio converter. The
command line interface is designed to be intuitive, in the
sense that FFmpeg tries to figure out all parameters that
can possibly be derived automatically. You usually only
have to specify the target bit rate you want. We used for
the encoding of raw video test sequences as will be
shown later.

Table 1. Operating System and required packages used in ADIVIS.

2.1.2 Overview of QoS Assessment Framework
In this subsection we will give an overview of the QoS assessment framework
including Evalvid. Evalvid is a complete framework and tool-set for evaluation of the
quality of video transmitted over a real or simulated communication network. It was
initially designed for the evaluation of the quality of video transmitted over a real or
simulated communication network [5]. Besides measuring QoS parameters of the
underlying network, like loss rates, delays, and jitter, it also supports a subjective
video quality evaluation of the received video based on the frame-by-frame PSNR
calculation. The tool-set has a modular construction, making it possible to exchange
both the network and the codec. EvalVid is targeted for researchers who want to
evaluate their network designs or setups in terms of user perceived video quality. The
tool-set is publicly available in [7].
The structure of the Evalvid framework is shown as follows.

PSNR MOS

VS

FV

ET

 Video
Encoder

 Video
Decoder

Source

Evalvid
A

PI

Evalvid
A

PI

 Simulation

 Loss / Delay

tcpdum
p

tcpdum
p

RESULTS:
- frame loss / frame jitter
- user perceived quality

receiver trace

video trace sender trace

reconstructed
erroneous video

coded video

raw YUV video
 (sender)

reconstructed raw
YUV video (receiver)

play-out buffer

USER

erroneous
 video

raw YUV video
 (receiver)

Fig. 2. Structure of the Evalvid framework.

The main components of the evaluation framework are described as follows:
Source: The video source can be either in the YUV QCIF (176 x 144) or in the YUV
CIF (352 x 288) formats.
Video Encoder and Video Decoder: Currently, EvalVid supports two MPEG4
codecs, namely the NCTU codec and FFmpeg. In the present investigation, we
arbitrarily choose the FFmpeg codec for video coding purposes that will be presented
later.
VS (Video Sender): The VS component reads the compressed video file from the
output of the video encoder, fragments each large video frame into smaller segments,
and then transmits these segments via UDP packets over a real or simulated network.
For each transmitted UDP packet, the framework records the timestamp, the packet
id, and the packet payload size in the sender trace file with the aid of third-party tools,
such as tcp-dump or win-dump, if the network is a real link. Nevertheless, if the
network is simulated, the sender trace file is provided by the sender entity of the
simulation. The VS component also generates a video trace file that contains
information about every frame in the real video file. The video trace file and the
sender trace file are later used for subsequent video quality evaluation.
ET (Evaluate Trace): Once the video transmission is over, the evaluation task
begins. The evaluation takes place at the sender side. Therefore, the information
about the timestamp, the packet id, and the packet payload size available at the
receiver has to be transported back to the sender. Based on the original encoded video
file, the video trace file, the sender trace file, and the receiver trace file, the ET
component creates a frame/packet loss and frame/packet jitter report and generates a
reconstructed video file, which corresponds to the possibly corrupted video found at
the receiver side as it would be reproduced to an end user. In principle, the generation
of the possibly corrupted video can be regarded as a process of copying the original
video trace file frame by frame, omitting frames indicated as lost or corrupted at the
receiver side. Nevertheless, the generation of the possibly corrupted video is trickier
than this and the process is further explained in more details later. Furthermore, the
current version of the ET component implements the cumulative inter-frame jitter
algorithm for play-out buffer. If a frame arrives later than its defined playback time,
the frame is counted as a lost frame. This is an optional function. The size of the play-
out buffer must also be set, otherwise it is assumed to be of infinite size.
FV (Fix Video): Digital video quality assessment is performed frame by frame.
Therefore, the total number of video frames at the receiver side, including the
erroneous ones, must be the same as that of the original video at the sender side. If the
codec cannot handle missing frames, the FV component is used to tackle this problem
by inserting the last successfully decoded frame in the place of each lost frame as an
error concealment technique.
PSNR (Peak Signal Noise Ratio): PSNR is one of the most widespread objective
metrics to assess the application-level QoS of video transmissions. It was further
analyzed in D1.1. The following equation shows the definition of the PSNR between
the luminance component Y of source image S and destination image D:

[]
,

),,(),,(1
log20)(

0 0

2
10 dB

jinYjinY
NN

V
nPSNR

col rowN

i

N

j
DS

rowcol

peak

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

=

∑∑
= =

where Vpeak = 2k-1 and k = number of bits per pixel (luminance component). PSNR
measures the error between a reconstructed image and the original one. Prior to
transmission, one may then compute a reference PSNR value sequence on the
reconstruction of the encoded video as compared to the original raw video. After
transmission, the PSNR is computed at the receiver for the reconstructed video of the
possibly corrupted video sequence received. The individual PSNR values at the
source or receiver do not mean much, but the difference between the quality of the
encoded video at the source and the received one can be used as an objective QoS
metric to assess the transmission impact on video quality at the application level.
MOS (Mean Opinion Score): MOS is a subjective metric to measure digital video
quality at the application level. This metric of the human quality impression is usually
given on a scale that ranges from 1 (worst) to 5 (best). In this framework, the PSNR
of every single frame can be approximated to the MOS scale using an appropriate
mapping.
In addition Evalvid was implemented in NS2 as shown in [3] and [4]. Fig. 4
illustrates the QoS assessment framework for video traffic enabled by the new tool-
set that combines EvalVid and NS2. The NS2 environment cloud will be further
analyzed in and Fig. 5. Initially the raw (uncompressed) video streams are encoded in
MPEG4 format using the FFmpeg [6] Video Encoder software and are stored at
Video Sender side. Video Sender stores many streams having each one of them
encoded in a different bit rate in order to simulate layered transmission. These
encoded streams are fragmented into packets and transmitted from a dedicated video
streaming server to a client in a layered manner using the NS2 simulation
environment (see and Fig. 5). The transmitted packets experience the propagation
delay and packet loss while traversing through the network path. The packets that
finally manage to reach the client are registered in a dedicate file by the client. After
the end of the NS2 simulation we are able to reconstruct the received video stream at
client side using FFmpeg Video Decoder. It is expected that the reconstructed video
stream will consist of frames (I, B, P) belonging to several layers.
Moreover we use ET program (included in Evalvid framework) in order to perform
the aforementioned evaluations (end-to-end delay, jitter, PSNR, lost packets/frames).
All these functions are performed using Unix AWK scripts.

Simulated Network

 Wired Node

 VIDEO
STREAMING
 SERVER

Wired/Wireless
 Node
 CLIENT

Wired/Wireless
 Node
 CLIENT

Wired/Wireless
 Node
 CLIENT

Fig. 3. NS2 Enviroment.

Fig. 3. NS2 Enviroment. depicts the NS2 simulation environment which includes the
Video server and the wired/wireless clients.

 Video
 Encoder
(FFmpeg)

VS program
 in Evalvid

Raw YUV video

evaluate end-to-end video quality by
PSNR (PSNR program in Evalvid)

 Video
 Decoder
(FFmpeg)

corrupted
 video
 packets

ET program
 in Evalvid

experience network delay
 and packet loss

NS2 Environment

 reconstructed
erroneous video

AWK Scripts

Fig. 4. QoS Assessment Framework including Evalvid.

The agents implemented between NS2 and EvalVid as shown in Fig. 4. These
interfaces are designed either to read the video trace file or to generate the data
required to evaluate the video delivered quality.

Protocols in NS2 are represented by objects, which are constructed as derived classes
of the base Agent class (written in C++). If the protocol supports session mechanisms,
the derived classes of base Session class (also written in C++) will be constructed.
Above C++ classes are mirrored into a similar class hierarchy within the OTcl
interpreter. For example, the RTP/RTCP implementation in NS2 environment
consists of three C++ classes:

RTPAgent – RTP protocol processing mechanisms,
RTCPAgent – RTCP protocol processing mechanisms,
RTPSession – the RTP session management.
C++ classes are closely mirrored by corresponding objects in the OTcl class
hierarchy, respectively, Agent/RTP, Agent/RTCP and Session/RTP.

Hiera
rchical

Classifi
ers

DSDV
Routing
Agent

Port
Classifier

VideoRTCPAgent

VideoRTPAgent

RTPSession

V
ideoTrafficTrace

level 1

level 2

level 3

own IP address

Channel

LL

target_

downtarget_

uptarget_

defaulttarget_

target_

target_

sender
tracefile

receiver
tracefile

traceAgent_

V
ideoTrafficTrace

.....

V
ideoTrafficTrace

video traffic traces

dchan_
cch

an_

session_

session_

agent_

agent_

agent_

node
entry_

255

IFq

MAC

downtarget_
uptarget_

mac_

NetIF

downtarget_ uptarget_
Radio Propagation
 Model

propagation_

uptarget_channel_

ARP

arptable_

Fig. 5. Wired/Wireless Node Model in NS2.

The proposed NS2 environment is based on the existing agents. Four new classes
were written or modified in C++ (VideoRTPAgent, VideoRTCPAgent,
VideoTrafficTrace, RTPSession) and one modified in OTcl (Session/RTP) which
were derived from similar existing classes.
RTPAgent in NS2 did not seem to have full functionality according to IETF standard.
So we had to modify it in a way to meet our needs and requirements.
VideoRTPAgent (see Fig. 5) is our new dedicated RTP agent which was built on the
basis of the existing RTPAgent implementation. The new RTP agent monitors the

transmission of video streams in terms of packet processing. In NS2 simulator, the
former RTPAgent was only able to generate CBR traffic but this was not the case for
our scenarios because we wanted to simulate layered video transmission. Thus we
implemented a new C++ object namely VideoTrafficTrace (see Fig. 5) that works in
co-operation with VideoRTPAgent and RTPSession classes. This new class was
based on the existing class TrafficTrace. Every new object of this class corresponds to
a new layer. Every layer is actually a replicated instance of the raw video stream
encoded (in MPEG4 format using FFmpeg) in different bit rate. The encoded video
stream is parsed and the trace file created is attached on a new VideoTrafficTrace
object (see Fig. 5).
RTPSession class was created on the basis of the existing RTPSession (actually is a
modified version of the corresponding former class). The former RTPSession class
implemented only the RTP session management but our modified version needs to
monitor the layered video transmission mechanism. For this reason the decision
algorithm (see Fig. 1) is entirely embedded in RTPSession and all the
VideoTrafficTrace instances must be attached on it as shown in Fig. 5.
The RTCP protocol monitors and controls RTP session. Moreover it provides
feedback on the quality of data distribution using report packets. Full functionality of
this protocol was not provided by NS2. Thus we extended RTCPAgent in order to
implement VideoRTCPAgent. In our NS2 environment, the RTCP protocol
functionality is divided between two objects: the VideoRTCPAgent class and the
modified RTPSession class. The VideoRTCPAgent class implements the RTCP
packet processing, while the RTPSession class implements the RTP session
management as mentioned before. The RTCP protocol behaviour is based on the
periodic transmission of control packets. The packet is prepared by the RTPSession in
response to the VideoRTCPAgent request. The VideoRTCPAgent class simulates the
transmission and reception of the RTCP packets.

2.1.3 Description and analysis of the new agents in NS2
As mentioned above four new classes were implemented in C++ namely
VideoRTPAgent, VideoRTCPAgent, RTPSession and VideoTrafficTrace.
Furthermore an OTcl object namely Session/RTP was designed in order to operate in
cooperation with its mirror C++ class. Below we provide an in depth description of
the aforementioned classes and object:

VideoRTPAgent
As shown in Fig. 5 VideoRTPAgent monitors the transmission of video streams in
terms of packet processing. The lines shown in the following figure are executed prior
the transmission of every packet.

1 p = allocpkt();
2 hdr_cmn::access(p)->size() = size_;
3 //RTP HEADER
4 hdr_rtp* rh = hdr_rtp::access(p);
5 rh->flags() = 0;
6 rh->seqno() = seqno_++;
7 rh->srcid() = session_ ? session_->srcid() : 0;
8 //ECN capable transport
9 hdr_flags* hf = hdr_flags::access(p);
10 hf->ect() = 1;
11 hdr_cmn::access(p)->timestamp() = (u_int32_t)(SAMPLERATE*local_time);
12 hdr_cmn::access(p)->sendtime_ = local_time; // (smallko)
13 if(openfile!=0){
14 hdr_cmn::access(p)->frame_pkt_id_ = id_++;

15 sprintf(buf, "%-16f id %-16d udp %-16d\n", local_time, hdr_cmn::access(p)->frame_pkt_id_, hdr_cmn::access(p)-
>size()-28);

16 fwrite(buf, strlen(buf), 1, BWFile);
17 }
18 target_->recv(p);

Fig. 6. Function sendmsg() of VideoRTPAgent.

Every packet received by VideoRTPAgent is being delivered to the RTPSession
object for further processing of the data collected during the trip of the packet from
the video streaming server to the video client (see Fig. 7).

1 void VideoRTPAgent::recv(Packet* p, Handler*)
2 {
3 if (session_)
4 session_->recv(p, 0);
5 else
6 Packet::free(p);
7 }

Fig. 7. Function recv() of VideoRTPAgent.

VideoRTCPAgent
This agent monitors and controls RTP session. Moreover it provides feedback on the
quality of data distribution using report packets. In our NS2 environment, the RTCP
protocol functionality is divided between the VideoRTCPAgent class and the
modified RTPSession class.
The RTCP protocol behaviour is based on the periodic transmission of control
packets. The following figure presents the function that dynamically calculates the
interval between transmissions of RTCP packets according to RFC 3550. As you will
see in line 9 of Fig. 8 the RTCP packet is prepared by the RTPSession in response to
the VideoRTCPAgent request.

1 void VideoRTCPAgent::timeout(int)
2 {
3 if (running_) {
4 u_int32_t srcID[SRCNUM], extended[SRCNUM];
5 long int cumulative[SRCNUM];
6 int ecn[SRCNUM];
7 double meanE2E[SRCNUM];
8 //calculate the size of the RTCP packet which depends on the type of the packet (SR,RR)
9 size_ = session_->build_report(0,srcID,extended,cumulative,ecn,meanE2E); //a function of RTPSession is called
10 sendpkt(srcID,extended,cumulative,ecn,meanE2E);
11 double t = interval_;
12 if (random_)
13 /* add some zero-mean white noise */
14 t += interval_ * Random::uniform(-0.5, 0.5);
15 rtcp_timer_.resched(t);
16 Tcl::instance().evalf("%s rtcp_timeout", session_->name());
17 }

Fig. 8. Function timeout() of VideoRTCPAgent.

After the preparation of the packet by the RTPSession, VideoRTCPAgent implements
the RTCP packet processing (see line 10 in Fig. 8) as shown in Fig. 9.

1 Packet* p = allocpkt();
2 hdr_rtcp* rh = hdr_rtcp::access(p);
3 /* Fill in srcid_ and seqno */
4 rh->seqno() = seqno_++;
5 rh->srcid() = session_->srcid();
6 for(int i=0; i<SRCNUM; i++) {
7 rh->remSrcid(i) = srcID[i]; //set the srcID
8 rh->cnpl(i) = cumulative[i]; //set the cumulative number of packets received
9 rh->ehsnr(i) = extended[i]; //set the extended highest sequence number received

10 rh->time(i) = Scheduler::instance().clock(); //set the time the RTCP packet was sent
11 rh->ecn(i) = ecn[i]; //set the number of received ECN packets within the interval
12 rh->meanE2E(i) = meanE2E[i]; //set the mean end 2 end delay within the interval
13 }
14 target_->recv(p);

Fig. 9. Function sendpkt() of VideoRTCPAgent.

The VideoRTCPAgent class simulates the transmission and reception of the RTCP
packets. Upon reception of every RTCP packet VideoRTCPAgent object informs the
RTPSession object (see Fig. 10) about the statistics and measurements collected from
the receiver or the core network within the predefined interval like the number of
packets lost, the number of packets marked (due to ECN) and the mean end-to-end
delay for every packet received from the video client within this interval (see Section
6.1.2 of the deliverable D2.2).

void VideoRTCPAgent::recv(Packet* p, Handler*)
{
 session_->recv_ctrl(p,info);
}

Fig. 10. Function recv() of VideoRTCPAgent.

RTPSession
RTPSession class implements the RTP session management and also monitors the
layered video transmission mechanism. As you may see from the figure below,
RTPAgent prepares the RTCP packet in response to VideoRTCPAgent call as
presented in Fig. 8.

1 int RTPSession::build_report(int bye, u_int32_t *srcID, u_int32_t *extended, long int *cumulative, int *ecn, double

*meanE2E)
2 {
3 int nsrc = 0;
4 int nrr = 0;
5 int len = RTCP_HDRSIZE;
6 int we_sent = 0;
7 if (localsrc_->np() != last_np_) {
8 last_np_ = localsrc_->np();
9 we_sent = 1;
10 len += RTCP_SR_SIZE;
11 }
12 //this version supports connections from one-to-one or one-to-many
13 //i.e. there is only one RTPSource for each RTP receiver
14 for (RTPSource* sp = allsrcs_; sp != 0; sp = sp->next) {
15 ++nsrc;
16 int received = sp->np() - sp->snp();
17 if (received == 0) {
18 continue;
19 }
20 sp->snp(sp->np());
21 srcID[nrr] = sp->srcid();
22 extended[nrr] = sp->ehsr();
23 ecn[nrr] = sp->ecn();
24 sp->ecn() = 0; //initialize the number of received ECN packets
25 cumulative[nrr] = sp->ehsr() - sp->np();
26 meanE2E[nrr] = sp->totalE2E() / ((double)received);
27 sp->totalE2E() = 0; //initialize the total end 2 end delay of the packets received within this RTCP interval
28 len += RTCP_RR_SIZE;
29 if (++nrr >= 31)
30 break;
31 }
32 if (bye)
33 len += build_bye();
34 else
35 len += build_sdes();
36 Tcl::instance().evalf("%s adapt-timer %d %d %d", name(),

37 nsrc, nrr, we_sent);
38 Tcl::instance().evalf("%s sample-size %d", name(), len);
39 return (len);
40 }

Fig. 11. Function build_report of RTPSession.

Moreover this agent is responsible for the processing of the received RTP packets.
RTPSession collects the data that are embedded in the header of the received RTP
packet as depicted in Fig. 12(in response to VideoRTPAgent call shown in Fig. 7).

1 // process of received RTP packets
2 void RTPSession::recv(Packet* p, Handler*)
3 {
4 hdr_cmn* hdr = hdr_cmn::access(p); //get access to common header
5 hdr_rtp *rh = hdr_rtp::access(p);
6 hdr_flags *hf = hdr_flags::access(p); //get access to ECN flag
7 u_int32_t srcid = rh->srcid();
8 //check whether i received again packets from this source
9 RTPSource* s = lookup(srcid);
10 //if not then add this source to the list of sources that this session receives RTP packets from
11 if (s == 0) {
12 Tcl& tcl = Tcl::instance();
13 tcl.evalf("%s new-source %d", name(), srcid);
14 s = (RTPSource*)TclObject::lookup(tcl.result());
15 }
16 //One packet received
17 s->np(1);
18 //Extended Highest Sequence number Received
19 s->ehsr(rh->seqno());
20 bytes_ += hdr->size()-28;
21 //check if the ECN is enabled and ECN bit is set
22 if(hf->ect() && hf->ce()) {
23 s->ecn() += 1;
24 }
25 s->totalE2E() += Scheduler::instance().clock() - hdr->sendtime_;
26 fprintf(tFile,"%-16f id %-16d udp %-16d\n", Scheduler::instance().clock(), hdr->frame_pkt_id_, hdr->size()-28);
27 fprintf(mFile,"%-5d\t%-16f\n", rh->seqno(), Scheduler::instance().clock() - hdr->sendtime_);
28 Packet::free(p);
29 }

Fig. 12. Function recv of RTPSession.

As mentioned before, RTPSession manipulates the received RTCP packets as well
(Fig. 10). Upon reception of a single RTCP packet, RTPSession agent re-calculates
some critical quantities like EHSR (extended highest sequence number received),
CNPL (cumulative number of packet lost), ecnPV (explicit congestion notification
percentage variation) and parameter a (used for the evaluation of the available
bandwidth). For more information about these quantities please read sections 6.1.2
and 6.1.3 of deliverable D2.2.

1 //evaluate Loss Rate Per Second
2 cnpl_diff = rh->cnpl(i) - statistics.cnpl[rh->srcid()];
3 ehsnr_diff= rh->ehsnr(i) - statistics.ehsnr[rh->srcid()];
4 time_diff = rh->time(i) - statistics.time[rh->srcid()];
5 lf = (double)cnpl_diff/(double)ehsnr_diff;
6 lrps = lf/time_diff;
7 //evaluate percentage variation of ecn
8 if (statistics.ecn[rh->srcid()] != 0)
9 ecnPV = double(((double)rh->ecn(i) / (double)statistics.ecn[rh->srcid()]) - 1.0);
10 else if ((statistics.ecn[rh->srcid()] == 0)&&(rh->ecn(i) != 0)) ecnPV = 1.0;
11 else ecnPV = 0.0;
12 if (ecnPV < -1.0) ecnPV = -1.0;
13 else if (ecnPV > 1.0) ecnPV = 1.0;
14 //evaluate percentage variation of mean end 2 end delay
15 if (statistics.meanE2E[rh->srcid()] != 0)
16 meanE2EPV = double(((double)rh->meanE2E(i) / (double)statistics.meanE2E[rh->srcid()]) - 1.0);

17 else if ((statistics.meanE2E[rh->srcid()] == 0)&&(rh->meanE2E(i) != 0)) meanE2EPV = 1.0;
18 else meanE2EPV = 0.0;
19 if (meanE2EPV < -1.0) meanE2EPV = -1.0;
20 else if (meanE2EPV > 1.0) meanE2EPV = 1.0;
21
22 printf("LF %f LRPS %f ECN %f MEANE2E %f\n",lf*100,lrps,ecnPV,meanE2EPV);
23 a=0.0;
24 videoIe(&ecnPV, &lrps, &a);
25 bandwidth = bandwidth*a;

Fig. 13. EHSR, CNPL, ecnPV and parameter a evaluations in RTPSession.

After the evaluation of these parameters, RTPSession implements the decision
algorithm in order to infer the optimal number of layers of which overall transmission
rate will not exceed the available bandwidth of the network path that was calculated
before. This algorithm was presented in more detail in section 6.1.3 of the deliverable
D2.2 and its source code is shown in Fig. 14.

1 /********************************
2 * DECISION ALGORITHM *
3 *********************************/
4 for(j=0; j<MAX_SCALE; j++)
5 if((bandwidth<=layers[j])&&(knob==false))
6 {
7 if(j == rtpAgent_->getScale())
8 break;
9 knob = true;
10 selected_layer = j;
11 }
12 else if(bandwidth<=layers[j])
13 {
14 knob = false;
15 if(selected_layer < j)
16 {
17 frame_index = traceAgent_[rtpAgent_->getScale()]->video_stop();
18 if(frame_index < 0)
19 break;
20 rtpAgent_->setScale(selected_layer);
21 traceAgent_[rtpAgent_->getScale()]->video_start(frame_index);
22 fprintf(info,"%d %d\n",rtpAgent_->getScale(),frame_index);
23 break;
24 }
25 else //if(selected_layer > j)
26 {
27 temp = rtpAgent_->getScale();
28 frame_index = traceAgent_[rtpAgent_->getScale()]->video_stop();
29 if(frame_index < 0)
30 break;
31 rtpAgent_->setScale(j);
32 traceAgent_[rtpAgent_->getScale()]->video_start(frame_index);
33 if(temp != rtpAgent_->getScale())
34 fprintf(info,"%d %d\n",rtpAgent_->getScale(),frame_index);
35 break;
36 }
37 }
38 /********************************
39 * END OF DECISION *
40 *********************************/

Fig. 14. Decision Algorithm.

VideoTrafficTrace
In NS2 simulator, the former RTPAgent was only able to generate CBR traffic but
this was not the case for our scenarios because we wanted to simulate layered video
transmission. Thus we implemented a new C++ object namely VideoTrafficTrace
(as shown in Fig. 5) that works in co-operation with VideoRTPAgent and
RTPSession classes. This new class was based on the existing class TrafficTrace.

Every new object of this class corresponds to a new layer. Every layer is actually a
replicated instance of the raw video stream encoded (in MPEG4 format using
FFmpeg) in different bit rate. The encoded video stream is parsed and the trace file
created is attached on a new VideoTrafficTrace object using the function shown in
Fig. 15.

1 int videoTraceFile::setup()
2 {
3 tracerec* t;
4 struct stat buf;
5 int i;
6 unsigned long time, size, type, max;
7 FILE *fp;
8 if((fp = fopen(name_, "r")) == NULL) {
9 printf("can't open file %s\n", name_);
10 return -1;
11 }
12 nrec_ = 0;
13 while (!feof(fp)){
14 fscanf(fp, "%ld%ld%ld%ld", &time, &size, &type, &max);
15 nrec_++;
16 }
17 nrec_=nrec_-2;
18 printf("%d records\n", nrec_);
19 rewind(fp);
20 trace_ = new struct tracerec[nrec_];
21 for (i = 0, t = trace_; i < nrec_; i++, t++){
22 fscanf(fp, "%ld%ld%ld%ld", &time, &size, &type, &max);
23 t->trec_time = time;
24 t->trec_size = size;
25 t->trec_type = type;
26 t->trec_max = max;
27 }
28 return 0;
29 }

Fig. 15. Function videoTraceFile of VideoTrafficTrace.

Our application implements the transmission of layered video streams using several
VideoTrafficTrace agents (each one corresponds to a unique layer) which are attached
on the RTPSession agent. The latter agent monitors and controls the layered-like
transmission of video streams and infers the number of layers sent through a single
connection based on the decision algorithm.

2.1.4 Commands executed before and after conducting simulations
In this section we will see at a glance some steps that are followed before and after
conducting simulations using the agents analyzed above.
1. Initially we have to encode the chosen raw video stream using FFmpeg tool [6].
The number of the MPEG4-encoded video streams depends on the number of the
layers we intend to use. Each single stream will be encoded in a different bit rate
using the command having the following generic syntax:

ffmpeg [[infile options][`-i' infile]]... {[outfile options] outfile}...

Here is the encoding procedure of a yuv sequence into MPEG4 data format. In this
example, I use foreman_qcif.yuv as an example. This sequence has 400 frames.

ffmpeg -i foreman_qcif.yuv -b 128 -r 30 -s qcif -vcodec mpeg4 –bf 2 -4mv -g 12
foreman_128kbps.m4v

2. We use MP4.exe (from Evalvid package) to record the sender’s trace file (st). Each
frame will be fragmented into 1000 bytes for transmission. (Maximun packet length
will be 1028 bytes, including IP header (20bytes) and UDP header (8bytes).)

mp4.exe –send 224.1.2.3 5555 1000 foreman_qcif.m4v > st

The trace file that was created will be attached to a VideoTrafficTrace agent in the tcl
script file that describes the scenario. Needless to say that the above procedure is
being followed for every single encoded video stream that corresponds to a different
layer.
3. We execute the NS2 scenario written in tcl scripting language. After simulation,
NS2 will create a number of files concerning the packets sent and received. The half
of these files is to record the sending time of each packet while the rest of them are
used to record the received time of each packet.
4. Finally we execute a script file namely doIt that takes the aforementioned files as
input in order to construct the received video stream that consists of frames
correspond to different layers. Additionally this file evaluates the psnr value of the
received video stream. One can simply execute this command as shown:

./doIt 1

2.2 RAF
Receiver-driven Adaptive Feedback algorithm was also implemented in NS2
simulator. This algorithm was based on the Goddard Streaming Media framework [8]
which was previously used to simulate the transmission of video streams over
heterogeneous networks. The rest of this section is organized as follows: Section
2.2.1 deals with operating system and required packages, section 2.2.1 investigates
the Goddard Streaming Media system whereas section 2.2.2 presents useful
commands that are executed before and after conducting simulations regarding this
algorithm.

2.2.1 Operating System and Required Packages
Before getting into the insights of our source code let us mention the operating system
options and requirements needed prior the installation of our simulation modules. All
the simulations were conducted in a linux-based Fedora Core 2 [2] operating system.
All the required packages are shown in the table below.

Required Packages Description
NS2 [1] NS is a discrete event simulator targeted at networking

research. Ns provides substantial support for simulation
of many protocols, routing, and multicast protocols over
wired and wireless (local and satellite) networks. All our
simulations were conducted under this framework.

Evalvid in NS2 [3], [4]
[5]

EvalVid [5] is a complete framework and tool-set for
evaluation of the quality of video transmitted over a real
or simulated communication network. It was integrated
into NS2 as shown in [3] and [4]. We used it for end-to-
end delay, end-to-end jitter and PSNR evaluations in
NS2-based simulations. The commands we used for

these evaluations will be shown below.
MPEG4
Encoder/Decoder from
[9]

This is an MPEG4 encoder/decoder that was
implemented by the National Chiao-Tung University
in Taiwan. It takes as input a dedicated file that contains
all the parameters involved in the encoding/decoding
procedure.

Goddard Streaming
Media System [8]

An NS2-based streaming system (client and server)
which was designed based on the behaviours of Real
Networks streaming media and Windows Stream media.

Table 2. Operating System and required packages used in RAF.

2.2.2 Goddard Streaming Media System
Worcester Polytechnic Institute designed and implemented in NS a streaming system
(client and server) called Goddard. Goddard is designed based on the behaviours of
Real Networks streaming media and Windows Stream media. The Goddard streaming
client and server use packet-pairs to estimate the bottleneck capacity and select an
appropriate media encoding level before streaming. During streaming, Goddard client
and server reselect the media to stream (i.e., perform media scaling) in response to
network packet losses or re-buffering events that occur when the client playout buffer
empties. Goddard also simulates frame playout of the received media at the client,
allowing frame rate and jitter to be measured for performance evaluation.
As in commercial systems, the Goddard server supports multiple levels of encoded
media that are configured by giving the frame size and the frame rate for each scale
level. In addition, the Goddard server has an option for setting the maximum
fragment size for fragmenting large media frames before transmission. Typically, the
maximum fragment size would be set to the maximum transmission unit (MTU) of
the underlying network. The Goddard client, also called Gplayer for Goddard Player,
has the configuration parameters shown in Table 3.

Parameter Default value Description
pkp_timeout_interval 2 seconds Packet-pair timeout interval
buf_factor 1.5 Buffering rate factor
play_buf_thresh 5 seconds Threshold to start playout
loss_monitor_interval 5 seconds Loss monitoring interval
downscale_frame_loss_rate 0.05 Down-scale frame loss rate
upscale_interval 60 seconds Up-scale decision interval
upscale_frame_loss_rate 0.01 Up-scale frame loss rate
upscale_limit_time_factor 3 Up-scale limit time factor

Table 3. Goddard Client (Gplayer) parameters with default values.

The default parameter values are set based on observations. Similar to commercial
streaming systems, the Goddard client and server use three communication channels
for a streaming session: a control cannel using a TCP connection, a UDP packet-pair
channel, and a media streaming channel that can be TCP, UDP or MTP. When setting
up a streaming session, the Goddard server sends the list of supported media scale
levels to the Gplayer using the control channel. Then, Gplayer sets a timer with pkp
timeout interval and requests the server to send a pair of UDP packets to estimate the
capacity of the network path. If any one of the packet-pairs is lost, the packet-pair
timer expires and Gplayer will send a request for another packet-pair to the Goddard
server. On successful reception of a packet-pair, the capacity of the network path is

computed by dividing the packet size by the dispersion. Then, Gplayer selects the
largest media scale level with a bit rate less than the computed capacity and notifies
the server. Gplayer also notifies the server of the buf factor before starting streaming
to determine how much the server should increase the transmission rate during media
buffering periods.
The Goddard client and server operate in two modes: buffering or streaming. During
buffering, the Goddard server transmits the chosen media frames at the rate of buf
factor times the streaming bitrate, where buf factor used for commercial streams
typically ranges from 1.5 to 4. Gplayer maintains a media playout buffer and a
playout threshold (play buf thresh). When the Goddard server starts media
transmission in buffering mode, the Gplayer buffers the frames received in the media
buffer. When the media buffer size (given in playout time) reaches the play buf
thresh, Gplayer tells the server to switch to streaming mode and starts playing the
media according to the timing described for the current media scale level. If the
media buffer runs out of frames, Gplayer stops media playout and switches back to
buffering mode. At this time, Gplayer re-selects the largest media scale level with a
bitrate less than the average received throughput for the previous control interval.
Then, Gplayer tells the server to transmit frames of the new scale level at the
buffering rate, that is the streaming bitrate times buf factor. When a Goddard
streaming session uses UDP or MTP for the media channel, Gplayer can also use
frame loss information to make media scaling decisions. In this case, Gplayer
monitors the frame loss rate each time it receives a media frame. When it is at least
loss monitor interval since the last scale adjustment decision was made and the frame
loss rate is greater than downscale frame loss rate, Gplayer scales the media down
one level if the current scale level is not already at the minimum. If the current scale
is at the minimum, Gplayer maintains the current scale level. The default value for
downscale frame loss rate is set to 0.05. Gplayer also makes decisions to scale the
media up to a higher level, but does so slowly and gently. Gplayer increases the scale
level by one if the frame loss rate of the stream is less than upscale frame loss rate for
upscale interval since the last time scaling decision was made and the bitrate of the
stream after the increase is less than or equal to the estimated network capacity. Also,
in order to reduce the chance of playout interruption, Gplayer limits scaling up to one
below the last scale level that caused media re-buffering. This limit on scaling up is
heuristically relaxed by one scale level if the stream maintains good quality (i.e., no
scale down events) for upscale limit time factor times the upscale interval. The
default for upscale interval is set to 60 seconds, a value from the observed range (30
to 90 seconds) during the streaming measurement studies. Thus, Goddard simulates a
realistic streaming video application that performs media scaling, buffering and
playout. Implementations of support for video frame dependencies, selective
retransmission or other media repair mechanisms were left as future work.
In the initial version of Goddard System every layer was simulated on the basis of a
different CBR traffic pattern. In our version every layer corresponds to a different
VBR traffic pattern and for this purpose every layer is simulated using real video
traces.

2.2.3 Implementation of the proposed algorithm
At the beginning our algorithm requires some initial values to be assigned to the
different parameters mentioned above. Thus the user has to define these values prior
conducting simulations. A user can set the number of layers regarding each scenario
and define the bit rate of each layer (namely max_scale_ and bitrate_#_ respectively).

To the best of our knowledge, the algorithm can operate in the absence of user-
defined values by setting some default values for every parameter.
At the beginning of every simulation the video streaming server sends to the client a
list of all supported layers. This enables every client to decide and change the number
of layers that are transmitted from the streaming server upon request according to the
conditions of the network path. For this reason a decision algorithm is implemented in
client side that periodically track the changes in the available bandwidth of the
network path. The algorithm evaluates the available bandwidth and decides the
number of frames per second, the width and height of each frame, the quality of each
frame (in terms of bit per pixel) of the video stream (according to Table 5 of the
deliverable D2.2) in order to meet user’s needs and requirements (comply with the
initial values of parameters assigned by user a priori).
The decision algorithm determines the maximum possible bit rate and then checks the
initial values assigned by the user. Values that have been initially set are given higher
priority over non-defined parameters. First of all, the algorithm examines the frame
width parameter (frm_width). It is beyond any doubt that this parameter plays a
crucial role for the user perceived quality of the received video stream. The value of
this parameter poses a critical constraint in the system especially if we consider users
having handheld devices with small displays. Having defined the frame width it is
now possible to evaluate frame height depending on the aspect ratio.
In case the frm_width is not defined by the user, the algorithm assumes that there is
no constraint posed for this parameter. Therefore the next parameter that is being
examined concerns the quality of the transmitted video stream namely bit per pixel
(bpp). If this parameter is not set a priori our algorithm will set it to 0.225 which
corresponds to high quality. This can be done because there is no constraint with
respect to the frame width and if have no constraint with respect to the bit rate too
then we will be able to provide high quality video stream. The next step is to
determine the aspect ratio. If no value has been set for this parameter then the
algorithm uses a default value of 4:3 or 1.33. Having defined all these values (bit rate,
bpp, fps, aspect ratio) our algorithm is able to calculate both the frame width and
height using the equations in section 6.2.2 of the deliverable D2.2.
Moreover our algorithm is striving to provide high quality video streaming in the
presence of high error rates by calibrating the values of the different parameters.
In addition the bit rate is calculated using frame width, frame height, bit per pixel, and
frames per second values taken by Table 5 of D2.2. If the value of bit rate is lower
than the maximum possible transmission rate (available bandwidth) that was defined
at the beginning then all these values are sent back to the video streaming server
which acts accordingly by adding or dropping layers.
On the other hand if the calculated bit rate is higher than the available bandwidth, the
algorithm has to re-consider the values of some parameters. The next best thing that
the algorithm has to do is to reduce the dimensions of the frame while maintaining the
same frame quality and the same transmission rate defined by the user. So it is
possible to re-calculate the bit rate and check again whether is lower than the
available bandwidth or not. We would like to point out that the size of the frame
depends on the aspect ratio while there is a lower limit for both dimensions.
All the measures are taken into consideration whenever the dimensions of the frame
are not defined by the user. But if we consider that these parameters are initially set
by the user then are given higher priority amongst all the other. All the other
parameters can be altered by the decision algorithm but the frame width and frame
height are kept constant until all the other parameters reach their lower value while

the transmission of the video stream is still infeasible. This is only the case where the
values of these parameters can be altered. Even in this rare scenario there is a lower
limit for these values. The smaller dimensions of a video frame are 80x60 and 80x45
regarding aspect ratio of 4:3 and 16:9 respectively.
In the previous paragraphs we presented and analysed all the parameters that are
taken into consideration in the implementation of this adaptive algorithm. Given the
large number of combinations amongst the different values of the aforementioned
parameters we will provide four different cases so as to present the algorithm’s
respond to the various input scenarios.
We would like to point out that the parameter max_possible_bitrate takes the smaller
values among the variables max_bitrate, avail_bandwidth and the constant parameter
MAX_POSSIBLE. The latter parameter corresponds to the bit rate of the upper layer
(i.e. if the upper layer has mean bit rate of 768Kbps the value of MAX_POSSIBLE is
768000). For example consider a user connected to the network with a modem of
56Kbps, the video streaming server can support 5 layers with a maximum mean bit
rate of 768 Kbps while the available bandwidth of the network path is 1Mbps, then
the video stream will be transmitted using the smaller value namely 56Kbps.

CASE A

Frame

Dimension
(frm_width)

Bandwidth of the
user connection
(max_bitrate)

Frame Quality
(bpp_quality) Frame Rate (fps)

Available
Bandwidth

(avail_bandwidth)

Given Given Given Given

Given Given Given Not Given

Given Not Given Given Given

Given Not Given Given

If not given by the
user then the

default value is 30
or 25 if the colour
standard is NTSC

or PAL
respectively. Not Given

Table 4. Combination of different parameters when user provides specific frame dimensions and
frame quality.

Based on the chosen max_possible_bitrate the algorithm examines if the transmission
of a video stream is feasible when frame dimension (frm_width), frame quality
(bpp_quality) and number of frames per second (fps) are given by the user. If the
transmission is not feasible due to limited bandwidth constraint then the parameter
bpp_quality is being reduced down to a lower limit (see Table 5 in D2.2). The
algorithm strives to transmit a video stream in the lowest but satisfied quality while
the dimensions of the frames are kept constant. If this is not feasible, it is apparent tha
the frame dimensions have to be reduced down to a lower bound as mentioned before
while user perceived quality is maintained in acceptable levels.

CASE B

Frame

Dimension
(frm_width)

Bandwidth of the
user connection
(max_bitrate)

Frame Quality
(bpp_quality) Frame Rate (fps)

Available
Bandwidth

(avail_bandwidth)

Given Given Not Given Given

Given Given Not Given Not Given

Given Not Given Not Given Given

Given Not Given Not Given

If not given by the
user then the

default value is 30
or 25 if the colour
standard is NTSC

or PAL
respectively. Not Given

Table 5. Combination of different parameters when user provides specific frame dimensions.

Based on the chosen max_possible_bitrate, the algorithm examines if the frame
having dimensions given by frm_width is feasible to have the same quality as the first
appearance of the fps parameter in Table 5 of D2.2 with the corresponding
bpp_quality. If the transmission is still infeasible then the algorithm reduces the
quality down to a lower bound of the Table 5 of D2.2 where is the quality is
sustainable. If the transmission is again infeasible then the dimensions of the frame
have to be reduced until the frame width reaches 80 pixels which is the lowest
feasible value in order to provide satisfactory user perceived quality.

CASE C

Frame

Dimension
(frm_width)

Bandwidth of the
user connection
(max_bitrate)

Frame Quality
(bpp_quality) Frame Rate (fps)

Available
Bandwidth

(avail_bandwidth)

Not Given Given Given Given

Not Given Given Given Not Given

Not Given Not Given Given Given

Not Given Not Given Given

If not given by
the user then the
default value is
30 or 25 if the

colour standard is
NTSC or PAL
respectively. Not Given

Table 6. Combination of different parameters when user provides specific frame quality.

Based on the chosen max_possible_bitrate parameter our algorithm calculates the
dimensions of the frame using the quality parameter bpp_quality and the fps
parameter so that the overall bit rate is lower than the pre-defined
max_possible_bitrate. If it’s higher then our algorithm tries to make calculations
without altering the requested video quality. In this case it decreases the dimensions
of the frame down to the lower bound (80 pixels) based on the user-defined quality. If
the transmission is not feasible the quality parameter has to be re-considered (quality
can also be decreased down to a lower bound given by Table 5 in D2.2).

CASE D

Frame
Dimension
(frm_width)

Bandwidth of the
user connection
(max_bitrate)

Frame Quality
(bpp_quality) Frame Rate (fps)

Available
Bandwidth

(avail_bandwidth)

Not Given Given Not Given Given

Not Given Given Not Given Not Given

Not Given Not Given Not Given Given

Not Given Not Given Not Given

If not given by the
user then the

default value is 30
or 25 if the colour
standard is NTSC

or PAL
respectively. Not Given

Table 7. Combination of different parameters when user does not provide neither specific frame
dimensions nor frame quality.

Based on the chosen max_possible_bitrate our algorithm calculates the dimensions of
the frame using the quality parameter (bpp) which corresponds to the first appearance
of fps parameter (see Table 5, D2.2), so that the overall bit rate is lower that the
max_possible_bitrate. If the overall bit rate is higher than max_possible_bitrate the
algorithm maintains the chosen quality and reduces the dimesions (down to 80
pixels). If the video stream cannot be sent then we have to decrease the quality based
on its lower bound.

In all four cases mentioned above if we reach the lower bounds with respect to frame
width and frame quality then the algorithm deduces than the transmission of the video
stream is not feasible because the stream cannot be sent with satisfactory user
perceived quality. The algorithm re-calculates the transmission parameters as soon as
the parameter max_possible_bitrate changes.

2.2.4 Commands executed before and after conducting simulations
Evalvid framework presented in sections 2.1.1 and 2.1.2 is also used here for quality
evaluations. Before conducting simulations we have to create a designated file
namely example.par which will contain the following parameters and their initially
assigned values. This file will have the following syntax:

 Source.Width

 Source.Height

 Source.LastFrame

 Source.FilePrefix

 Source.FrameRate[0]

 RateControl.BitsPerSecond[0]

 Scalability.Spatial.Width

 Scalability.Spatial.Height

After completing this step we adopt the following steps:

1. The file example.par is used in conjunction with mpeg4encoder.exe application [9]
that takes all the aforementioned parameters into consideration in order to compress
the raw video stream as shown below:

mpeg4encoder.exe example.par

2. We use MP4.exe (from Evalvid package) to record the sender’s trace file (st) as we
did in ADIVIS algorithm. Each frame will be fragmented into 1000 bytes for
transmission. (Maximun packet length will be 1028 bytes, including IP header
(20bytes) and UDP header (8bytes).)

mp4.exe –send 224.1.2.3 5555 1000 foreman_qcif.cmp > st

3. We execute the NS2 scenario written in tcl scripting language. After simulation,
NS2 will create two files, sd_be and rd_be. The file sd_be is to record the sending
time of each packet while the file rd_be is used to record the received time of each
packet.

4. Using the tool et.exe (from Evalvid) to generate the received video (err.cmp):

et.exe sd_be rd_be st foreman_qcif.cmp err_be.cmp 1

5. Decode the received video to yuv format. I also put the status of decoding into a
file df_be.

mpeg4decoder.exe err_be.cmp err_be 176 144 > df_be

6. Use the program myfixyuv.exe to fix the decoded yuv sequence.

myfixyuv.exe df_be qcif 400 err_be.yuv myfix_be.yuv

7. In order to evaluate the objective quality of service of the received video stream we
have to compute the PSNR using the psnr.exe (from Evalvid).

psnr.exe 176 144 420 foreman_qcif.yuv myfix_be.yuv > psnr_myfix_be

3. Conclusions
In this deliverable we analyzed the simulation models that will be used for the
evaluation the performance of each algorithm. Simulation models are based on the
open source simulator ns2.
ADIVIS evaluations are based on an enhanced ns2 node model presented in Fig. 5
that includes a video RTP agent, a video RTCP agent and an enhanced RTP Session
module. Moreover we tried to attach real video traces in the simulation model so as to
conduct more realistic scenarios. ADIVIS QoS assessment would not be possible
without the Evalvid Framework which is a complete framework and tool-set for
evaluation of the quality of video transmitted over a real simulated communication
network.
RAF evaluations are based on a streaming system (client and server) called Goddard
which was implemented in Worcester Polytechnic Institute. Goddard is designed

based on the behaviours of Real Networks streaming media and Windows Stream
media. In the initial version of Goddard System every layer was simulated on the
basis of a different CBR traffic pattern. In our version every layer corresponds to a
different VBR traffic pattern and for this purpose every layer is simulated using real
video traces.
All in all a combined wired and wireless network will be simulated and the proposed
algorithms will compose a fully adaptive system which will be tested for its ability to
support real time multimedia applications in various realistic or extreme scenarios.
The results of these scenarios will be presented and analyzed in Deliverable 3.3.

References
[1] Network Simulator – ns-2 site. http://www.isi.edu/nsnam/ns/.
[2] Fedora Project site. http://fedora.redhat.com/.
[3] Evalvid in NS2. http://140.116.72.80/~smallko/ns2/Evalvid_in_NS2.rar.
[4] C.-H. Ke, C.-H. Lin, C.-K. Shieh, W.-S. Hwang, “A Novel Realistic Simulation

Tool for Video Transmission over Wireless Network,” The IEEE International
Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing
(SUTC2006), June 5-7, 2006, Taichung, Taiwan.

[5] J. Klaue, B. Rathke and A. Wolish, “Evalvid – A Framework for Video
Transmission and Quality Evaluation,” http://www.tkn.tu-
berlin.de/publications/papers/evalvid.pdf.

[6] FFmpeg Multimedia System site. http://ffmpeg.mplayerhq.hu/.
[7] J. Klaue. Evalvid – http://www.tkn.tu-berlin.de/research/evalvid/fw.html.
[8] Worcester Polytechnic Institute. “Research related to performance of networks,

specifically congestion control and multimedia systems,” http://perform.wpi.edu
[9] MPEG4encoder site. http://www.megaera.ee.nctu.edu.tw/mpeg/ Department of

Electronics Engineering National Chiao-Tung University, Taiwan.

